Impact of Flooding on Shallow Groundwater Chemistry in the Taklamakan Desert Hinterland: Remote Sensing Inversion and Geochemical Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Groundwater Ions, Groundwater Depth, TDS, and EC Data
2.2.2. Environmental Covariates for Groundwater Indicator Inversion
2.3. Random Forest Model
2.4. Verification of Model Accuracy
3. Results and Discussion
3.1. Spatial and Temporal Variation Characteristics of Major Groundwater Ions
3.2. Correlation of Individual Ions
3.3. Changes in Groundwater Chemical Characteristics in the Study Area Based on Remote Sensing Inversion
3.4. Water Chemistry Analysis
3.5. Gibbs-Based Groundwater Chemical Mechanism Analysis
3.6. Groundwater Chemical Mechanism Analysis Based on Ionic Proportionality Factor
3.7. Remote Sensing Verification Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bauer-Gottwein, P.; Gondwe, B.R.N.; Charvet, G.; Marín, L.E.; Rebolledo-Vieyra, M.; Merediz-Alonso, G. Review: The Yucatán Peninsula karst aquifer, Mexico. Hydrogeol. J. 2011, 19, 507–524. [Google Scholar] [CrossRef]
- Wortmann, M.; Bolch, T.; Menz, C.; Tong, J.; Krysanova, V. Comparison and Correction of High-Mountain Precipitation Data Based on Glacio-Hydrological Modeling in the Tarim River Headwaters (High Asia). J. Hydrometeorol. 2018, 19, 777–801. [Google Scholar] [CrossRef]
- Chen, B.; Yang, X.; Jiang, Q.; Liang, P.; Lattin Mackenzie, L.; Zhou, Y. Geochemistry of aeolian sand in the Taklamakan Desert and Horqin Sandy Land, northern China: Implications for weathering, recycling, and provenance. Catena 2022, 208, 105769. [Google Scholar] [CrossRef]
- Li, H.; Shi, Q.; Wan, Y.; Shi, H.; Imin, B. Using Sentinel-2 Images to Map the Populus euphratica Distribution Based on the Spectral Difference Acquired at the Key Phenological Stage. Forests 2021, 12, 147. [Google Scholar] [CrossRef]
- Allison, G.B.; Gee, G.W.; Tyler, S.W. Vadose-Zone Techniques for Estimating Groundwater Recharge in Arid and Semiarid Regions. Soil Sci. Soc. Am. J. 1994, 58, 6. [Google Scholar] [CrossRef]
- Gee, G.W.; Hillel, D. Groundwater recharge in arid regions: Review and critique of estimation methods. Hydrol. Process. 1988, 2, 255–266. [Google Scholar] [CrossRef]
- Cook, B.I.; Mankin, J.S.; Anchukaitis, K.J. Climate Change and Drought: From Past to Future. Curr. Clim. Chang. Rep. 2018, 4, 164–179. [Google Scholar] [CrossRef]
- Lashford, C.; Rubinato, M.; Cai, Y.; Hou, J.; Abolfathi, S.; Coupe, S.; Charlesworth, S.; Tait, S. SuDS & Sponge Cities: A Comparative Analysis of the Implementation of Pluvial Flood Management in the UK and China. Sustainability 2019, 11, 213. [Google Scholar] [CrossRef] [Green Version]
- Salauddin, M.; O’Sullivan, J.J.; Abolfathi, S.; Pearson, J.M. Eco-Engineering of Seawalls—An Opportunity for Enhanced Climate Resilience from Increased Topographic Complexity. Front. Mar. Sci. 2021, 8, 628. [Google Scholar] [CrossRef]
- Marques, A.; Martins, I.S.; Kastner, T.; Plutzar, C.; Theurl, M.C.; Eisenmenger, N.; Huijbregts, M.A.; Wood, R.; Stadler, K.; Bruckner, M. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 2019, 3, 628–637. [Google Scholar] [CrossRef]
