Socio-Economic Aspects of Centralized Wastewater System for Rural Settlement under Conditions of Eastern Poland
Abstract
:1. Introduction
1.1. Rural Sanitary Sewage Management and Groundwater Quality
1.2. Sustainability of Rural Sanitation
2. Materials and Methods
2.1. Object of Study
2.2. Designed Rural Sanitation Network Variants
2.2.1. Variant I
2.2.2. Variant II
2.2.3. Variant III
2.3. Methods Description
2.3.1. Contingent Valuation Method (CVM) Questionnaire
2.3.2. Economic Sustainability
2.3.3. Social and Environmental Sustainability
2.3.4. Weighed Sum Model
3. Results
4. Discussion
5. Conclusions
- The successful design, construction, operation and maintenance of the sustainable organized sanitary sewerage system in rural settlements is a rather difficult task. Modern and up-to-date, technologically sophisticated sanitation systems limiting the anthropopressure on the environment are characterized by the significant investment and O&M costs, which may limit their profitability for the local communities.
- All studied improved sanitation designs for the selected low population density rural settlement showed unsatisfactory economic feasibility, with BCR < 1.0, for the actual variants of sewage payment. The economic profitability was possible only after the significant increase in sewage fee.
- Low economic profitability resulting in high sewerage tariff payments may directly affect sustainability of the design, limiting its social acceptance and reducing the willingness to pay.
- Low economic feasibility of the proposed variants of improved sanitation for rural settlement requires outside funding to meet the neutral profitability of the investment, i.e., BCR = 1.0. The required co-funding for pressure and gravity systems reached the level of 27.1–28% and 53% of capital investment costs, respectively.
- Our study showed that social involvement, understood as local population willingness to accept and to pay, is required for reaching the limit of profitability for the water and sewage company. It was impossible to design an up-to-date and profitable system for the studied rural settlement without the increase in sewage payment above the local standards.
- Thus, the willingness-to-accept and willingness-to-pay survey should be, in our opinion, the first step of sustainable sanitation designing, allowing determination of the possible financial involvement of the future users of the system.
- Cost-efficiency of the designed sanitary sewerage network was highly related to the selected system of sewage transport. The increased cost-efficiency was possible in pressure systems (DGC = 8.46–8.54 PLN/m3), in relation to the gravity one (DGC = 12.45 PLN/m3), due to smaller pipeline diameters, smaller depth and volume of excavations and earthworks, lack of pipeline flushing necessity, and connecting the household sewage pumping stations directly to the domestic electrical installation.
- The presented method of decision-making support, in our opinion, is universal and may be successfully applied under different local conditions, as fully compatible with the paradigms of sustainable development and all its pillars: environmental, social, economic, technical and legal.
- Our studies are planned to be continued for the different case studies of sustainable rural sanitation in Poland to determine the guidelines for sewage system selection considering the actual economic conditions, settlement size, population density, sewage volume, housing spatial development, etc.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Velis, M.; Conti, K.I.; Biermann, F. Groundwater and human development: Synergies and trade-offs within the context of the sustainable development goals. Sustain. Sci. 2017, 12, 1007–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, G.; Calow, R.; Macdonald, A.; Bartram, J. Climate change and water and sanitation: Likely impacts and emerging trends for action. Annu. Rev. Environ. Resour. 2016, 41, 253–276. [Google Scholar] [CrossRef] [Green Version]
- Guppy, L.; Uyttendaele, P.; Villholth, K.G.; Smakhtin, V. Groundwater and Sustainable Development Goals: Analysis of Interlinkages; UNU-INWEH Report Series, Issue 04; United Nations University Institute for Water; Environment and Health: Hamilton, ON, Canada, 2018; Available online: https://cgspace.cgiar.org/handle/10568/98576 (accessed on 28 April 2022).
