Risks of Climate Change on Future Water Supply in Smallholder Irrigation Schemes in Zimbabwe
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Current Climatic Conditions and Their Variation in Zimbabwe
3.2. Climate Change Impacts in Zimbabwe
3.2.1. Impact of Climate Change Change on Rainfall
3.2.2. Impact of Climate Change on Temperature
3.2.3. Impacts of Climate Change on Incidences of Cyclones, Droughts and Floods
3.2.4. Impact of Climate Change on Water Resources
3.3. Climate Change and Its Impact on Irrigation in Zimbabwe
3.3.1. Water Stress
3.3.2. Competing Needs
3.3.3. Climate Change Impacts on Pest and Disease Outbreaks
3.4. Policies and Issues Related to Irrigation Water Management and Irrigation Schemes
3.4.1. Socio-Economic Conditions
3.4.2. Water Management
3.4.3. Policy Influences on Adapting to Climate Change in SISs
3.4.4. Recommendations to Adapt to Climate Change in SISs
3.5. Limitations of the Study
3.6. Area of Future Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kotir, J.H. Climate change and variability in Sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Environ. Dev. Sustain. 2011, 13, 587–605. [Google Scholar] [CrossRef]
- Klojcnik, T.; Sagadin, T.A.; Kralj, D. Project Management: A Systematic Approach to Planning, Scheduling, and Controlling Sustainable Transformation. Int. J. Econ. Manag. Syst. 2018, 3, 26–35. [Google Scholar]
- Muzari, W.; Nyamushamba, G.; Soropa, G. Climate change adaptation in Zimbabwe’s agricultural sector. Int. J. Sci. Res. 2016, 5, 1762–1768. [Google Scholar]
- Benitez, P.; Boehlert, B.; Davies, R.; van Seventer, D.; Brown, M. Assessment of the Potential Impacts of Climate Variability and Shocks on Zimbabwe’s Agricultural Sector: A Computable General Equilibrium (CGE) Analysis; Zimbabwe’s Agricultural Sector: Harare, Zimbabwe, 2018. [Google Scholar]
- Mafongoya, P.; Gubba, A.; Moodley, V.; Chapoto, D.; Kisten, L.; Phophi, M. Climate Change and Rapidly Evolving Pests and Diseases in Southern Africa. In New Frontiers in Natural Resources Management in Africa; Springer: Berlin, Germany, 2019; pp. 41–57. [Google Scholar]
- Kutywayo, D.; Chemura, A.; Kusena, W.; Chidoko, P.; Mahoya, C. The impact of climate change on the potential distribution of agricultural pests: The case of the coffee white stem borer (Monochamus leuconotus P.) in Zimbabwe. PLoS ONE 2013, 8, e73432. [Google Scholar] [CrossRef]
- Brazier, A. Climate Change in Zimbabwe: Facts for Planners and Decision Makers; Konrad-Adenauer-Stiftung: Bonn, Germany, 2015. [Google Scholar]
- Gukurume, S. Climate change, variability and sustainable agriculture in Zimbabwe’s rural communities. Russ. J. Agric. Socio-Econ. Sci. 2013, 14, 89–100. [Google Scholar]
- Manatsa, D.; Mushore, T.D.; Gwitira, T.; Menas, W.; Chemura, A.; Shekede, M.D.; Mugandani, R.; Sakala, L.C.; Ali, L.H.; Masukwedza, G.I.; et al. Report on Revised Agroecological Zones of Zimbabwe; Bindura University: Bindura, Zimbabwe, 2020; in press. [Google Scholar]
- Yousefi, H.; Moridi, A. Multiobjective Optimization of Agricultural Planning Considering Climate Change Impacts: Minab Reservoir Upstream Watershed in Iran. J. Irrig. Drain. Eng. 2022, 148, 04022007. [Google Scholar] [CrossRef]
- Lu, S.; Bai, X.; Li, W.; Wang, N. Impacts of climate change on water resources and grain production. Technol. Forecast. Soc. Change 2019, 143, 76–84. [Google Scholar] [CrossRef]