- Tang, C.; Yi, Y.; Yang, Z.; Zhang, S.; Liu, H. Effects of ecological flow release patterns on water quality and ecological restoration of a large shallow lake. J. Clean. Prod. 2018, 174, 577–590. [Google Scholar] [CrossRef]
- Lewandowski, J.; Meinikmann, K.; Nützmann, G.; Rosenberry, D.O. Groundwater–the disregarded component in lake water and nutrient budgets. Part 2: Effects of groundwater on nutrients. Hydrol. Process. 2015, 29, 2922–2955. [Google Scholar] [CrossRef]
- Bayanzul, B.; Nakamura, K.; Machida, I.; Watanabe, N.; Komai, T. Construction of a conceptual model for confined groundwater flow in the Gunii Khooloi Basin, Southern Gobi Region, Mongolia. Hydrogeol. J. 2019, 27, 1581–1596. [Google Scholar] [CrossRef]
- Xiao, Y.; Shao, J.; Cui, Y.; Zhang, G.; Zhang, Q. Groundwater circulation and hydrogeochemical evolution in Nomhon of Qaidam Basin, northwest China. J. Earth Syst. Sci. 2017, 126, 26. [Google Scholar] [CrossRef]
- Masoud, A.A.; El-Horiny, M.M.; Atwia, M.G.; Gemail, K.S.; Koike, K. Assessment of groundwater and soil quality degradation using multivariate and geostatistical analyses, Dakhla Oasis, Egypt. J. Afr. Earth Sci. 2018, 142, 64–81. [Google Scholar] [CrossRef]
- Cook, S.; Price, O.; King, A.; Finnegan, C.; van Egmond, R.; Schafer, H.; Pearson, J.M.; Abolfathi, S.; Bending, G.D. Bedform characteristics and biofilm community development interact to modify hyporheic exchange. Sci. Total Environ. 2020, 749, 141397. [Google Scholar] [CrossRef]
- Shao, T.; Zhao, J.; Zhou, Q.; Dong, Z.; Ma, Y. Recharge sources and chemical composition types of groundwater and lake in the Badain Jaran Desert, northwestern China. J. Geogr. Sci. 2012, 22, 479–496. [Google Scholar] [CrossRef]
- Xu, J.; Ling, H.; Zhang, G.; Yan, J.; Deng, M.; Wang, G.; Xu, S. Variations in the dissolved carbon concentrations of the shallow groundwater in a desert inland river basin. J. Hydrol. 2021, 602, 126774. [Google Scholar] [CrossRef]
- Enemark, T.; Peeters, L.; Mallants, D.; Flinchum, B.; Batelaan, O. A systematic approach to hydrogeological conceptual model testing, combining remote sensing and geophysical data. Water Resour. Res. 2020, 56, e2020WR027578. [Google Scholar] [CrossRef]
- Jia, B.; Si, J.; Xi, H.; Qin, J. A Characterization of the Hydrochemistry and Main Controlling Factors of Lakes in the Badain Jaran Desert, China. Water 2021, 13, 2931. [Google Scholar] [CrossRef]
- Rahman, A.; Tiwari, K.; Mondal, N. Assessment of hydrochemical backgrounds and threshold values of groundwater in a part of desert area, Rajasthan, India. Environ. Pollut. 2020, 266, 115150. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Wang, Y.; Ge, S.; Li, Z.; Li, J. Origin of the Crescent Moon Spring in the Gobi Desert of northwestern China, based on understanding groundwater recharge. J. Hydrol. 2020, 580, 124344. [Google Scholar] [CrossRef]
- Noori, R.; Ghiasi, B.; Salehi, S.; Esmaeili Bidhendi, M.; Raeisi, A.; Partani, S.; Meysami, R.; Mahdian, M.; Hosseinzadeh, M.; Abolfathi, S. An Efficient Data Driven-Based Model for Prediction of the Total Sediment Load in Rivers. Hydrology 2022, 9, 36. [Google Scholar] [CrossRef]
- Ghiasi, B.; Noori, R.; Sheikhian, H.; Zeynolabedin, A.; Sun, Y.; Jun, C.; Hamouda, M.; Bateni, S.M.; Abolfathi, S. Uncertainty quantification of granular computing-neural network model for prediction of pollutant longitudinal dispersion coefficient in aquatic streams. Sci. Rep. 2022, 12, 4610. [Google Scholar] [CrossRef]
