Effects of Water and Nitrogen Management on Water Productivity, Nitrogen Use Efficiency and Leaching Loss in Rice Paddies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Design
2.3. Sampling, Measurements and Calculation
2.3.1. Irrigation and Drainage
2.3.2. Nitrogen Concentrations in Field Water
2.3.3. Plant Analysis and N Uptake
2.3.4. Water Productivity and NUE
2.4. Statistical Analysis
3. Results
3.1. Nitrogen Concentrations of Surface Water
3.2. Nitrogen Loss via Deep Percolation
3.3. Grain Yield and Water Productivity
3.4. Nitrogen Uptake and Utilization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fageria, N.K. Yield Physiology of Rice. J. Plant Nutr. 2007, 30, 843–879. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook 2019. In China Statistical Yearbook 2019; China Statistics Press: Beijing, China, 2019; p. 244. [Google Scholar]
- Peng, S.; Tang, Q.; Zou, Y. Current Status and Challenges of Rice Production in China. Plant Prod. Sci. 2009, 12, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Food and Agricultural Organization (FAO). World Fertilizer Trends and Outlook to 2018; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Bouman, B.A.M.; Tuong, T.P. Field Water Management to Save Water and Increase Its Productivity in Irrigated Lowland Rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Kannan, N.; Anandhi, A. Water Management for Sustainable Food Production. Water 2020, 12, 778. [Google Scholar] [CrossRef] [Green Version]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing Yield Gaps through Nutrient and Water Management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef]
- Choi, S.-K.; Jeong, J.; Kim, M.-K. Simulating the Effects of Agricultural Management on Water Quality Dynamics in Rice Paddies for Sustainable Rice Production—Model Development and Validation. Water 2017, 9, 869. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhao, W.; Li, J.; Li, Y. Effects of Irrigation Strategies and Soil Properties on the Characteristics of Deep Percolation and Crop Water Requirements for a Variable Rate Irrigation System. Agric. Water Manag. 2021, 257, 107143. [Google Scholar] [CrossRef]
- Diaz, R.J.; Rosenberg, R. Spreading Dead Zones and Consequences for Marine Ecosystems. Science 2008, 321, 926–929. [Google Scholar] [CrossRef]
- Cameira, M.d.R.; Santos Pereira, L. Innovation Issues in Water, Agriculture and Food. Water 2019, 11, 1230. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [Green Version]
- Bouman, B.A.M.; Peng, S.; Castañeda, A.R.; Visperas, R.M. Yield and Water Use of Irrigated Tropical Aerobic Rice Systems. Agric. Water Manag. 2005, 74, 87–105. [Google Scholar] [CrossRef]
- Lampayan, R.M.; Bouman, B.A.M.; de Dios, J.L.; Espiritu, A.J.; Soriano, J.B.; Lactaoen, A.T.; Faronilo, J.E.; Thant, K.M. Yield of Aerobic Rice in Rainfed Lowlands of the Philippines as Affected by Nitrogen Management and Row Spacing. Field Crops Res. 2010, 116, 165–174. [Google Scholar] [CrossRef]
- Uphoff, N.; Randriamiharisoa, R. Water-Wise Rice Production. In Reducing Water Use in Irrigated Rice Production with the Madagascar System of Rice Intensification (SRI); Bouman, B.A.M., Ed.; International Rice Research Institute: Los Banos, Philippines, 2002; pp. 151–166. [Google Scholar]
- Belder, P.; Bouman, B.A.M.; Cabangon, R.; Guoan, L.; Quilang, E.J.P.; Yuanhua, L.; Spiertz, J.H.J.; Tuong, T.P. Effect of Water-Saving Irrigation on Rice Yield and Water Use in Typical Lowland Conditions in Asia. Agric. Water Manag. 2004, 65, 193–210. [Google Scholar] [CrossRef]