- Schilling, J.; Hertig, E.; Tramblay, Y.; Scheffran, J. Climate change vulnerability, water resources and social implications in North Africa. Reg. Environ. Change 2020, 20, 15. [Google Scholar] [CrossRef] [Green Version]
- Moridi, A. Dealing with reservoir eutrophication in a trans-boundary river. Int. J. Environ. Sci. Technol. 2019, 16, 2951–2960. [Google Scholar] [CrossRef]
- Akbari, F.; Shourian, M.; Moridi, A. Assessment of the climate change impacts on the watershed-scale optimal crop pattern using a surface-groundwater interaction hydro-agronomic model. Agric. Water Manag. 2022, 265, 107508. [Google Scholar] [CrossRef]
- Ostad-Ali-Askari, K.; Ghorbanizadeh Kharazi, H.; Shayannejad, M.; Zareian, M.J. Effect of management strategies on reducing negative impacts of climate change on water resources of the Isfahan–Borkhar aquifer using MODFLOW. River Res. Appl. 2019, 35, 611–631. [Google Scholar] [CrossRef]
- Guntukula, R. Assessing the impact of climate change on Indian agriculture: Evidence from major crop yields. J. Public Aff. 2020, 20, e2040. [Google Scholar] [CrossRef]
- Corwin, D.L. Climate change impacts on soil salinity in agricultural areas. Eur. J. Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- Alejo, L.A.; Alejandro, A.S. Changes in Irrigation Planning and Development Parameters Due to Climate Change. Water Resour. Manag. 2022, 36, 1711–1726. [Google Scholar] [CrossRef]
- del Pozo, A.; Brunel-Saldias, N.; Engler, A.; Ortega-Farias, S.; Acevedo-Opazo, C.; Lobos, G.A.; Jara-Rojas, R.; Molina-Montenegro, M.A. Climate change impacts and adaptation strategies of agriculture in Mediterranean-climate regions (MCRs). Sustainability 2019, 11, 2769. [Google Scholar] [CrossRef] [Green Version]
- Bocchiola, D.; Brunetti, L.; Soncini, A.; Polinelli, F.; Gianinetto, M. Impact of climate change on agricultural productivity and food security in the Himalayas: A case study in Nepal. Agric. Syst. 2019, 171, 113–125. [Google Scholar] [CrossRef]
- Hamududu, B.H.; Ngoma, H. Impacts of climate change on water resources availability in Zambia: Implications for irrigation development. Environ. Dev. Sustain. 2020, 22, 2817–2838. [Google Scholar] [CrossRef]
- Gorguner, M.; Kavvas, M.L. Modeling impacts of future climate change on reservoir storages and irrigation water demands in a Mediterranean basin. Sci. Total Environ. 2020, 748, 141246. [Google Scholar] [CrossRef]
- Vera, J.F.R.; Mera, Y.E.Z.; Pérez-Martín, M.Á. Adapting water resources systems to climate change in tropical areas: Ecuadorian coast. Sci. Total Environ. 2020, 703, 135554. [Google Scholar] [CrossRef]
- Haro-Monteagudo, D.; Palazón, L.; Beguería, S. Long-term sustainability of large water resource systems under climate change: A cascade modeling approach. J. Hydrol. 2020, 582, 124546. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y.; Niu, J.; Gui, D.; Hu, X. Prediction of the Irrigation Area Carrying Capacity in the Tarim River Basin under Climate Change. Agriculture 2022, 12, 657. [Google Scholar] [CrossRef]
- Mirzaei, A.; Zibaei, M. Water conflict management between agriculture and wetland under climate change: Application of economic-hydrological-behavioral modelling. Water Resour. Manag. 2021, 35, 1–21. [Google Scholar] [CrossRef]
- World Bank Group. Climate Change Portal—Zimbabwe. Available online: https://climateknowledgeportal.worldbank.org/country/zimbabwe/climate-data-historical (accessed on 25 April 2022).
