A Pore Network Approach to Study Throat Size Effect on the Permeability of Reconstructed Porous Media
Abstract
:1. Introduction
2. Methods and Models
2.1. Permeability Calculation
2.2. Model Construction
2.3. Simulation Scheme
3. Results and Discussion
3.1. Blank Control Group
3.2. The Effect of Small Throats
3.3. The Effect of Connectivity
3.4. Randomly Generated PNM
3.5. PNM from Core Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PSD | Pore size distribution |
Probability density function | |
PCN | Pore coordination number |
PNM | Pore network model |
ϕ | Porosity ([−]) |
K | Permeability (m2) |
c | KC constant ([−]) |
Dp | Average diameter of sand grains (m) |
qi | Net flow rate through pore i (m3/s) |
Pi | Pressure at pore i (Pa) |
gij | Hydraulic conductivity for a conduit (m4·s/kg) |
μ | Fluid viscosity (Pa·s) |
A | Conduit cross-section area (m2) |
L | Conduit length (m) |
Q | Total flow rate through the whole PNM (m3/s) |
Qin | Total net flow rate for all inlet pores (m3/s) |
S | Flow cross-section area of the PNM (m2) |
Ls | Distance from inlets to outlets (m) |
ΔP | Applied pressure difference at two ends of PNM (Pa). |
Note: [−]: This means c has no unit. It is just a constant number. |
References
- Torquato, S.; Lu, B. Chord-length distribution function for two-phase random media. Phys. Rev. E 1993, 47, 2950–2953. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Yu, B. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry. Adv. Water Resour. 2008, 31, 74–81. [Google Scholar] [CrossRef]
- Purcell, W.R. Capillary pressures-Their measurement using mercury and the calculation of permeability therefrom. J. Pet. Technol. 1949, 1, 39–48. [Google Scholar] [CrossRef]
- Nelson, P.H. Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG Bull. 2009, 93, 329–340. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.; Wang, Z.; Chen, J.; Pang, X.; Wang, S.; Zhou, Z.; He, Z.; Qin, Z.; Fan, X. A review on pore structure characterization in tight sandstones. Earth-Sci. Rev. 2018, 177, 436–457. [Google Scholar] [CrossRef]
- Mavko, G.; Nur, A. The effect of a percolation threshold in the Kozeny-Carman relation. Geophysics 1997, 62, 1480–1482. [Google Scholar] [CrossRef]
- Costa, A. Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophys. Res. Lett. 2006, 33, L02318. [Google Scholar] [CrossRef]
- Wei, W.; Cai, J.; Xiao, J.; Meng, Q.; Xiao, B.; Han, Q. Kozeny-Carman constant of porous media: Insights from fractal-capillary imbibition theory. Fuel 2018, 234, 1373–1379. [Google Scholar] [CrossRef]
- Golparvar, A.; Zhou, Y.; Wu, K.; Ma, J.; Yu, Z. A comprehensive review of pore scale modeling methodologies for multiphase flow in porous media. Adv. Geo-Energy Res. 2018, 2, 418–440. [Google Scholar] [CrossRef] [Green Version]
- Raoof, A.; Nick, H.M.; Hassanizadeh, S.M.; Spiers, C.J. PoreFlow: A complex pore-network model for simulation of reactive transport in variably saturated porous media. Comput. Geosci. 2013, 61, 160–174. [Google Scholar] [CrossRef]