- Shao, G.; Cui, J.; Yu, S.; Lu, B.; Brian, B.J.; Ding, J.; She, D. Impacts of Controlled Irrigation and Drainage on the Yield and Physiological Attributes of Rice. Agric. Water Manag. 2015, 149, 156–165. [Google Scholar] [CrossRef]
- Shao, G.; Deng, S.; Liu, N.; Yu, S.; Cheng, M.; She, D. Effects of Controlled Irrigation and Drainage on Growth, Grain Yield and Water Use in Paddy Rice. Eur. J. Agron. 2014, 53, 1–9. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, Z. Technical system of water-saving irrigation for rice planting in Jiangsu Province. J. Hohai Univ. Nat. Sci. 2002, 30, 30–34. (In Chinese) [Google Scholar]
- Peng, S.; Luo, Y.; Xu, J.; Khan, S.; Jiao, X.; Wang, W. Integrated Irrigation and Drainage Practices to Enhance Water Productivity and Reduce Pollution in a Rice Production System. Irrig. Drain. 2012, 61, 285–293. [Google Scholar] [CrossRef]
- Tan, X.; Shao, D.; Liu, H.; Yang, F.; Xiao, C.; Yang, H. Effects of Alternate Wetting and Drying Irrigation on Percolation and Nitrogen Leaching in Paddy Fields. Paddy Water Environ. 2013, 11, 381–395. [Google Scholar] [CrossRef]
- Yu, F.; Shi, W. Nitrogen Use Efficienciesof Major Grain Crops in China in Recent 10 Years. Acta Pedol. Sin. 2015, 52, 1311–1324. [Google Scholar]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.-J.; Cui, Z.-L.; Yin, B.; Christie, P.; Zhu, Z.-L.; et al. Reducing Environmental Risk by Improving N Management in Intensive Chinese Agricultural Systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Gao, R.; Cui, Y.; Gu, S. Transport and Transformation of Water and Nitrogen under Different Irrigation Modes and Urea Application Regimes in Paddy Fields. Agric. Water Manag. 2021, 255, 107024. [Google Scholar] [CrossRef]
- Lee, S. Recent Advances on Nitrogen Use Efficiency in Rice. Agronomy 2021, 11, 753. [Google Scholar] [CrossRef]
- Djaman, K.; Mel, V.C.; Diop, L.; Sow, A.; El-Namaky, R.; Manneh, B.; Saito, K.; Futakuchi, K.; Irmak, S. Effects of Alternate Wetting and Drying Irrigation Regime and Nitrogen Fertilizer on Yield and Nitrogen Use Efficiency of Irrigated Rice in the Sahel. Water 2018, 10, 711. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, G.; Huang, W.; Xu, J.; Cheng, Y.; Wang, C.; Zhu, T.; Yang, J. Effects of Irrigation Regimes on Yield and Quality of Upland Rice and Paddy Rice and Their Interaction with Nitrogen Rates. Agric. Water Manag. 2020, 241, 106344. [Google Scholar] [CrossRef]
- Zou, J.; Huang, Y.; Zheng, X.; Wang, Y. Quantifying Direct N2O Emissions in Paddy Fields during Rice Growing Season in Mainland China: Dependence on Water Regime. Atmos. Environ. 2007, 41, 8030–8042. [Google Scholar] [CrossRef]
- Johnson-Beebout, S.E.; Angeles, O.R.; Alberto, M.C.R.; Buresh, R.J. Simultaneous Minimization of Nitrous Oxide and Methane Emission from Rice Paddy Soils Is Improbable Due to Redox Potential Changes with Depth in a Greenhouse Experiment without Plants. Geoderma 2009, 149, 45–53. [Google Scholar] [CrossRef]
- Bhan, S.; Misra, D.K. Effect of Variety, Spacing and Soil Fertility on Growth, Flowering and Fruit Development in Groundnut (Arachis hypogaea L.) under Arid Conditions. Indian J. Agr. Sci. 1970, 40, 1050–10558. [Google Scholar]
- Lampayan, R.M.; Samoy-Pascual, K.C.; Sibayan, E.B.; Ella, V.B.; Jayag, O.P.; Cabangon, R.J.; Bouman, B.A.M. Effects of Alternate Wetting and Drying (AWD) Threshold Level and Plant Seedling Age on Crop Performance, Water Input, and Water Productivity of Transplanted Rice in Central Luzon, Philippines. Paddy Water Environ. 2015, 13, 215–227. [Google Scholar] [CrossRef]