- Mehta, D.; Yadav, S. Temporal analysis of rainfall and drought characteristics over Jalore District of SW Rajasthan. Water Pract. Technol. 2022, 17, 254–267. [Google Scholar] [CrossRef]
- Mehta, D.J.; Yadav, S. Long-term trend analysis of climate variables for arid and semi-arid regions of an Indian State Rajasthan. Int. J. Hydrol. Sci. Technol. 2022, 13, 191–214. [Google Scholar] [CrossRef]
- Palombi, L.; Sessa, R. Climate-Smart Agriculture: Sourcebook; FAO: Rome, Italy, 2013. [Google Scholar]
- Mosello, B.; Oates, N.; Jobbins, G. Pathways for Irrigation Development: Policies and Irrigation Performance in Zimbabwe; FANRPAN: Harare, Zimbabwe, 2017. [Google Scholar]
- World Bank. Zimbabwe: Agriculture Sector Disaster Risk Assessment; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- IFAD. Smallholder Irrigation Revitalization Programme Final Project Design Report; IFAD: Harare, Zimbabwe, 2016. [Google Scholar]
- Chigumira, E. Political ecology of agrarian transformation: The nexus of mining and agriculture in Sanyati District, Zimbabwe. J. Rural Stud. 2018, 61, 265–276. [Google Scholar] [CrossRef]
- Hanusch, M.; Kwaramba, M.; Janssen, W.G.; Mekonnen, A.F.; Herderschee, J.; Ilieva, S.; Swinkels, R.A.; Maher, B.P.; Pott, L.B.; Chigumira, E. Zimbabwe-Public Expenditure Review with a Focus on Agriculture; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Moyo, M.; Van Rooyen, A.; Bjornlund, H.; Parry, K.; Stirzaker, R.; Dube, T.; Maya, M. The dynamics between irrigation frequency and soil nutrient management: Transitioning smallholder irrigation towards more profitable and sustainable systems in Zimbabwe. Int. J. Water Resour. Dev. 2020, 36, S102–S126. [Google Scholar] [CrossRef]
- GoZ. Vision 2030 “Towards a Prosperous & Empowered Upper Middle Income Society by 2030”; Government Printers: Harare, Zimbabwe, 2018. [Google Scholar]
- Frischen, J.; Meza, I.; Rupp, D.; Wietler, K.; Hagenlocher, M. Drought risk to agricultural systems in Zimbabwe: A spatial analysis of hazard, exposure, and vulnerability. Sustainability 2020, 12, 752. [Google Scholar] [CrossRef] [Green Version]
- Mugandani, R.; Wuta, M.; Makarau, A.; Chipindu, B. Re-classification of agro-ecological regions of Zimbabwe in conformity with climate variability and change. Afr. Crop Sci. J. 2012, 20, 361–369. [Google Scholar]
- Mazvimavi, D. Investigating changes over time of annual rainfall in Zimbabwe. Hydrol. Earth Syst. Sci. 2010, 14, 2671–2679. [Google Scholar] [CrossRef] [Green Version]
- Moyo, M.; Van Rooyen, A.; Moyo, M.; Chivenge, P.; Bjornlund, H. Irrigation development in Zimbabwe: Understanding productivity barriers and opportunities at Mkoba and Silalatshani irrigation schemes. Int. J. Water Res. Dev. 2017, 33, 740–754. [Google Scholar] [CrossRef] [Green Version]
- Manyeruke, C.; Hamauswa, S.; Mhandara, L. The effects of climate change and variability on food security in Zimbabwe: A socio-economic and political analysis. Int. J. Hum. Soc. Sci. 2013, 3, 270–286. [Google Scholar]