- Chinyama, A.; Chipato, P.T.; Mangore, E. Sustainable sanitation systems for low income urban areas—A case of city of Bulawayo, Zimbabwe. Phys. Chem. Earth 2012, 50–52, 233–238. [Google Scholar] [CrossRef]
- Benzerra, A.; Cherrared, M.; Chocat, B.; Cherqui, F.; Zekiok, T. Decision support for sustainable urban drainage system management: A case study of Jijel, Algieria. J. Environ. Manag. 2012, 101, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Istenic, D.; Bodík, I.; Bulc, T. Status of decentralised wastewater treatment systems and barriers for implementation of nature-based systems in central and eastern Europe. Environ. Sci. Pollut. Res. 2015, 22, 12879–12884. [Google Scholar] [CrossRef]
- Pryszcz, M.; Mrowiec, B.M. Operation of the household sewage treatment plants in Poland. Ecol. Eng. 2015, 41, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Piasecki, A. Water and Sewage Management Issues in Rural Poland. Water 2019, 11, 625. [Google Scholar] [CrossRef] [Green Version]
- UNDESA. World Urbanization Prospects: The 2015 Revision—Volume I: Comprehensive Tables; Report No. ST/ESA/SER.A/379; United Nations Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2015. [Google Scholar]
- WHO/UNICEF. Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Mariolakos, I. Water resources management in the framework of sustainable development. Desalination 2007, 203, 147–151. [Google Scholar] [CrossRef]
- Peter, G.; Nkambule, S.E. Factors affecting sustainability of rural water schemes in Swaziland. Phys. Chem. Earth 2012, 50–52, 196–204. [Google Scholar] [CrossRef]
- Lewicka, A.; Widomski, M.K.; Łagód, G. Economic analyses in sewage system designing for rural settlements—Case study. Archit. Civ. Eng. Environ. 2016, 2, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Byambadorj, A.; Lee, H.S. Household Willingness to Pay for Wastewater Treatment and Water Supply System Improvement in a Ger Area in Ulaanbaatar City, Mongolia. Water 2019, 11, 1856. [Google Scholar] [CrossRef] [Green Version]
- WHO/UNICEF. Joint Monitoring Programme. Improved and Unimproved Water and Sanitation Facilities. 7 June 2016. Available online: http://www.wssinfo.org/definitions-methods/watsan-categories/ (accessed on 1 April 2022).
- Hutton, G.; Chase, C. The Knowledge Base for Achieving the Sustainable Development Goal Targets on Water Supply, Sanitation and Hygiene. Int. J. Environ. Res. Public Health 2016, 13, 536. [Google Scholar] [CrossRef] [Green Version]
- Widomski, M.; Gleń, P.; Łagód, G.; Jaromin-Gleń, K. Sustainable Development of One of the Poorest Province of the European Union: Lublin Voivodeship, Poland—Attempt of Assessment. Probl. Ekorozw. -Probl. Sustain. Dev. 2015, 10, 137–149. Available online: https://ssrn.com/abstract=2660792 (accessed on 1 April 2022).
- GWP CEE. Regional Study Natural Processes of Wastewater Treatment—Actual Status in CEE Countries; GWP CEE: Bratislava, Slovakia, 2012. [Google Scholar]
- Nansubuga, I.; Banadda, N.; Verstraete, W.; Rabaey, K. A review of sustainable sanitation systems in Africa. Rev. Environ. Sci. Biotechnol. 2016, 15, 465–478. [Google Scholar] [CrossRef]
- Pereira, M.A.; Marques, R.C. Sustainable water and sanitation for all: Are we there yet? Water Res. 2021, 207, 117765. [Google Scholar] [CrossRef] [PubMed]
- Isunju, B.; Schwartz, K.; Schouten, M.A.; Johnson, W.P.; van Dijk, M.P. Socio-economic aspects of improved sanitation in slums: A review. Public Health 2011, 125, 368–376. [Google Scholar] [CrossRef]
- GUS. Available online: https://stat.gov.pl/ (accessed on 28 April 2022).
- BDL Temat. Available online: https://bdl.stat.gov.pl/BDL/dane/podgrup/temat (accessed on 28 April 2022).
- BDL Tablica. Available online: https://bdl.stat.gov.pl/BDL/dane/podgrup/tablica (accessed on 28 April 2022).