- Borzooei, S.; Miranda, G.H.B.; Abolfathi, S.; Scibilia, G.; Meucci, L.; Zanetti, M.C. Application of unsupervised learning and process simulation for energy optimization of a WWTP under various weather conditions. Water Sci. Technol. 2020, 81, 1541–1551. [Google Scholar] [CrossRef]
- Shi, H.; Shi, Q.; Zhou, X.; Imin, B.; Li, H.; Zhang, W.; Kahaer, Y. Effect of the competition mechanism of between co-dominant species on the ecological characteristics of Populus euphratica under a water gradient in a desert oasis. Glob. Ecol. Conserv. 2021, 27, e01611. [Google Scholar] [CrossRef]
- Imin, B.; Dai, Y.; Shi, Q.; Guo, Y.; Li, H.; Nijat, M. Responses of two dominant desert plant species to the changes in groundwater depth in hinterland natural oasis, Tarim Basin. Ecol. Evol. 2021, 11, 9460–9471. [Google Scholar] [CrossRef]
- Che, Q.; Su, X.; Wang, S.; Zheng, S.; Li, Y. Hydrochemical Characteristics and Evolution of Groundwater in the Alluvial Plain (Anqing Section) of the Lower Yangtze River Basin: Multivariate Statistical and Inversion Model Analyses. Water 2021, 13, 2403. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, X.; Zhang, D.; Mackenzie, L.L.; Chen, B. Sedimentological and geochemical characteristics of sediments and their potential correlations to the processes of desertification along the Keriya River in the Taklamakan Desert, western China. Geomorphology 2021, 375, 107560. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Yang, C.; Chen, J.; Yang, S.; Lu, T.; Lin, X. Effects of Green space landscape patterns on particulate matter in Zhejiang Province, China. Atmos. Pollut. Res. 2018, 9, 923–933. [Google Scholar] [CrossRef]
- Yan, F.; Shangguan, W.; Zhang, J.; Hu, B. Depth-to-bedrock map of China at a spatial resolution of 100 meters. Sci. Data 2020, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Rossiter, D.G.; Zhang, G.-L.; Li, D.-C. A soil colour map of China. Geoderma 2020, 379, 114556. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.; Baets, B.D.; Verhoest, N.E.C.; Samson, R.; Degroeve, S.; Becker, P.D.; Huybrechts, W. Random forests as a tool for ecohydrological distribution modelling. Ecol. Model. 2007, 207, 304–318. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Mendes, M.P.; Garcia-Soldado, M.J.; Chica-Olmo, M.; Ribeiro, L. Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain). Sci. Total Environ. 2014, 476–477, 189–206. [Google Scholar] [CrossRef]
- Verikas, A.; Gelzinis, A.; Bacauskiene, M. Mining data with random forests: A survey and results of new tests. Pattern Recognit 2011, 44, 330–349. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, P.; Yin, A.; Yang, X.; Zhang, M.; Gao, C. Prediction of soil organic carbon in an intensively managed reclamation zone of eastern China: A comparison of multiple linear regressions and the random forest model. Sci. Total Environ. 2017, 592, 704–713. [Google Scholar] [CrossRef]
- Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 2014, 15, 3133–3181. [Google Scholar]
