Study of the Influence of Physicochemical Parameters on the Water Quality Index (WQI) in the Maranhão Amazon, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Monitored Parameters
2.3. Multivariate Statistical Method: PCA
2.4. Water Quality Index (WQI)
3. Results
3.1. Descriptive Measures of River Water Quality Data
3.2. Microbiological Assay
3.3. WQI
3.4. PCA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Carvalho, F.I.M.; Lemos, V.P.; Filho, H.A.D.; das Graças, F.D.K. Avaliação da qualidade das águas subterrâneas de Belém a partir de parâmetros físico-químicos e níveis de elementos traço usando análise multivariada. Rev. Virtual Química 2015, 7, 2221–2241. [Google Scholar] [CrossRef]
- Silva, S.H.P.; Gonçalves, M.M.; Braga, F.H.R.; Lima, N.S.; Neto, W.R.N.; Nunes, M.A.S.; Bastos, D.K.L.; de Souza Monteiro, A.; da Silva, D.F.; da Cunha Araujo Firmo, W. Environmental Impact of Agrochemical uses on the Island’s Agricultural Production Area in Maranhão, Brazil. GJSFR 2020, 20, 75–85. [Google Scholar] [CrossRef]
- Ribeiro, M.A.; Camargo, E.; Franca, D.; Calasans, J.; do Socorro Castello Branco, M.; Trigo, A. Gestão da Água e Paisagem Cultural. Rev. Univ. Fed. Minas Gerais 2016, 20, 44–67. [Google Scholar] [CrossRef]
- Khan, F.M.; Gupta, R.; Sekhri, S. Superposition learning-based model for prediction of E.coli in ground water using physico-chemical water quality parameters. Groundw. Sustain. Dev. 2021, 13, 100580. [Google Scholar] [CrossRef]
- Payus, C.; Haziqah, N.; Basri, N.; Wan, V.L. Faecal Bacteria Contaminations in Untreated Drinking Water (Groundwater Well and Hill Water) from Rural Community Areas. Int. J. Adv. Sci. Technol. IJAST 2018, 158, 215–218. [Google Scholar]
- Cavalcanti, K.G.S.; Silva, D.F.; Lima, N.S.; Mendonça, R.C.; Neto, W.R.N.; Silva, M.R.C. Quantitative vulnerability assessment of Corda River water basin: Impacts of seasonality on water quality in the state of Maranhão. Ciênc. Nat. 2020, 42, e2. [Google Scholar] [CrossRef]
- World Health Organization. Diarrhoeal Disease. 2017. Available online: http://www.who.int/mediacentre/factsheets/fs330/en (accessed on 22 July 2021).
- Greenwood, D.; Slack, R.; Peutherer, J. Escherichia. In Medical Microbiology, 16th ed.; Churchill Livingstone: Edinburgh, UK, 2003; pp. 265–273. [Google Scholar]
- Riley, L.W.; Remis, R.S.; Helgerson, S.D.; McGee, H.B.; Wells, J.G.; Davis, B.R.; Blake, P.A. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N. Engl. J. Med. 1983, 308, 681–685. [Google Scholar] [CrossRef]
- Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 2010, 8, 207–217. [Google Scholar] [CrossRef]
- Alam, M.; Farzana, T.; Ahsen, C.R.; Yasmin, M.; Nessa, J. Distribution of coliphages against four E.coli virotypes in hospital originated sewage sample and a sewage treatment plant in Bangladesh. Indian J. Microbiol. 2011, 51, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Nevers, M.; Boehm, A. Modeling fate and transport of fecal bacteria in surface water. In The Fecal Bacteria; Sadowsky, M., Whitman, R., Eds.; ASM Press: Washington, DC, USA, 2011; pp. 165–188. [Google Scholar]
- Atlas, R.M. Microbial Ecology: Fundamentals and Applications; Pearson Education India: Delhi, India, 1998. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011.
- 10500:2012; Bureau of Indian Standards (BIS). Indian Standard Drinking Water-Specification (Second Revision). Bureau of Indian Standards: New Delhi, India, 2012.