- Qin, C. Water transport in the gas diffusion layer of a polymer electrolyte fuel cell: Dynamic pore-network modeling. J. Electrochem. Soc. 2015, 162, F1036–F1046. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, K.; Zhang, L.; Sun, H.; Zhang, K.; Ma, J. Pore-scale simulation of shale oil flow based on pore network model. Fuel 2019, 251, 683–692. [Google Scholar] [CrossRef]
- Gostick, J.T.; Ioannidis, M.A.; Fowler, M.W.; Pritzker, M.D. Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells. J. Power Sources 2007, 173, 277–290. [Google Scholar] [CrossRef]
- Fatt, I. The network model of porous media. Pet. Trans. AIME 1956, 207, 144–181. [Google Scholar] [CrossRef]
- Chatzis, I.; Dullien, F.A.L. Modelling pore structure by 2-D and 3-D networks with applicationto sandstones. J. Can. Pet. Technol. 1977, 16, 97–108. [Google Scholar] [CrossRef]
- Dong, H.; Blunt, M.J. Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 2009, 80, 036307. [Google Scholar] [CrossRef] [Green Version]
- Han, J. The Application of the Shortest Path Algorithm in Pore Network Model. Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2019. [Google Scholar]
- Mahanta, B.; Vishal, V.; Ranjith, P.G.; Singh, T.N. An insight into pore-network models of high-temperature heat-treated sandstones using computed tomography. J. Nat. Gas Sci. Eng. 2020, 77, 103227. [Google Scholar] [CrossRef]
- Foroozesh, J.; Mohamed Abdalla, A.I.; Zivar, D.; Douraghinejad, J. Stress-dependent fluid dynamics of shale gas reservoirs: A pore network modeling approach. J. Nat. Gas Sci. Eng. 2021, 95, 104243. [Google Scholar] [CrossRef]
- Mehmani, A.; Verma, R.; Prodanović, M. Pore-scale modeling of carbonates. Mar. Pet. Geol. 2020, 114, 104141. [Google Scholar] [CrossRef]
- Gostick, J.; Aghighi, M.; Hinebaugh, J.; Tranter, T.; Hoeh, M.A.; Day, H.; Spellacy, B.; Sharqawy, M.H.; Bazylak, A.; Burns, A.; et al. OpenPNM: A pore network modeling package. Comput. Sci. Eng. 2016, 18, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Tranter, T.G.; Gostick, J.T.; Burns, A.D.; Gale, W.F. Pore network modeling of compressed fuel cell components with OpenPNM. Fuel Cells 2016, 16, 504–515. [Google Scholar] [CrossRef]
- Schalenbach, M.; Hoeh, M.A.; Gostick, J.T.; Lueke, W.; Stolten, D. Gas permeation through nafion. Part 2: Resistor network model. J. Phys. Chem. C 2015, 119, 25156–25169. [Google Scholar] [CrossRef]
- Esteves, B.F.; Lage, P.L.; Couto, P.; Kovscek, A.R. Pore-network modeling of single-phase reactive transport and dissolution pattern evaluation. Adv. Water Resour. 2020, 145, 103741. [Google Scholar] [CrossRef]
- Yang, J.; Bondino, I.; Regaieg, M.; Moncorgé, A. Pore to pore validation of pore network modelling against micromodel experiment results. Comput. Geosci. 2017, 21, 849–862. [Google Scholar] [CrossRef]
Model Sets | PCN | PCNave | PD (×10−5 m) | PNM Quantity |
---|---|---|---|---|
1 | 2 | 0.9 | 2.5, 5.0 | 2 + 85 |