- Hamidi, O.; Tapak, L.; Abbasi, H.; Maryanaji, Z. Application of random forest time series, support vector regression and multivariate adaptive regression splines models in prediction of snowfall (a case study of Alvand in the middle Zagros, Iran). Theor. Appl. Climatol. 2017, 134, 769–776. [Google Scholar] [CrossRef]
- Manikandan, E.; Rajmohan, N.; Anbazhagan, S. Monsoon impact on groundwater chemistry and geochemical processes in the shallow hard rock aquifer. Catena 2020, 195, 104766. [Google Scholar] [CrossRef]
- Ali, S.A.; Ali, U. Hydrochemical characteristics and spatial analysis of groundwater quality in parts of Bundelkhand Massif, India. Appl. Water Sci. 2018, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Hua, K.; Xiao, J.; Li, S.; Li, Z. Analysis of hydrochemical characteristics and their controlling factors in the Fen River of China. Sustain. Cities Soc. 2020, 52, 101827. [Google Scholar] [CrossRef]
- Yu, Z.; Yan, N.; Wu, G.; Xu, T.; Li, F. Chemical weathering in the upstream and midstream reaches of the Yarlung Tsangpo basin, southern Tibetan Plateau. Chem. Geol. 2021, 559, 119906. [Google Scholar] [CrossRef]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Sadashivaiah, C.; Ramakrishnaiah, C.; Ranganna, G. Hydrochemical analysis and evaluation of groundwater quality in Tumkur Taluk, Karnataka State, India. Int. J. Environ. Res. Public Health 2008, 5, 158–164. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Wu, J. Hydrogeochemical characteristics, groundwater quality, and health risks from hexavalent chromium and nitrate in groundwater of Huanhe Formation in Wuqi county, northwest China. Expo. Health 2019, 11, 125–137. [Google Scholar] [CrossRef]
- Modibo Sidibé, A.; Lin, X.; Koné, S. Assessing groundwater mineralization process, quality, and isotopic recharge origin in the Sahel Region in Africa. Water 2019, 11, 789. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Wang, Z.; Wang, S.; Wu, X.; An, Y.; Wang, W.; Liu, J. Factors that influence the chemical composition and evolution of shallow groundwater in an arid region: A case study from the middle reaches of the Heihe River, China. Environ. Earth Sci. 2019, 78, 390. [Google Scholar] [CrossRef]
- Hui, T.; Jizhong, D.; Shimin, M.; Zhuang, K.; Yan, G. Application of water quality index and multivariate statistical analysis in the hydrogeochemical assessment of shallow groundwater in Hailun, northeast China. Hum. Ecol. Risk Assess.Int. J. 2021, 27, 651–667. [Google Scholar] [CrossRef]
- Li, P.; He, S.; He, X.; Tian, R. Seasonal hydrochemical characterization and groundwater quality delineation based on matter element extension analysis in a paper wastewater irrigation area, northwest China. Expo. Health 2018, 10, 241–258. [Google Scholar] [CrossRef]
- Pant, R.R.; Zhang, F.; Rehman, F.U.; Wang, G.; Ye, M.; Zeng, C.; Tang, H. Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal. Sci. Total Environ. 2018, 622, 770–782. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Han, G.; Liu, M.; Zeng, J.; Liang, B.; Qu, R. Distribution, sources and water quality evaluation of the riverine solutes: A case study in the lancangjiang river basin, tibetan plateau. Int. J. Environ. Res. Public Health 2019, 16, 4670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vital, M.; Daval, D.; Clément, A.; Quiroga, S.; Fritz, B.; Martinez, D.E. Importance of accessory minerals for the control of water chemistry of the Pampean aquifer, province of Buenos Aires. Argent. Catena 2018, 160, 112–123. [Google Scholar] [CrossRef]