- Yoshida, S.; Forno, D.A.; Cock, J.; Gomez, K. Laboratory Manual for Physiological Studies of Rice. In Laboratory Manual for Physiological Studies of Rice, 3rd ed.; International Rice Research Institute: Los Baños, Philippines, 1976. [Google Scholar]
- Ding, W.; Xu, X.; He, P.; Ullah, S.; Zhang, J.; Cui, Z.; Zhou, W. Improving Yield and Nitrogen Use Efficiency through Alternative Fertilization Options for Rice in China: A Meta-Analysis. Field Crops Res. 2018, 227, 11–18. [Google Scholar] [CrossRef]
- Xiao, M.; Li, Y.; Wang, J.; Hu, X.; Wang, L.; Miao, Z. Study on the Law of Nitrogen Transfer and Conversion and Use of Fertilizer Nitrogen in Paddy Fields under Water-Saving Irrigation Mode. Water 2019, 11, 218. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, J.; Jiao, X.; Li, H.; Hu, T.; Jiang, H.; Mahmoud, A. Effects of Biochar on Water Quality and Rice Productivity under Straw Returning Condition in a Rice-Wheat Rotation Region. Sci. Total Environ. 2021, 819, 152063. [Google Scholar] [CrossRef] [PubMed]
- Sudhir-Yadav; Humphreys, E.; Li, T.; Gill, G.; Kukal, S.S. Evaluation of Tradeoffs in Land and Water Productivity of Dry Seeded Rice as Affected by Irrigation Schedule. Field Crops Res. 2012, 128, 180–190. [Google Scholar] [CrossRef]
- Jonubi, R.; Rezaverdinejad, V.; Salemi, H. Enhancing Field Scale Water Productivity for Several Rice Cultivars under Limited Water Supply. Paddy Water Environ. 2017, 16, 125–141. [Google Scholar] [CrossRef]
- Ren, B.; Wang, M.; Chen, Y.; Sun, G.; Li, Y.; Shen, Q.; Guo, S. Water Absorption Is Affected by the Nitrogen Supply to Rice Plants. Plant Soil 2015, 396, 397–410. [Google Scholar] [CrossRef]
- Cabangon, R.J.; Tuong, T.P.; Castillo, E.G.; Bao, L.X.; Lu, G.; Wang, G.; Cui, Y.; Bouman, B.A.M.; Li, Y.; Chen, C.; et al. Effect of Irrigation Method and N-Fertilizer Management on Rice Yield, Water Productivity and Nutrient-Use Efficiencies in Typical Lowland Rice Conditions in China. Paddy Water Environ. 2004, 2, 195–206. [Google Scholar] [CrossRef]
- Carrijo, D.R.; Lundy, M.E.; Linquist, B.A. Rice Yields and Water Use under Alternate Wetting and Drying Irrigation: A Meta-Analysis. Field Crops Res. 2017, 203, 173–180. [Google Scholar] [CrossRef]
- Zhong, X.; Shaobing, P.; Nongrong, N.; Tian, K.; Buresh, R.J.; Singleton, G.R. The Development and Extension of Three Controls Technology in Guangdong, China; Research to Impact: Case Studies for Natural Resources Management of Irrigated Rice in Asia; International Rice Research Institute (IRRI): Los Banos, Philippines, 2010; pp. 221–232. [Google Scholar]
- Ma, T.; Zeng, W.; Lei, G.; Wu, J.; Huang, J. Predicting the Rooting Depth, Dynamic Root Distribution and the Yield of Sunflower under Different Soil Salinity and Nitrogen Applications. Ind. Crops Prod. 2021, 170, 113749. [Google Scholar] [CrossRef]
- Liang, H.; Yang, S.; Xu, J.; Hu, K. Modeling Water Consumption, N Fates, and Rice Yield for Water-Saving and Conventional Rice Production Systems. Soil Tillage Res. 2021, 209, 104944. [Google Scholar] [CrossRef]
- Abdou, N.M.; Abdel-Razek, M.A.; Abd El-Mageed, S.A.; Semida, W.M.; Leilah, A.A.A.; Abd El-Mageed, T.A.; Ali, E.F.; Majrashi, A.; Rady, M.O.A. High Nitrogen Fertilization Modulates Morpho-Physiological Responses, Yield, and Water Productivity of Lowland Rice under Deficit Irrigation. Agronomy 2021, 11, 1291. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, J.; Xu, Y.; Wang, Z.; Liu, L.; Zhang, H.; Gu, J.; Zhang, J.; Yang, J. Alternate Wetting and Drying Irrigation Combined with the Proportion of Polymer-Coated Urea and Conventional Urea Rates Increases Grain Yield, Water and Nitrogen Use Efficiencies in Rice. Field Crops Res. 2021, 268, 108165. [Google Scholar] [CrossRef]