- Muronzi, H.; Mukarwi, L. Smallholder Farmers’ Adaptive Capacity to Climate Change and Variability in Zimbabwe. In The Sustainability Ethic in the Management of the Physical, Infrastructural and Natural Resources of Zimbabwe; Langaa RPCIG: Bamenda, Cameroon, 2019; p. 301. [Google Scholar]
- Ebi, K.L.; Ndebele-Murisa, M.R.; Newsham, A.J.; Schleyer, M. IPCC WGII AR5 Chapter 22; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Nangombe, S. Drought Conditions and Management Strategies in Zimbabwe; Meteorological Services Department: Harare, Zimbabwe, 2015. [Google Scholar]
- Scoones, I.; Murimbarimba, F.; Mahenehene, J. Irrigating Zimbabwe after land reform: The potential of farmer-led systems. Water Altern. 2019, 12, 88–106. [Google Scholar]
- FAO. AQUASTAT Country Profile—Zimbabwe; FAO: Rome, Italy, 2016. [Google Scholar]
- GCF. Zimbabwe’s Green Climate Fund Country Programme; GCF: Harare, Zimbabwe, 2020. [Google Scholar]
- Mavhura, E. Learning from the tropical cyclones that ravaged Zimbabwe: Policy implications for effective disaster preparedness. Nat. Hazards 2020, 104, 2261–2275. [Google Scholar] [CrossRef]
- Chikodzi, D.; Nhamo, G.; Chibvuma, J. Impacts of Tropical Cyclone Idai on Cash Crops Agriculture in Zimbabwe. In Cyclones in Southern Africa; Springer: Berlin, Germany, 2021; pp. 19–34. [Google Scholar]
- Masasi, B.; Ng’ombe, J.N. Does a market systems approach revitalize smallholder irrigation schemes? Evidence from Zimbabwe. Sustain. Agric. Res. 2019, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.; Chanakira, R.R.; Chatiza, K.; Dhliwayo, M.; Dodman, D.; Masiiwa, M.; Muchadenyika, D.; Mugabe, P.; Zvigadza, S. Climate Change Impacts, Vulnerability and Adaptation in Zimbabwe; International Institute for Environment and Development London: London, UK, 2012. [Google Scholar]
- GoZ; World Bank Group; GFDRR. Impact, Zimbabwe Rapid Zimbabwe Cyclone Idai Rapid Impact and Needs Assessment; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Govere, S.; Nyamangara, J.; Nyakatawa, E.Z. Climate change and the water footprint of wheat production in Zimbabwe. Water SA 2019, 45, 513–526. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Wang, Y.; Li, Y.; Dong, H.; Zhou, D.; Han, G.; Wu, H.; Wang, G.; Mao, P.; Gao, Y. Soil organic carbon storage changes in coastal wetlands of the modern Yellow River Delta from 2000 to 2009. Biogeosciences 2012, 9, 2325–2331. [Google Scholar] [CrossRef] [Green Version]
- Ngara, T. Climate-Smart Agriculture Manual for Agriculture Education in Zimbabwe. Available online: https://www.ctc-n.org/sites/www.ctc-n.org/files/resources/climate-smart_agriculture_manual_0.pdf. (accessed on 15 May 2021).
- Chitata, T.; Mugabe, F.T.; Kashaigili, J.J. Estimation of Small Reservoir Sedimentation in Semi-Arid Southern Zimbabwe. Available online: http://www.suaire.sua.ac.tz/handle/123456789/1402 (accessed on 15 April 2021).