- Li, C.; Gao, X.; Wang, Y. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China. Sci. Total Environ. 2015, 508, 155–165. [Google Scholar] [CrossRef]
- Elango, L.; Kannan, R. Rock–water interaction and its control on chemical composition of groundwater. Dev. Environ. Sci. 2007, 5, 229–243. [Google Scholar] [CrossRef]
- Xiao, J.; Jin, Z.; Zhang, F.; Wang, J. Major ion geochemistry of shallow groundwater in the Qinghai Lake catchment, NE Qinghai-Tibet Plateau. Environ. Earth Sci. 2012, 67, 1331–1344. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, J.; Zhu, C.; Chen, X.; Wang, J.; Han, L.; Ma, X.; Xu, D. Bivariate empirical mode decomposition of the spatial variation in the soil organic matter content: A case study from NW China. Catena 2021, 206, 105572. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, J.; Wang, J.; Ge, X. Prediction of soil organic matter in northwestern China using fractional-order derivative spectroscopy and modified normalized difference indices. Catena 2020, 185, 104257. [Google Scholar] [CrossRef]
Variables | Native Scale | Reference |
---|---|---|
Mean month Temperature (Tem) 2018.10 and 2019.5 | 1000 m | [30] |
Mean month Evapotranspiration (ET) 2018.10 and 2019.5 | 1000 m | [30] |
Digital elevation model (DEM) | 90 m | (http://www.resdc.cn (accessed on 20 April 2019)) |
Gross primary productivity (GPP) | 500 m | Aqua |
Net primary productivity (NPP) | 500 m | Aqua |
Land use and Land cover change (LULC) | 10 m | [31] |
World Reference Base for Soil Resources (WRB) | 250 m | (https://soilgrids.org/(accessed on 20 April 2019)) |
Plan curvature | 90 m | DEM |
Depth to bedrock (DTB) | 100 m | [32] |
Soil color (0–5 cm) | 1000 m | [33] |
Soil Bulk Density (BD) | 250 m | (https://soilgrids.org/(accessed on 20 April 2019)) |
Landsat current month NDVI | 100 m | (https://www.resdc.cn/data(accessed on 20 April 2019)) |
Geomorphons | 90 m | GRASS GIS |
Silt | 250 m | (https://soilgrids.org/(accessed on 20 April 2019)) |
Clay | 250 m | (https://soilgrids.org/(accessed on 20 April 2019)) |
Sand | 250 m | (https://soilgrids.org/(accessed on 20 April 2019)) |
Slope | 90 m | DEM |
Cl− | SO42− | HCO3− | Ca2+ | Mg2+ | Na+ | K+ | pH | TDS | EC | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Pre-flood (PRF) (n = 30) | |||||||||||
Riverside (n = 14) | Max | 3009.26 | 2452.90 | 2164.55 | 444.03 | 441.26 | 2463.01 | 83.87 | 8.63 | 9982.00 | 15.54 |
Min | 278.96 | 217.73 | 74.43 | 47.39 | 58.27 | 204.16 | 14.27 | 7.51 | 1195.00 | 1.19 | |
Mean | 1047.98 | 752.88 | 394.01 | 146.59 | 159.91 | 734.12 | 36.17 | 8.15 | 3478.71 | 5.07 | |
SD | 1002.47 | 783.63 | 521.64 | 143.80 | 149.13 | 689.04 | 22.85 | 0.31 | 3079.88 | 5.26 | |
CV% | 95.7 | 104.1 | 132.4 | 98.1 | 93.3 | 93.9 | 63.2 | 3.8 | 88.5 | 103.9 | |
Oasis (n = 16) | Max | 3217.34 | 1949.81 | 1069.48 | 335.02 | 343.88 | 1903.96 | 120.58 | 8.84 | 8680.00 | 13.85 |
Min | 119.23 | 120.67 | 193.79 | 35.04 | 22.15 | 124.71 | 10.75 | 8.10 | 685.00 | 0.91 | |
Mean | 1048.16 | 631.36 | 454.40 | 124.25 | 122.32 | 745.47 | 46.46 | 8.43 | 3326.50 | 5.02 | |