- Hu, M.; Fan, B.; Wang, H.; Qu, B.; Zhu, S. Constructing the ecological sanitation: A review on technology and methods. J. Clean. Prod. 2016, 125, 1–21. [Google Scholar] [CrossRef]
- Pujari, P.R.; Padmakar, C.; Labhasetwar, P.K.; Mahore, P.; Ganguly, A.K. Assessment of the impact of on-site sanitation systems on groundwater pollution in two diverse geological settings—A case study from India. Environ. Monit. Assess. 2012, 184, 251–263. [Google Scholar] [CrossRef]
- US EPA. National Water Quality Inventory: Report to Congress; EPA 305(b) Report; US EPA: Washington, DC, USA, 1988. [Google Scholar]
- Engin, G.O.; Demir, I. Cost analysis of alternative methods for wastewater handling in small communities. J. Environ. Manag. 2006, 79, 357–363. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Odiyo, J.O.; Durowoju, O.S. Impact of Wastewater on Surface Water Quality in Developing Countries: A Case Study of South Africa. In Water Qualit; Tutu, H., Ed.; InTech: London, UK, 2017; Chapter 18; pp. 401–416. [Google Scholar] [CrossRef] [Green Version]
- Shivendra, B.T.; Ramaraju, H.K. Impact of Onsite Sanitation System on Groundwater in Different Geological Settings of Peri Urban Areas. Aquat. Procedia 2015, 4, 1162–1172. [Google Scholar] [CrossRef]
- Megha, P.; Kavya, P.; Murugan, S.; Harikumar, P. Sanitation Mapping of Groundwater Contamination in a Rural Village of India. J. Environ. Prot. Sci. 2015, 6, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Chuah, C.J.; Ziegler, A.D. Temporal Variability of Faecal Contamination from On-Site Sanitation Systems in the Groundwater of Northern Thailand. Environ. Manag. 2018, 61, 939–953. [Google Scholar] [CrossRef] [PubMed]
- Wiech, A.K.; Marciniewicz-Mykieta, M.; Toczko, B. (Eds.) Stan Środowiska w Polsce; Raport; Biblioteka Monitoringu Środowiska: Warszawa, Poland, 2018. [Google Scholar]
- Dz.U. 2016, poz. 85. Rozporządzenie Ministra Środowiska z Dnia 21 Grudnia 2015 r. w Sprawie Kryteriów i Sposobu Oceny Stanu Jednolitych Części Wód Podziemnych. (In Polish). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20160000085 (accessed on 28 April 2022).
- 35. Dz.U. 2019 poz. 2148. Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z Dnia 11 Października 2019 r. w Sprawie Kryteriów i Sposobu Oceny Stanu Jednolitych Części Wód Podziemnych. (In Polish). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190002148 (accessed on 28 April 2022).
- Wyniki badań - 2020. Available online: https://mjwp.gios.gov.pl/wyniki-badan/wyniki-badan-2020.html (accessed on 28 April 2022).
- Kundziewicz, A.; Miłaszewski, R. Costs-effectiveness analysis of individual wastewater disposal and treatment systems. Ecol. Eng. 2011, 24, 174–183. [Google Scholar]
- Harding, R. Ecologically sustainable development: Origins, implementation and challenge. Desalination 2006, 187, 229–239. [Google Scholar] [CrossRef]
- Harris, J.M.; Wise, T.A.; Gallagher, K.P.; Goodwin, N.R. A Survey of Sustainable Development: Social and Economic Dimensions; Island Press: London, UK, 2001. [Google Scholar]
- Marques, R.C.; Nuno da Cruz, N.; Pires, J. Measuring the sustainability of urban water services. Environ. Sci. Policy 2015, 54, 142–151. [Google Scholar] [CrossRef]
- Foxon, T.J.; McIlkenny, G.; Gilmour, D.; Oltean-Dumbrava, C.; Souter, N.; Ashley, R.; Butler, D.; Pearson, P.; Jowitt, P.; Moir, J. Sustainability criteria for decision support in the UK water industry. J. Environ. Plan. Manag. 2002, 45, 285–301. [Google Scholar] [CrossRef]
- Balkema, A.; Preisig, H.; Otterpohl, R.; Lambert, F. Indicators for the sustainability assessment of wastewater treatment systems. Urban Water 2002, 4, 153–161. [Google Scholar] [CrossRef]