- Noori, R.; Berndtsson, R.; Hosseinzadeh, M.; Adamowski, J.F.; Abyaneh, M.R. A critical review on the application of the National Sanitation Foundation Water Quality Index. Environ. Pollut. 2019, 244, 575–587. [Google Scholar] [CrossRef]
- Muniz, J.N.; Duarte, K.G.; Braga, F.H.R.; Lima, N.S.; Silva, D.F.; Firmo, W.C.A.; Batista, M.R.V.; Silva, F.M.A.M.; Miranda, R.C.M.; Silva, M.R.C. Limnological Quality: Seasonality Assessment and Potencial for Contamination of the Pindaré River Watershed, Pre-Amazon Region, Brazil. Water 2020, 12, 851. [Google Scholar] [CrossRef] [Green Version]
- ANA. Indicadores de Qualidade—Índice de Qualidade das Águas (IQA). Available online: http://pnqa.ana.gov.br/indicadores-indice-aguas.aspx (accessed on 16 September 2018).
- Souza, N.A.; Costa, W.R.; Silva, E.; Silva, M.R.C. Spatial and temporal evaluation of the water quality index and trophic state index of the Curuçá River, Maranhão, Brazil. Ciênc. Nat. 2018, 40, 58–70. [Google Scholar] [CrossRef]
- Andrade, A.N.; Blasques, R.V.; Villis, P.C.M.; Silva, D.F.; Gomes, W.C. Efficiency of electroflocculation in the treatment of water contaminated by organic waste. Rev. Ambiente Água 2020, 15, e2484. [Google Scholar] [CrossRef]
- Fernandes, T.O.; Mendonça, F.M.A.; Rodrigues, M.V.B.; Silva, D.F.; Silva, M.R.C. Estudos Multidiscliplinares na Area da Saude. Analise Físico-Química e Microbiológica da Água de um Açude do Município de Vargem Grande, Maranhão, 1st ed.; CRV: Curitiba, Brazil, 2017; 168p. [Google Scholar]
- INMET (Instituto Nacional de Meteorologia). BDMEP—Banco de Dados Meteorológicos para Ensino e Pesquisa. 2020. Available online: www.inmet.gov.br/portal/index.php (accessed on 14 January 2021).
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 20th ed.; APHA: Washington, DC, USA, 2012. [Google Scholar]
- Silva, M.R.C.; da Silva, L.V.; Barreto, L.N.; Rodrigues, E.H.C.; de Miranda, R.D.C.M.; Bezerra, D.S.; Pereira, D.C.A. Qualidade da água da bacia do rio Pindaré, nos trechos correspondentes aos municípios de Pindaré-Mirim, Tufilândia e Alto Alegre no estado do Maranhão. Rev. Águas Subterrâneas 2017, 31, 347–354. [Google Scholar] [CrossRef] [Green Version]
- BRASIL. Ministério do Meio Ambiente. Programa de Educação Ambiental e Agricultura Familiar; Educação Ambiental: Brasília, Brazil, 2016. [Google Scholar]
- Vega, M.; Pardo, R.; Barrado, E.; Debán, L. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res. 1998, 32, 3581–3592. [Google Scholar] [CrossRef]
- Liu, C.; Lin, K.; Kuo, Y. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci. Total Environ. 2003, 313, 77–89. [Google Scholar] [CrossRef]
- Simeonov, V.; Stratis, J.A.; Samara, C.; Zachariadis, G.; Voutsa, D.; Anthemidis, A.; Sofoniou, M.; Kouimtzis, T. Assessment of the surface water quality in Northern Greece. Water Res. 2003, 37, 4119–4124. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef]