- Magrath, J.; Tshabangu, L.; Mativenga, S. Irrigation Schemes and Weather Extremes: The Challenge for Zimbabwe; Oxfam: Harare, Zimbabwe, 2014. [Google Scholar]
- Nhemachena, C.; Nhamo, L.; Matchaya, G.; Nhemachena, C.R.; Muchara, B.; Karuaihe, S.T.; Mpandeli, S. Climate Change Impacts on Water and Agriculture Sectors in Southern Africa: Threats and Opportunities for Sustainable Development. Water 2020, 12, 2673. [Google Scholar] [CrossRef]
- Mutambara, S.; Darkoh, M.B.; Atlhopheng, J.R. Water Supply System and the Sustainability of Smallholder Irrigation in Zimbabwe. Inter. J. Develop. Sustain. 2017, 6, 497–525. [Google Scholar]
- Bhaga, T.D.; Dube, T.; Shekede, M.D.; Shoko, C. Impacts of Climate Variability and Drought on Surface Water Resources in Sub-Saharan Africa Using Remote Sensing: A Review. Remote Sens. 2020, 12, 4184. [Google Scholar] [CrossRef]
- Mapani, B.; Magole, L.; Makurira, H.; Meck, M.; Mkandawire, T.; Mul, M.; Ngongondo, C. Integrated water resources management and infrastructure planning for water security in Southern Africa. Phys. Chem. Earth 2017, 100, 1–2. [Google Scholar] [CrossRef]
- van Rooyen, A.F.; Moyo, M.; Bjornlund, H.; Dube, T.; Parry, K.; Stirzaker, R. Identifying leverage points to transition dysfunctional irrigation schemes towards complex adaptive systems. Int. J. Water Resour. Dev. 2020, 36, S171–S198. [Google Scholar] [CrossRef]
- Dube, K. Implications of rural irrigation schemes on household economy. A case of Lower Gweru Irrigation Scheme, Zimbabwe. South Afr. J. Agric. Ext. 2016, 44, 75–90. [Google Scholar] [CrossRef]
- Nkomozepi, T.; Chung, S.-O. Assessing the trends and uncertainty of maize net irrigation water requirement estimated from climate change projections for Zimbabwe. Agric. Water Manag. 2012, 111, 60–67. [Google Scholar] [CrossRef]
- HLPE. Water for Food Security and Nutrition. A Report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security; FAO: Rome, Italy, 2015. [Google Scholar]
- Zamani, M.G.; Moridi, A.; Yazdi, J. Groundwater management in arid and semi-arid regions. Arab. J. Geosci. 2022, 15, 362. [Google Scholar] [CrossRef]
- Pittock, J.; Orr, S.; Stevens, L.; Aheeyar, M.; Smith, M. Tackling trade-offs in the nexus of water, energy and food. Aquat. Procedia 2015, 5, 58–68. [Google Scholar] [CrossRef]
- Gemmill-Herren, B.; Mtambanengwe, F.; Mapfumo, P.; Herren, G.L.; Masehela, T.S.; Stevenson, P.C.; Herren, J.K. 16 Harnessing Ecosystem Services in Transforming Agriculture in Southern Africa. Transforming Agriculture in Southern Africa; Routledge: London, UK, 2019; pp. 143–151. [Google Scholar]
- Mutekwa, V. Climate change impacts and adaptation in the agricultural sector: The case of smallholder farmers in Zimbabwe. J. Sustain. Dev. Afr. 2009, 11, 237–256. [Google Scholar]
- GoZ. Accelerated Irrigation Rehabilitation and Development Plan 2021–2025; Government Printers: Harare, Zimbabwe, 2020. [Google Scholar]
- Rukuni, M. Organisation and management of smallholder irrigation: The case of Zimbabwe. Agric. Adm. 1984, 17, 215–229. [Google Scholar] [CrossRef]
- Rukuni, M. The evolution of smallholder irrigation policy in Zimbabwe: 1928–1986. Irrig. Drain. Syst. 1988, 2, 199–210. [Google Scholar] [CrossRef]
- Makadho, J.; Matondi, P.B.; Munyuki-Hungwe, M.N. Irrigation Development and Water Resource Management; University of Zimbabwe (UZ) Publications: Harare, Zimbabwe, 2001. [Google Scholar]
- GoZ. Zimbabwe’s National Climate Change Response Strategy; Government Printers: Harare, Zimbabwe, 2015. [Google Scholar]
- Zawe, C.; Madyiwa, S.; Matete, M. Trends and Outlook: Agricultural Water Management in Southern Africa Country Report Zimbabwe; CGIAR: Harare, Zimbabwe, 2015. [Google Scholar]
- Matsika, O. Smallholder farmers’perceptions of policies affecting/influencing sustainability of irrigation projects in zvimba district, Zimbabwe. Int. J. Educ. Hum. Soc. Sci. 2021, 4, 155–169. [Google Scholar]