SD | 883.69 | 470.27 | 264.89 | 96.17 | 83.96 | 568.57 | 33.44 | 0.21 | 2342.02 | 3.97 | |
CV% | 84.3 | 74.5 | 58.3 | 77.4 | 68.6 | 76.3 | 72.0 | 2.5 | 70.4 | 79.0 | |
Total (n = 30) | Max | 3217.34 | 2452.90 | 2164.55 | 444.03 | 441.26 | 2463.01 | 120.58 | 8.84 | 9982.00 | 15.54 |
Min | 119.23 | 120.67 | 74.43 | 35.04 | 22.15 | 124.71 | 10.75 | 7.51 | 685.00 | 0.91 | |
Mean | 1048.07 | 688.07 | 426.22 | 134.67 | 139.86 | 740.17 | 41.66 | 8.30 | 3397.53 | 5.04 | |
SD | 924.34 | 627.27 | 399.02 | 119.09 | 118.23 | 616.50 | 28.98 | 0.30 | 2663.69 | 4.53 | |
CV% | 88.2 | 91.2 | 93.6 | 88.4 | 84.5 | 83.3 | 69.6 | 03.6 | 78.4 | 89.9 | |
Post-flood (POF) (n = 30) | |||||||||||
Riverside (n = 14) | Max | 4353.20 | 2387.83 | 2244.37 | 523.71 | 590.17 | 3741.93 | 72.05 | 8.23 | 13,287.18 | 18.41 |
Min | 316.49 | 237.42 | 71.09 | 78.04 | 57.30 | 247.81 | 18.70 | 7.61 | 1331.74 | 1.38 | |
Mean | 1219.25 | 822.33 | 405.24 | 196.08 | 181.43 | 923.46 | 35.56 | 7.83 | 3894.05 | 5.35 | |
SD | 1212.20 | 766.37 | 543.10 | 159.44 | 162.61 | 962.95 | 19.11 | 0.19 | 3547.72 | 5.37 | |
CV% | 99.4 | 93.2 | 134.0 | 81.3 | 89.6 | 104.3 | 53.7 | 2.5 | 91.1 | 100.2 | |
Oasis (n = 16) | Max | 3142.29 | 1897.14 | 1437.28 | 341.92 | 389.51 | 2191.91 | 118.97 | 9.19 | 8492.18 | 14.63 |
Min | 235.68 | 207.8 | 134.37 | 40.72 | 49.98 | 231.84 | 19.22 | 7.88 | 1097.98 | 1.60 | |
Mean | 1001.3 | 642.33 | 440.78 | 110.1 | 159.02 | 827.61 | 45.93 | 8.22 | 3350.7 | 5.68 | |
SD | 772.62 | 432.95 | 333.24 | 78.39 | 101.71 | 584.6 | 29.24 | 0.3 | 2178.64 | 4.09 | |
CV% | 77.2 | 67.4 | 75.6 | 71.2 | 64.0 | 70.6 | 63.7 | 3.6 | 65.0 | 72.0 | |
Total (n = 30) | Max | 4353.20 | 2387.83 | 2244.37 | 523.71 | 590.17 | 3741.93 | 118.97 | 9.19 | 13,287.18 | 18.41 |
Min | 235.68 | 207.80 | 71.09 | 40.72 | 49.98 | 231.84 | 18.70 | 7.61 | 1097.98 | 1.38 | |
Mean | 1103.01 | 726.33 | 424.20 | 150.22 | 169.48 | 872.34 | 41.09 | 8.04 | 3604.26 | 5.53 | |
SD | 989.80 | 607.11 | 435.87 | 128.37 | 131.66 | 771.24 | 25.17 | 0.32 | 2858.89 | 4.65 | |
CV% | 89.7 | 83.6 | 102.8 | 85.4 | 77.7 | 88.4 | 61.3 | 4.0 | 79.3 | 84.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, L.; Shi, Q.-D.; Wan, Y.-B.; Shi, H.-B.; Kahaer, Y.-j.; Abudu, A. Impact of Flooding on Shallow Groundwater Chemistry in the Taklamakan Desert Hinterland: Remote Sensing Inversion and Geochemical Methods. Water 2022, 14, 1724. https://doi.org/10.3390/w14111724
Peng L, Shi Q-D, Wan Y-B, Shi H-B, Kahaer Y-j, Abudu A. Impact of Flooding on Shallow Groundwater Chemistry in the Taklamakan Desert Hinterland: Remote Sensing Inversion and Geochemical Methods. Water. 2022; 14(11):1724. https://doi.org/10.3390/w14111724
Chicago/Turabian StylePeng, Lei, Qing-Dong Shi, Yan-Bo Wan, Hao-Bo Shi, Yasen-jiang Kahaer, and Anwaier Abudu. 2022. "Impact of Flooding on Shallow Groundwater Chemistry in the Taklamakan Desert Hinterland: Remote Sensing Inversion and Geochemical Methods" Water 14, no. 11: 1724. https://doi.org/10.3390/w14111724
APA StylePeng, L., Shi, Q.-D., Wan, Y.-B., Shi, H.-B., Kahaer, Y.-j., & Abudu, A. (2022). Impact of Flooding on Shallow Groundwater Chemistry in the Taklamakan Desert Hinterland: Remote Sensing Inversion and Geochemical Methods. Water, 14(11), 1724. https://doi.org/10.3390/w14111724