- Trabelsi, R.; Zouari, K. Coupled geochemical modeling and multivariate statistical analysis approach for the assessment of groundwater quality in irrigated areas: A study from North Eastern of Tunisia. Groundw. Sustain. Dev. 2019, 8, 413–427. [Google Scholar] [CrossRef]
- Abdelaziz, S.; Gad, M.I.; El Tahan, A.H.M. Groundwater quality index based on, P.CA: Wadi El-Natrun; Egypt. J. Afr. Earth Sci. 2020, 172, 103964. [Google Scholar] [CrossRef]
- Bouderbala, A.; Remini, B.; Hamoudi, A.S.; Pulido-Bosch, A. Application of Multivariate Statistical Techniques for Characterization of Groundwater Quality in the Coastal Aquifer of Nador; Tipaza (Algeria). Acta Geophys. 2016, 64, 670–693. [Google Scholar] [CrossRef] [Green Version]
- Lumb, A.; Sharma, T.C.; Bibeault, J.F. A Review of Genesis and Evolution of Water Quality Index (WQI) and Some Future Directions. Water Qual. Expo. Health 2011, 3, 11–24. [Google Scholar] [CrossRef]
- Gad, M.; El-Safa, M.M.; Farouk, M.; Hussen, H.; Alnemari, A.M.; Elsayed, S.; Khalifa, M.M.; Moghamm, F.S.; Eid, E.M.; Saleh, A.H. Integration of Water Quality Indices and Multivariate Modeling for Assessing Surface Water Quality in Qaroun lake, Egypt. Water 2021, 13, 2258. [Google Scholar] [CrossRef]
- Ma, Z.; Li, H.; Ye, Z.; Wen, J.; Hu, Y.; Liu, Y. Application of modified water quality index (WQI) in the assessment of coastal water quality in main aquaculture areas of Dalian, China. Mar. Pollut. Bull. 2020, 157, 111285. [Google Scholar] [CrossRef]
- Nong, X.; Shao, D.; Zhong, H.; Liang, J. Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Res. 2020, 178, 115781. [Google Scholar] [CrossRef]
- Mahapatra, S.S.; Sahu, M.; Patel, R.K.; Panda, B.N. Prediction of Water Quality Using Principal Component Analysis. Water Qual. Expo. Health 2012, 4, 93–104. [Google Scholar] [CrossRef]
- George, M.; Ngole-Jeme, V.M. An Evaluation of the Khubelu Wetland and Receiving Stream Water Quality for Community Use. Water 2022, 14, 442. [Google Scholar] [CrossRef]
- Zhang, Z.-M.; Zhang, F.; Du, J.-L.; Chen, D.-C. Surface Water Quality Assessment and Contamination Source Identification Using Multivariate Statistical Techniques: A Case Study of the Nanxi River in the Taihu Watershed, China. Water 2022, 14, 778. [Google Scholar] [CrossRef]
- Hernández-Mena, L.; Panduro-Rivera, M.G.; Díaz-Torres, J.J.; Ojeda-Castilho, V.; Real-Olvera, J.; López-Cervantes, M.; Pacheco-Domínguez, R.L.; Morton-Bermea, O.; Santacruz-Benítez, R.; Vallejo-Rodríguez, R.; et al. GIS, Multivariate Statistics Analysis and Health Risk Assessment of Water Supply Quality for Human Use in Central Mexico. Water 2021, 13, 2196. [Google Scholar] [CrossRef]
- Choque-Quispe, D.; Froehner, S.; Palomino-Rincón, H.; Peralta-Guevara, D.; Barboza-Palomino, G.I.; Kari-Ferro, A.; Zamalloa-Puma, M.; Mojo-Quisani, A.; Barboza-Palomino, E.E.; Zamalloa-Puma, M.M.; et al. Proposal of a Water-Quality Index for High Andean Basins: Application to the Chumbao River, Andahuaylas, Peru. Water 2022, 14, 654. [Google Scholar] [CrossRef]