- GoZ. Water Act; Government Printers: Harare, Zimbabwe, 1998. [Google Scholar]
- GoZ. Zimbabwe National Water Authority Act; Government Printers: Harare, Zimbabwe, 2020. [Google Scholar]
- GoZ. Environmental Management Act and 2003 Environmental Agency Act; Government Printers: Harare, Zimbabwe, 2002. [Google Scholar]
- GoZ. Land Acquisition Act Zimbabwe’s Agenda for Sustainable Socio-Economic Transformation (Zim Asset) 2013–2018; Government Printers: Harare, Zimbabwe, 2000. [Google Scholar]
- GoZ. Zimbabwe’s Agenda for Sustainable Socio-Economic Transformation (Zim Asset) 2013–2018; Government Printers: Harare, Zimbabwe, 2013. [Google Scholar]
- GoZ. Comprehensive Agricultural Policy Framework (2012–2032); Government Printers: Harare, Zimbabwe, 2012. [Google Scholar]
- GoZ. Zimbabwe’s Agricultural Investment Plan 2013–2017; Government Printers: Harare, Zimbabwe, 2013. [Google Scholar]
- GoZ. Medium-Term Plan 2011–2015; Government Printers: Harare, Zimbabwe, 2011. [Google Scholar]
- GoZ. National Development Strategy 1; Government Printers: Harare, Zimbabwe, 2020. [Google Scholar]
- GoZ. National Agricultural Framework (2018–2030); Government Printers: Harare, Zimbabwe, 2018. [Google Scholar]
- Nyoni, T.; Bonga, W.G. Population growth in Zimbabwe: A threat to economic development? J. Econ. Financ. 2017, 2, 29–39. [Google Scholar]
- Chirisa, I. (Ed.) Chapter 1 Sustainability: An Overview. In The Sustainability Ethic in the Management of the Physical, Infrastructural and Natural Resources of Zimbabwe; Langaa RPCIG: Bamenda, Cameroon, 2019; pp. 1–12. [Google Scholar]
- Nyanga, T.; Zirima, H. Reactions of small to medium enterprises in masvingo, Zimbabwe to COVID-19: Implications on productivity. Bus. Excel. Manag. 2020, 10, 22–32. [Google Scholar] [CrossRef]
- Mudhara, M.; Senzanje, A. Assessment of Policies and Strategies for the Governance of Smallholder Irrigation Farming in Kwazulu-Natal Province, South Africa; Water Research Commission: Pretoria, South Africa, 2020. [Google Scholar]
- Chifamba, E.; Nyanga, T.; Gukurume, S. Irrigation water pricing and cost recuperation for sustainability of irrigation projects in Nyanyadzi, Zimbabwe. Russ. J. Agric. Socio-Econ. Sci. 2013, 15, 39–53. [Google Scholar] [CrossRef]
- Milne, G.; Mekonnen, A.F.; Benitez Ponce, P.C. Zimbabwe-Climate Smart Agriculture Investment Plan; The World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Srivastav, A.L.; Dhyani, R.; Ranjan, M.; Madhav, S.; Sillanpää, M. Climate-resilient strategies for sustainable management of water resources and agriculture. Environ. Sci. Pollut. Res. 2021, 28, 41576–41595. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, J.; Moridi, A. Interactive reservoir-watershed modeling framework for integrated water quality management. Water Resour. Manag. 2017, 31, 2105–2125. [Google Scholar] [CrossRef]
- Lv, H.; Yang, L.; Zhou, J.; Zhang, X.; Wu, W.; Li, Y.; Jiang, D. Water resource synergy management in response to climate change in China: From the perspective of urban metabolism. Resour. Conserv. Recycl. 2020, 163, 105095. [Google Scholar] [CrossRef]
- Sokolow, J.; Kennedy, G.; Attwood, S. Managing Crop tradeoffs: A methodology for comparing the water footprint and nutrient density of crops for food system sustainability. J. Clean. Prod. 2019, 225, 913–927. [Google Scholar] [CrossRef]
- Chanza, N.; Gundu-Jakarasi, V. Deciphering the climate change conundrum in Zimbabwe: An exposition. In Global Warming and Climate Change; IntechOpen: London, UK, 2020. [Google Scholar]
Precipitation | Temperature | |
---|---|---|
Kendall’s tau | −0.07 | 0.37 |
S | −522.00 | 2663.00 |
Var(S) | 194,366.67 | 194,319.67 |
p-value (Tw tailed) | 0.24 | <0.0001 |
alpha | 0.05 | 0.050 |
Year | Area (ha) | Percentage | Total Area under SISs (ha) |