- Yang, S.; Peng, S.; Hou, H.; Xu, J. Controlled Irrigation and Drainage of a Rice Paddy Field Reduced Global Warming Potential of Its Gas Emissions. Arch. Agron. Soil Sci. 2014, 60, 151–161. [Google Scholar] [CrossRef]
- Peng, S.; Yang, S.; Xu, J.; Luo, Y.; Hou, H. Nitrogen and Phosphorus Leaching Losses from Paddy Fields with Different Water and Nitrogen Managements. Paddy Water Environ. 2011, 9, 333–342. [Google Scholar] [CrossRef]
- Hellsten, S.; Dragosits, U.; Place, C.J.; Vieno, M.; Dore, A.J.; Misselbrook, T.H.; Tang, Y.S.; Sutton, M.A. Modelling the Spatial Distribution of Ammonia Emissions in the UK. Environ. Pollut. 2008, 154, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Šimůnek, J.; Wang, S.; Yuan, J.; Zhang, W. Modeling of Soil Water Regime and Water Balance in a Transplanted Rice Field Experiment with Reduced Irrigation. Water 2017, 9, 248. [Google Scholar] [CrossRef] [Green Version]
- Qiao, J.; Yang, L.; Yan, T.; Xue, F.; Zhao, D. Rice Dry Matter and Nitrogen Accumulation, Soil Mineral N around Root and N Leaching, with Increasing Application Rates of Fertilizer. Eur. J. Agron. 2013, 49, 93–103. [Google Scholar] [CrossRef]
- He, Y.; Jianyun, Z.; Shihong, Y.; Dalin, H.; Junzeng, X. Effect of Controlled Drainage on Nitrogen Losses from Controlled Irrigation Paddy Fields through Subsurface Drainage and Ammonia Volatilization after Fertilization. Agric. Water Manag. 2019, 221, 231–237. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Singh, B. Nitrogen losses and N-use efficiency in porous soils. Nutr. Cycl. Ecosyst. 1997, 47, 197–212. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, Y.; Wang, Z.; Yang, J.; Zhang, J. An Alternate Wetting and Moderate Soil Drying Regime Improves Root and Shoot Growth in Rice. Crop Sci. 2009, 49, 2246–2260. [Google Scholar] [CrossRef]
- Bhadha, J.H.; Khatiwada, R.; Tootoonchi, M.; Capasso, J. Interpreting Redox Potential (Eh) and Diffusive Fluxes of Phosphorus (P) and Nitrate (NO3−) from Commercial Rice Grown on Histosols. Paddy Water Environ. 2020, 18, 167–177. [Google Scholar] [CrossRef]
- Li, H.; Liang, X.; Chen, Y.; Tian, G.; Zhang, Z. Ammonia Volatilization from Urea in Rice Fields with Zero-Drainage Water Management. Agric. Water Manag. 2008, 95, 887–894. [Google Scholar] [CrossRef]
- Pan, J.; Liu, Y.; Zhong, X.; Lampayan, R.M.; Singleton, G.R.; Huang, N.; Liang, K.; Peng, B.; Tian, K. Grain Yield, Water Productivity and Nitrogen Use Efficiency of Rice under Different Water Management and Fertilizer-N Inputs in South China. Agric. Water Manag. 2017, 184, 191–200. [Google Scholar] [CrossRef]
- Santiago-Arenas, R.; Fanshuri, B.A.; Hadi, S.N.; Ullah, H.; Datta, A. Nitrogen Fertiliser and Establishment Method Affect Growth, Yield and Nitrogen Use Efficiency of Rice under Alternate Wetting and Drying Irrigation. Ann. Appl. Biol. 2020, 176, 314–327. [Google Scholar] [CrossRef]
- Norton, G.J.; Shafaei, M.; Travis, A.J.; Deacon, C.M.; Danku, J.; Pond, D.; Cochrane, N.; Lockhart, K.; Salt, D.; Zhang, H.; et al. Impact of Alternate Wetting and Drying on Rice Physiology, Grain Production, and Grain Quality. Field Crops Res. 2017, 205, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Dong, N.M.; Brandt, K.K.; Sørensen, J.; Hung, N.N.; Hach, C.V.; Tan, P.S.; Dalsgaard, T. Effects of Alternating Wetting and Drying versus Continuous Flooding on Fertilizer Nitrogen Fate in Rice Fields in the Mekong Delta, Vietnam. Soil Biol. Biochem. 2012, 47, 166–174. [Google Scholar] [CrossRef]