- Cabral, J.P.S. Water microbiology. Bacterial pathogens and water. Int. J. Environ. Res. Public Health 2010, 7, 3657–3703. [Google Scholar] [CrossRef] [PubMed]
- Castro, F.D.; Sedman, J.; Ismail, A.A.; Asadishad, B.; Tufenkji, N. Effect of dissolved oxygen on two bacterial pathogens examined using ATR-FTIR spectroscopy, microelectrophoresis, and potentiometric titration. Environ. Sci. Technol. 2010, 44, 4136–4141. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Hofstra, N.; Islam, M.A. The impact of environmental variables on faecal indicator bacteria in the Betna river basin, Bangladesh. Environ. Processes 2017, 4, 319–332. [Google Scholar] [CrossRef]
- Shamsudin, S.N.; Rahman, M.H.F.; Taib, M.N.; Razak, W.R.W.A.; Ahmad, A.H.; Zain, M.M. Analysis between Escherichia Coli growth and physical parameters in water using Pearson correlation. In Proceedings of the 2016 7th IEEE Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 8 August 2016; pp. 131–136. [Google Scholar]
WQI Range | Type | Classification |
---|---|---|
<100 | Excellent | I |
51–79 | Good | II |
36–51 | Regular | III |
19–36 | Poor | IV |
<19 | Very poor | V |
Parameters | Weight |
---|---|
pH | 0.12 |
Turbidity | 0.08 |
Total waste * | 0.08 |
Phosphorus | 0.10 |
D.O | 0.17 |
BOD | 0.10 |
Thermotolerant coliforms | 0.15 |
Total nitrogen ** | 0.10 |
Temperature | 0.10 |
Parameters | Rainy Season | Dry Season | ||
---|---|---|---|---|
January/20 | April/20 | September20 | November/20 | |
pH | 6.01 ± 0.21 a | 5.96 ± 0.62 a | 5.73 ± 0.10 a | 5.74 ± 0.15 a |
E.C (µS·cm−1) | 119.00 ± 27.43 a | 70.98 ± 21.19 b | 142.22 ± 38.00 a | 148.80 ± 22.82 a |
Turb. (NTU) | 36.51 ± 15.36 a | 16.16 ± 2.22 b | 15.51 ± 2.97 b | 15.42 ± 3.88 b |
Sal. (ppt) | 0.02 ± 0.008 a | 0.01 ± 0.005 a | 0.01 ± 0.005 a | 0.01 ± 0.005 a |
TDS (mg·L−1) | 48.53 ± 21.38 a | 45.50 ± 0.14.98 a | 152.15 ± 24.98 b | 138.78 ± 32.44 b |
NO2− (mg·L−1) | 0.73 ± 0.09 a | 0.52 ± 0.11 a | 0.55 ± 0.35 a | 0.75 ± 0.23 a |
NO3− (mg·L−1) | 4.93 ± 2.96 a | 4.50 ± 1.98 a | 5.88 ± 1.15 ab | 8.33 ± 1.18 b |
P (mg·L−1) | 1.26 ± 0.07 a | 2.86 ± 1.09 b | 3.65 ± 0.85 bc | 4.85 ± 0.55 c |
Mg (mg·L−1) | 6.24 ± 1.71 a | 11.16 ± 2.04 abc | 14.08 ± 5.58 bc | 15.35 ± 6.41 c |
Ca (mg·L−1) | 374.85 ± 39.39 a | 313.00 ± 13.85 b | 321.00 ± 11.90 b | 344.33 ± 11.10 ab |
D.O (mg·L−1) | 1.64 ± 0.37 a | 10.88 ± 0.35 b | 10.01 ± 0.40 c | 9.77 ± 0.08 c |
BOD (mg·L−1) | 6.88 ± 1.19 a | 7.91 ± 1.96 a | 8.56 ± 1.07 a | 8.45 ± 1.49 a |
Temp. (°C) | 33.74 ± 0.75 a | 19.82 ± 2.09 b | 24.12 ± 0.52 c | 22.86 ± 0.45 c |
E. coli (CFU/100 mL) | 802.5 ± 58.81 a | 408.3 ± 31.25 b | 458.3 ± 96.04 b | 464.1 ± 80.45 b |
Months | Sampling Points | WQI 1 | Classification |
---|---|---|---|
January-2020 | P1 | 55.18 | II |
P2 | 60.80 | II | |
P3 | 61.50 | II | |