---|---|---|---|
Base year (2020) | 26,000 | ||
2021 | 4000 | 15.38 | 30,000 |
2022 | 5000 | 34.62 | 35,000 |
2023 | 5000 | 53.85 | 40,000 |
2024 | 5000 | 73.08 | 45,000 |
2025 | 10,000 | 111.54 | 55,000 |
Policy/Strategy | Relevance in the Context of SISs |
---|---|
1998 Water Act | Gives authority to catchment council to allocate water to SISs [78]. |
2000 Zimbabwe National Water Authority Act | Establishes the ZINWA as a parastatal agency—in charge of water permits and water allocations, including for SIS use [79]. |
2002 Environmental Management Act and 2003 Environmental Agency Act | Introduces mandatory environmental impact assessments for SIS development [80]. |
2000 Land Acquisition Act | Empowers the government to compulsorily acquire land for SIS development purposes [81]. |
Zimbabwe’s Agenda for Sustainable Socio-Economic Transformation (Zim-Asset) 2013–2018 | Sets the objective of increasing the area under SIS through rehabilitation and modernization of irrigation schemes and increase in power available and affordable for irrigation [82]. |
Zimbabwe’s National Climate Change Response Strategy 2015 | Mainstreaming climate change in all key sectors of the economy; calls for integrated management and development of agricultural water resources [75]. |
Comprehensive Agricultural Policy Framework 2012–2032 | Includes provisions for rehabilitating and modernizing SIS infrastructure, developing new irrigation infrastructure and strengthening research on irrigation development and new technologies (objective 7.3) [83]. |
Zimbabwe’s Agricultural Investment Plan 2013–2017 | Aims to redesign and rehabilitate SIS infrastructure [84]. |
Medium-Term Plan 2011–2015 | Focuses on rehabilitation of existing SIS infrastructures and completion of irrigation projects to increase agricultural production [85]. |
National Development Strategy 1 2021–2025 | Intensification of construction and rehabilitation of SIS infrastructure including dams and funding of irrigation development [86]. |
National Agricultural Framework (2018–2030) | Development of low-cost technology investment in SIS, capacitation and enhancing skills for irrigation technicians and promotion of low-cost finance for irrigation development, investment in irrigation development and water harvesting technologies [87]. |
Accelerated Irrigation Rehabilitation and Development 2021–2025 | Rehabilitation and revitalization of over 450 SISs in communal areas, on 26,000 ha and a concomitant farmer capacitation, governance overhaul and business model transformation to ensure viability and sustainability of these schemes. Development of various SISs in the Lowveld Green Zone Irrigation Development and projects linked to dams in communal and resettlement areas. To improve access to finance, inputs, markets and overcome governance and business systems at irrigation schemes. Reliable market arrangements for produce from SISs [71]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mwadzingeni, L.; Mugandani, R.; Mafongoya, P. Risks of Climate Change on Future Water Supply in Smallholder Irrigation Schemes in Zimbabwe. Water 2022, 14, 1682. https://doi.org/10.3390/w14111682
Mwadzingeni L, Mugandani R, Mafongoya P. Risks of Climate Change on Future Water Supply in Smallholder Irrigation Schemes in Zimbabwe. Water. 2022; 14(11):1682. https://doi.org/10.3390/w14111682
Chicago/Turabian StyleMwadzingeni, Liboster, Raymond Mugandani, and Paramu Mafongoya. 2022. "Risks of Climate Change on Future Water Supply in Smallholder Irrigation Schemes in Zimbabwe" Water 14, no. 11: 1682. https://doi.org/10.3390/w14111682
APA StyleMwadzingeni, L., Mugandani, R., & Mafongoya, P. (2022). Risks of Climate Change on Future Water Supply in Smallholder Irrigation Schemes in Zimbabwe. Water, 14(11), 1682. https://doi.org/10.3390/w14111682