- Hellström, D.; Jeppsson, U.; Kärrman, E. A framework for systems analysis of sustainable urban water management. Environ. Impact Assess. 2000, 20, 311–321. [Google Scholar] [CrossRef]
- Mara, D.; Drangert, J.; Anh, N.; Tonderski, A.; Gulyas, H.; Tonderski, K. Selection of sustainable sanitation arrangements. Water Policy 2007, 9, 305–318. [Google Scholar] [CrossRef]
- Seleman, A.; Bhat, M.V. Multi-criteria assessment of sanitation technologies in rural Tanzania: Implications for program implementation, health and socio economic improvements. Technol. Soc. 2016, 46, 70–79. [Google Scholar] [CrossRef]
- Scott, P.; Cotton, A.; Khan, M.S. Tenure security and household investment decisions for urban sanitation: The case of Dakar, Senegal. Habitat Int. 2013, 40, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Panfil, C.; Mirel, I.; Szigyarto, I.; Isacu, M. Technical, economical, social and ecological characteristics of vacuum sewage system. Environ. Eng. Manag. J. 2013, 12, 1017–1022. Available online: https://www.cabdirect.org/globalhealth/abstract/20133380245 (accessed on 28 April 2022). [CrossRef]
- Kwangware, J.; Mayo, A.; Hoko, Z. Sustainability of donor-founded rural water supply and sanitation projects in Mbire district, Zimbabwe. Phys. Chem. Earth 2014, 76–78, 134–139. [Google Scholar] [CrossRef]
- Frone, S.; Frone, D.F. Emerging markets Queries in Finance and Business. Economic risk to a regional water supply and sanitation project in Romania. Procedia Econ. 2015, 32, 550–557. [Google Scholar] [CrossRef] [Green Version]
- Elawwad, A.; Ragab, M.; Abdel-Halim, H. An economical, environmental, and social comparison between vacuum and gravity sewers in decentralized sanitation systems, with Egypt as a case study. J. Water Sanit. Hyg. Dev. 2015, 5, 614–619. [Google Scholar] [CrossRef]
- Genius, M.; Manioudaki, M.; Mokas, E.; Pantagakis, E.; Tampakakis, D.; Tsagarakis, K.P. Estimation of willingness to pay for wastewater treatment. Water Supply 2005, 5, 105–113. [Google Scholar] [CrossRef]
- William, F.; Mozumder, V.P.; Hernández-Arce, J.; Berrens, R.P. Willingness to pay for safe drinking water: Evidence from Parral, Mexico. J. Environ. Manag. 2009, 90, 3391–3400. [Google Scholar] [CrossRef]
- Vouk, D.; Malus, D.; Halkijevic, I. Neural networks in economic analyses of wastewater systems. Expert Syst. Appl. 2011, 38, 10031–10035. [Google Scholar] [CrossRef]
- Karczmarczyk, A.; Bus, A.; Baryła, A. Assessment of the Efficiency, Environmental and Economic Effects of Compact Type On-Site Wastewater Treatment Plants—Results from Random Testing. Sustainability 2021, 13, 982. [Google Scholar] [CrossRef]
- Domínguez, I.; Oviedo-Ocaña, E.R.; Hurtado, K.; Barón, A.; Hall, R.P. Assessing Sustainability in Rural Water Supply Systems in Developing Countries Using a Novel Tool Based on Multi-Criteria Analysis. Sustainability 2019, 11, 5363. [Google Scholar] [CrossRef] [Green Version]
- Metcalfe, P.J.; Sen, A. Sensitivity to scope of water and wastewater service valuations: A meta-analysis of findings from water price reviews in Great Britain. Rev. Environ. Econ. Policy 2021, 11, 21–38. [Google Scholar] [CrossRef]
- Duadey, L. The cost of urban sanitation solutions: A literature review. J. Water Sanit. Hyg. Dev. 2018, 8, 176–195. [Google Scholar] [CrossRef] [Green Version]
- Dz.U. 2018 poz. 472 Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z Dnia 27 Lutego 2018 r. w sprawie Określania Taryf, Wzoru Wniosku o Zatwierdzenie Taryfy Oraz Warunków Rozliczeń Za Zbiorowe Zaopatrzenie w Wodę i Zbiorowe Odprowadzanie Ścieków. (In Polish). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20180000472 (accessed on 28 April 2022).