P4 | 61.50 | II | |
P5 | 55.20 | II | |
P6 | 60.70 | II | |
April-2020 | P1 | 39.08 | III |
P2 | 44.11 | III | |
P3 | 46.02 | III | |
P4 | 46.02 | III | |
P5 | 43.05 | III | |
P6 | 46.23 | III | |
September-2020 | P1 | 63.20 | II |
P2 | 63.50 | II | |
P3 | 63.20 | II | |
P4 | 63.11 | II | |
P5 | 53.10 | II | |
P6 | 63.08 | II | |
November-2020 | P1 | 55.20 | II |
P2 | 62.40 | II | |
P3 | 60.30 | II | |
P4 | 62.50 | II | |
P5 | 62.05 | II | |
P6 | 61.05 | II |
Variables | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
pH | 0.211694 | −0.339744 | 0.281397 | −0.234741 |
E.C | −0.089208 | 0.491282 | −0.250585 | −0.399001 |
Turb. | 0.308774 | 0.151709 | 0.176607 | 0.265387 |
Sal. | 0.221851 | −0.182013 | −0.120232 | −0.608899 |
TDS | −0.247860 | 0.387794 | 0.130499 | −0.065474 |
NO2− | 0.113668 | 0.237902 | 0.440053 | 0.225207 |
NO3− | −0.099400 | 0.246317 | 0.552196 | −0.133110 |
P | −0.355449 | 0.199129 | 0.055225 | −0.054660 |
Mg | −0.252059 | −0.026302 | 0.211142 | −0.462613 |
Ca | 0.266181 | 0.332497 | 0.086386 | −0.077411 |
DO | −0.379364 | −0.190284 | 0.116333 | 0.037602 |
BOD | −0.245595 | 0.195371 | −0.429805 | 0.165634 |
Temp | 0.363751 | 0.231854 | −0.034696 | −0.140967 |
E.coli | 0.348072 | 0.200962 | −0.205469 | 0.0085396 |
Eigenvalue | 5.9228 | 2.3698 | 1.8236 | 1.2480 |
T.V (%) * | 42.30 | 16.90 | 13.00 | 8.90 |
C.V (%) ** | 42.30 | 59.20 | 72.30 | 81.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braga, F.H.R.; Dutra, M.L.S.; Lima, N.S.; Silva, G.M.; Miranda, R.C.M.; Firmo, W.C.A.; Moura, A.R.L.; Monteiro, A.S.; Silva, L.C.N.; Silva, D.F.; et al. Study of the Influence of Physicochemical Parameters on the Water Quality Index (WQI) in the Maranhão Amazon, Brazil. Water 2022, 14, 1546. https://doi.org/10.3390/w14101546
Braga FHR, Dutra MLS, Lima NS, Silva GM, Miranda RCM, Firmo WCA, Moura ARL, Monteiro AS, Silva LCN, Silva DF, et al. Study of the Influence of Physicochemical Parameters on the Water Quality Index (WQI) in the Maranhão Amazon, Brazil. Water. 2022; 14(10):1546. https://doi.org/10.3390/w14101546
Chicago/Turabian StyleBraga, Fábio Henrique Ramos, Mikaelly Luzia Silva Dutra, Neuriane Silva Lima, Gleice Melo Silva, Rita Cássia Mendonça Miranda, Wellyson Cunha Araújo Firmo, Anna Regina Lanner Moura, Andrea Souza Monteiro, Luís Cláudio Nascimento Silva, Darlan Ferreira Silva, and et al. 2022. "Study of the Influence of Physicochemical Parameters on the Water Quality Index (WQI) in the Maranhão Amazon, Brazil" Water 14, no. 10: 1546. https://doi.org/10.3390/w14101546
APA StyleBraga, F. H. R., Dutra, M. L. S., Lima, N. S., Silva, G. M., Miranda, R. C. M., Firmo, W. C. A., Moura, A. R. L., Monteiro, A. S., Silva, L. C. N., Silva, D. F., & Silva, M. R. C. (2022). Study of the Influence of Physicochemical Parameters on the Water Quality Index (WQI) in the Maranhão Amazon, Brazil. Water, 14(10), 1546. https://doi.org/10.3390/w14101546