2 | 6 | 2.7 | 2.5, 5.0 | 2 + 4 |
3 | 2 | 0.9 | [2.5, 5.0] *, [0.1, 10.0] | 24 × 100 |
4 | 6 | 0.7 | [2.5, 5.0], [0.1, 10.0] | 24 × 100 |
5 | Extracted from core samples | 6 |
Blank Controls | Model Sets | ϕ (%) | Simulated Qin (×10−7 m3/s) | Theoretical Qin (×10−7 m3/s) | Relative Error (×10−4) | Simulated K (×10−13 m2) | Theoretical K (×10−13 m2) | Relative Error (×10−4) |
---|---|---|---|---|---|---|---|---|
1 | 1 | 4.91 | 1.19265 | 1.19205 | 5.03 | 9.58738 | 9.58252 | 5.07 |
2 | 1 | 19.63 | 19.0824 | 19.0728 | 5.03 | 153.398 | 153.320 | 5.09 |
3 | 2 | 13.25 | 1.19265 | − | − | 9.58738 | − | − |
4 | 2 | 53.01 | 19.0824 | − | − | 153.398 | − | − |
PNM | Berea | S1 | F42A | LV60A | C1 | C2 |
---|---|---|---|---|---|---|
Rock Type | Sandstone | Sandpack | Carbonate | |||
Resolution (μm) | 5.345 | 8.683 | 9.996 | 10.002 | 2.85 | 5.345 |
Size (mm) | 2.14 | 2.60 | 3.00 | 3.00 | 1.14 | 2.14 |
PN | 6298 (6004) | 1868 (1717) | 1246 (974) | 3135 (2636) | 4576 (2612) | 8508 (4311) |
TN | 12098 (12067) | 2839 (2824) | 2654 (2651) | 7440 (7429) | 6700 (5071) | 9818 (7668) |
PCNmin | 0 (1) | 0 (1) | 0 (1) | 0 (1) | 0 (1) | 0 (1) |
PCNave | 1.92 (2.01) | 1.52 (1.64) | 2.13 (2.72) | 2.37 (2.82) | 1.46 (1.94) | 1.15 (1.78) |
PCNmax | 30 | 20 | 20 | 28 | 46 | 42 |
PDmin (μm) | 4.5 | 1.8 (2.0) | 2.4 (13.1) | 2.1 (8.3) | 0.58 | 1.075 (1.083) |
PDave (μm) | 30.7 (31.5) | 51.2 (53.9) | 89.3 (109.0) | 70.9 (80.2) | 14.1 (17.7) | 22.8 (28.3) |
PDmax (μm) | 140.5 | 228.0 | 267.2 | 202.3 | 141.9 | 222.4 |
TDmin (μm) | 1.1 | 1.7 | 20.0 | 20.0 | 0.58 | 1.20 (1.28) |
TDave (μm) | 14.02 (14.04) | 23.9 (24.0) | 55.75 (55.78) | 40.27 (40.30) | 7.86 (8.65) | 11.96 (12.77) |
TDmax (μm) | 80.1 | 104.2 | 162.1 | 126.6 | 63.6 | 103.5 |
ϕ (%) | 19.62 (19.55) | 14.12 (14.05) | 32.85 (32.75) | 36.51 (36.30) | 23.75 (21.24) | 17.15 (14.03) |
ϕ exp (%) | 19.6 | 14.1 | 33.0 | 37.7 | 23.3 | 16.8 |
K (×10−12 m2) | 2.600 | 3.589 | 198.12 | 73.05 | 0.292 | 0.047 |
Kexp (×10−12 m2) | 1.360 | 1.969 | 61.0 | 27.2 | 0.785 | 0.038 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, K.; Wei, W.; Chen, Y.; Tian, H.; Xu, S.; Cai, J. A Pore Network Approach to Study Throat Size Effect on the Permeability of Reconstructed Porous Media. Water 2022, 14, 77. https://doi.org/10.3390/w14010077
Xu K, Wei W, Chen Y, Tian H, Xu S, Cai J. A Pore Network Approach to Study Throat Size Effect on the Permeability of Reconstructed Porous Media. Water. 2022; 14(1):77. https://doi.org/10.3390/w14010077
Chicago/Turabian StyleXu, Kai, Wei Wei, Yin Chen, Haitao Tian, Sai Xu, and Jianchao Cai. 2022. "A Pore Network Approach to Study Throat Size Effect on the Permeability of Reconstructed Porous Media" Water 14, no. 1: 77. https://doi.org/10.3390/w14010077
APA StyleXu, K., Wei, W., Chen, Y., Tian, H., Xu, S., & Cai, J. (2022). A Pore Network Approach to Study Throat Size Effect on the Permeability of Reconstructed Porous Media. Water, 14(1), 77. https://doi.org/10.3390/w14010077