- Terryn, J.C.C.; Lazar, I.; Nedeff, V.; Lazar, G. Conventional vs. vacuum sewerage system in rural areas—An economic and environmental approach. Environ. Eng. Manag. J. 2014, 13, 1847–1859. [Google Scholar]
- Le, T.T.P.; Aramaki, T. Factors affecting Households’ Willingness to Pay for improved wastewater services in Ho Chi Minh City, Vietnam. J. Water Environ. Technol. 2019, 17, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Willis, K.; Sheldon, R. Research on customers’ willingness-to-pay for service changes in UK water company price reviews 1994–2019. J. Environ. Econ. Policy 2021, 11, 4–20. [Google Scholar] [CrossRef]
- Tudela-Mamani, J.W. Willingness to pay for improvements in wastewater treatment: Application of the contingent valuation method in Puno, Peru. Rev. Chapingo Ser. Cienc. For. Ambiente 2017, 23, 341–352. [Google Scholar] [CrossRef]
- Dz.U.2017 poz. 2180. Ustawa z Dnia 27 Października 2017 r. o Zmianie Ustawy o Zbiorowym Zaopatrzeniu w Wodę i Zbiorowym Odprowadzaniu Ścieków Oraz Niektórych Innych Ustaw. (In Polish). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170002180 (accessed on 28 April 2022).
- National Water Holding Polish Waters. Available online: https://odrapcu.pl/en/the-state-water-holding-polish-waters/ (accessed on 28 April 2022).
- Lista artykułów. Available online: https://wodypolskie.bip.gov.pl/rzgw-w-lublinie-taryfy/ (accessed on 30 April 2022).
- Sartori, D. Przewodnik Po Analizie Kosztów i Korzyści Projektów Inwestycyjnych. Narzędzie Analizy Ekonomicznej Polityki Spójności 2014–2020. 2014. Available online: https://www.funduszeeuropejskie.gov.pl/media/5594/Przewodnik_AKK_14_20.pdf (accessed on 28 April 2022).
- Biuletyn Informacji Publicznej Gminy Siemiankowica. (In Polish). Available online: https://siemkowice.biuletyn.net/?bip=2&cid=368&id=2017 (accessed on 28 April 2022).
- Xu, M.; Zhu, S.; Zhang, Y.; Wang, H.; Fan, B. Spatial-temporal economic analysis of modern sustainable sanitation in rural China: Resource-oriented system. J. Clean. Prod. 2019, 233, 340–347. [Google Scholar] [CrossRef]
- Widomski, M.; Ładziak, E.; Łagód, G. Economic aspects of sustainable sanitation in rural settlements. Archit. Civ. Eng. Environ. 2017, 3, 153–162. [Google Scholar] [CrossRef] [Green Version]
- PN-EN 752:2008; Zewnętrzne Systemy Kanalizacyjne. Polish Committee for Standardization: Warsaw, Poland, 2008. (In Polish)
- Kalenik, M. Zaopatrzenie w Wodę i Odprowadzanie Ścieków; Wydawnictwo SGGW: Warszawa, Poland, 2015. (In Polish) [Google Scholar]
- Płuciennik, S.; Wilbik, J. Warunki Techniczne Wykonania i Odbioru Sieci Kanalizacyjnych; COBRTI Instal: Warszawa, Poland, 2003. (In Polish) [Google Scholar]
- Commission Delegated Regulation (EU) No 480/2014 of 3 March 2014 Supplementing Regulation (EU) No 1303/2013 of the European Parliament and of the Council Laying down Common Provisions on the European Regional Development Fund, the European Social Fund, the Cohesion Fund, the European Agricultural Fund for Rural Development and the European Maritime and Fisheries Fund and Laying down General Provisions on the European Regional Development Fund, the European Social Fund, the Cohesion Fund and the European Maritime and Fisheries Fund. (In Polish). Available online: https://www.funduszeeuropejskie.gov.pl/media/5190/NOWE_RD_480_2014.pdf (accessed on 28 April 2022).