- Liang, K.; Zhong, X.; Pan, J.; Huang, N.; Liu, Y.; Peng, B.; Fu, Y.; Hu, X. Reducing Nitrogen Surplus and Environmental Losses by Optimized Nitrogen and Water Management in Double Rice Cropping System of South China. Agric. Ecosyst. Environ. 2019, 286, 106680. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, S.; Bouman, B.A.M.; Xue, C.; Wei, F.; Tao, H.; Yang, X.; Wang, H.; Zhao, D.; Dittert, K. Response of Aerobic Rice Growth and Grain Yield to N Fertilizer at Two Contrasting Sites near Beijing, China. Field Crops Res. 2009, 114, 45–53. [Google Scholar] [CrossRef]
Property | 0~20 cm | 20~40 cm |
---|---|---|
Sand % | 40.21 | 39.12 |
Silt % | 38.22 | 39.16 |
Clay % | 21.57 | 21.72 |
Bulk density g cm−3 | 1.38 | 1.41 |
pH value | 6.94 | 6.97 |
Total nitrogen g kg−1 | 0.66 | 0.56 |
Mineral nitrogen mg kg−1 | 16.2 | 15.3 |
Available phosphorus mg kg−1 | 9.9 | 10.8 |
Available potassium mg kg−1 | 20.4 | 44.7 |
Total organic matter % | 1.24 | 1.35 |
Water Depth Criteria (mm) | Returning Green | Tillering | Jointing-Booting | Heading-Flowering | Milky Ripening | Yellow Ripening | |
---|---|---|---|---|---|---|---|
Irrigation | Lower threshold | 10 | −200 | −300 | −200 | −300 | Naturally drying |
Upper threshold | 30 | 30 | 30 | 30 | 30 | ||
Drainage | Upper threshold | 50 | 100 | 150 | 150 | 150 |
Water Treatment | N Treatment | Panicle (×104 ha−1) | Spikelets (no. panicle−1) | Filled Spikelets (%) | 1000-Grain Weight (g) | Grain Yield (t ha−1) |
---|---|---|---|---|---|---|
LP | N0 | 238 d | 128 bc | 92.0 b | 24.7 a | 6.58 d |
N1 | 263 d | 139 abc | 93.0 ab | 25.0 a | 8.10 c | |
N2 | 310 bc | 143 abc | 92.8 ab | 25.4 a | 9.88 ab | |
N3 | 329 ab | 152 a | 93.4 ab | 25.8 a | 11.56 a | |
N4 | 340 a | 147 ab | 92.6 ab | 25.0 a | 11.19 a | |
HP | N0 | 238 d | 123 c | 93.9 ab | 25.0 a | 6.44 d |
N1 | 261 d | 137 abc | 92.6 ab | 25.3 a | 8.03 c | |
N2 | 287 c | 142 abc | 94.2 ab | 25.8 a | 9.44 ab | |
N3 | 303 bc | 149 ab | 95.5 a | 26.0 a | 11.18 ab | |
N4 | 329 ab | 146 ab | 93.0 ab | 25.2 a | 11.14 ab | |
ANOVA | ||||||
W | * | ns | * | ns | * | |
N | * | ** | ns | * | ** | |
W × N | ns | ns | ns | ns | ns |
Water Treatment | N Treatment | AE (kg kg−1) | PE (kg kg−1) | PFP (kg kg−1) | RE (%) |
---|---|---|---|---|---|
LP | N0 | - | - | - | - |
N1 | 25.3 ab | 48.0 ab | 135.06 a | 52.8 ab | |
N2 | 24.4 b | 51.3 a | 73.2 b | 45.6 b | |
N3 | 23.7 b | 52.8 a | 55.0 d | 44.9 b | |
N4 | 16.2 d | 44.6 b | 39.3 e | 36.3 c | |
HP | N0 | - | - | - | - |
N1 | 26.5 a | 41.8 c | 133.8 a | 55.2 a | |
N2 | 22.2 c | 42.6 b | 69.9 c | 52.1 ab | |
N3 | 22.6 c | 48.5 ab | 53.2 d | 46.5 b | |
N4 | 16.5 d | 52.5 a | 39.1 e | 31.4 c | |
ANOVA | |||||
W | ns | ns | * | ns | |
N | * | ns | ** | * | |
W × N | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Yu, S.; Ma, T.; Ding, J.; He, P.; Dai, Y.; Zeng, G. Effects of Water and Nitrogen Management on Water Productivity, Nitrogen Use Efficiency and Leaching Loss in Rice Paddies. Water 2022, 14, 1596. https://doi.org/10.3390/w14101596
Chen K, Yu S, Ma T, Ding J, He P, Dai Y, Zeng G. Effects of Water and Nitrogen Management on Water Productivity, Nitrogen Use Efficiency and Leaching Loss in Rice Paddies. Water. 2022; 14(10):1596. https://doi.org/10.3390/w14101596
Chicago/Turabian StyleChen, Kaiwen, Shuang’en Yu, Tao Ma, Jihui Ding, Pingru He, Yan Dai, and Guangquan Zeng. 2022. "Effects of Water and Nitrogen Management on Water Productivity, Nitrogen Use Efficiency and Leaching Loss in Rice Paddies" Water 14, no. 10: 1596. https://doi.org/10.3390/w14101596