- Palme, U.; Lundin, M.; Tillman, A.M.; Molander, S. Sustainable development indicators for wastewater systems—Researchers and indicator users in a co-operative case study. Resour. Conserv. Recycl. 2005, 43, 293–311. [Google Scholar] [CrossRef] [Green Version]
- Palme, U.; Tillman, A.M. Sustainable development indicators: How are they used in Swedish water utilities. J. Clean. Prod. 2008, 16, 1346–1357. [Google Scholar] [CrossRef]
- Bouabid, A.; Louis, G. Decision support system for selection of appropriate water supply and sanitation technologies in developing countries. J. Water Sanit. Hyg. Dev. 2015, 11, 208–221. [Google Scholar] [CrossRef]
- Studium Wykonalności POIiŚ Oś Priorytetowa 2.3. “Budowa Kanalizacji Sanitarnej Wraz z Przyłączami w m. Radków” Etap V, VI, VII. 2016. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi_ovG3guv0AhVJxIsKHVX8CXkQFnoECAIQAQ&url=https%3A%2F%2Fwww.prawomiejscowe.pl%2Fapi%2Ffile%2FGetZipxAttachment%2F8%2F35207%2Fpreview&usg=AOvVaw054GP5a7tDUqAfCiBP3qx5 (accessed on 1 April 2022).
- Pochwat, K.; Kida, M.; Ziembowicz, S.; Koszelnik, P. Odours in Sewerage—A Description of Emissions and of Technical Abatement Measures. Environments 2019, 6, 89. [Google Scholar] [CrossRef] [Green Version]
- Shammay, A.; Sivret, E.C.; Le-Minh, N.; Fernandez, R.L.; Evanson, I.; Stuetz, R.M. Review of odour abatement in sewer networks. J. Environ. Chem. Eng. 2016, 4, 3866–3881. [Google Scholar] [CrossRef]
- Kazora, A.S.; Mourad, K.A. Assessing the Sustainability of Decentralized Wastewater Treatment Systems in Rwanda. Sustainability 2018, 10, 4617. [Google Scholar] [CrossRef] [Green Version]
- Brands, E. Prospects and challenges for sustainable sanitation in developed nations: A critical review. Environ. Rev. 2013, 22, 346–363. [Google Scholar] [CrossRef]
- Weststrate, J.; Dijkstra, G.; Eshuis, J.; Gianoli, A.; Rusca, M. The Sustainable Development Goal on Water and Sanitation: Learning from the Millennium Development Goals. Soc. Indic. Res. 2019, 143, 795–810. [Google Scholar] [CrossRef] [Green Version]
- Suchorab, P.; Iwanek, M.; Głowacka, A. Ocena efektywności ekonomicznej wybranych systemów kanalizacji sanitarnej. Czas. Inżynierii Lądowej Sr. Archit. 2015, 32, 447–456. (In Polish). Available online: https://www.researchgate.net/publication/298731647_Ocena_efektywnosci_ekonomicznej_wybranych_systemow_kanalizacji_sanitarnej (accessed on 1 April 2022). [CrossRef]
- Miłaszewski, R. Ekonomika Ochrony Wód Powierzchniowych (Economics of Surface Water Protection); Wydawnictwo Ekonomia i Środowisko: Białystok, Poland, 2003. (In Polish) [Google Scholar]
- Martínez-Córdoba, P.J.; Raimo, N.; Vitolla, F.; Benito, B. Achieving Sustainable Development Goals. Efficiency in the Spanish Clean Water and Sanitation Sector. Sustainability 2020, 12, 3015. [Google Scholar] [CrossRef] [Green Version]
- Flores, A.; Buckley, C.; Fenner, R. Selecting sanitation systems for sustainability in developing countries. Water Sci. Technol. 2009, 60, 2973–2982. [Google Scholar] [CrossRef]
- Schertenleib, R. From conventional to advanced environmental sanitation. Water Sci. Technol. 2005, 51, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Boguniewicz-Zabłocka, J.; Capodagli, A.G. Sustainable Wastewater Treatment Solutions for Rural Communities: Public (Centralized) or Individual (On-Site)—Case Study. Econ. Environ. Stud. 2017, 4, 1103–1119. Available online: https://www.ceeol.com/search/article-detail?id=608286 (accessed on 28 April 2022). [CrossRef]
Total Investment Costs (PLN) | Annual O&M (PLN) | |
---|---|---|
Variant I | 6,688,394.56 | 50,599.45 |
Variant II | 6,637,130.90 | 48,803.20 |
Variant III | 9,949,410.48 | 58,832.90 |
No. | Question | Possible Choice |
---|---|---|
1 | Are you aware that leaky septic tanks and pouring sewage on the fields affect quality of soil and groundwater? | Yes/no |
2 | In which manner do you collect and dispose of sanitary sewage in your household? | Septic tank/domestic sewage treatment plant |
3 | Problems encountered in sewage disposal? | Inconvenient term/no precise appointment possibility/odors/others |
4 | Are you interested in organized disposal of sanitary sewage? | Yes/no |
5 | What is the actual cost of 1 m3 of sewage removal in your household? | 5–10 PLN/11–15 PLN/16–20 PLN/21–25 PLN/above 25 PLN |
6 | Provide frequency of sewage removal from septic tank | Each month/1–2 months/2 months/2–3 months/3 months/3–4 months/4 months/4–5 months/5 months/5–6 months/6 months/over 6 months |
7 | Provide the maximum sewage fee you willing to pay | 2–28PLN |
8 | Would you be able to pay for 3 years the charge equal to the current costs of sewage disposal (later the lower, standard fee) to allow construction of organized sanitary sewage system? | Yes/no |
9 | Age | 20–25 years/26–30 years/31–35 years/36–40 years/41–45 years/46–50 years/51–55 years/56–60 years/over 60 years |
10 | Gender | Male/female |
Criterion | Weight Factor (%) |
---|---|
Economic | 50 |
Environmental | 20 |
Social | 30 |
Sum | 100 |
DGC | BCR A | BCR B | BCR C | BCR D | Sum | |
---|---|---|---|---|---|---|
Variant I | 2 | 2 | 2 | 2 | 2 | 10 |
Variant II | 3 | 3 | 3 | 3 | 3 | 15 |
Variant III | 1 | 1 | 1 | 1 | 1 | 5 |
Sewage Infiltration | Sewage Seepage | Odors | Improvement of Natural Environment | Sum | |
---|---|---|---|---|---|
Variant I | 2 | 2 | 2 | 3 | 9 |
Variant II | 3 | 3 | 1 | 3 | 10 |
Variant III | 1 | 1 | 3 | 3 | 8 |
Improvement in Sanitary Conditions | Increase in Settlement Attractiveness | Employment | Population Involvement | Sum | |
---|---|---|---|---|---|
Variant I | 3 | 3 | 2 | 2 | 10 |
Variant II | 3 | 3 | 3 | 3 | 12 |
Variant III | 3 | 3 | 1 | 1 | 8 |
Economic Assessment | Environmental Assessment | Social Assessment | WSM | |
---|---|---|---|---|
Variant I | 10 | 9 | 10 | 9.8 |
Variant II | 15 | 10 | 12 | 13.1 |
Variant III | 5 | 8 | 8 | 6.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzusek, A.; Widomski, M.K.; Musz-Pomorska, A. Socio-Economic Aspects of Centralized Wastewater System for Rural Settlement under Conditions of Eastern Poland. Water 2022, 14, 1667. https://doi.org/10.3390/w14101667
Brzusek A, Widomski MK, Musz-Pomorska A. Socio-Economic Aspects of Centralized Wastewater System for Rural Settlement under Conditions of Eastern Poland. Water. 2022; 14(10):1667. https://doi.org/10.3390/w14101667
Chicago/Turabian StyleBrzusek, Aleksandra, Marcin K. Widomski, and Anna Musz-Pomorska. 2022. "Socio-Economic Aspects of Centralized Wastewater System for Rural Settlement under Conditions of Eastern Poland" Water 14, no. 10: 1667. https://doi.org/10.3390/w14101667