Recent and Emerging Trends in Remediation of Methylene Blue Dye from Wastewater by Using Zinc Oxide Nanoparticles
Abstract
:1. Introduction
2. Methylene Blue Dye
2.1. Health Impact of MB
2.2. Environmental Impact of MB
3. Industrial Dye Effluent Treatment
3.1. Advanced Oxidation Process (AOP)
3.2. Photocatalysis and Basic Principle of Photocatalysis
- Chemical and photonic stability;
- Ability to absorb reactants under adequate photonic activation;
- Acquire a bandgap where the hydroxyl radicals’ oxidation potential and the superoxide radical’s reduction potential are within the gap;
- Availability is simple.
3.2.1. Mechanism of Photocatalysis
- Adsorption onto the surface;
- Reaction on the surface;
- Desorption of products from the surface;
- Diffusion of reactant molecules from the bulk to the surface;
- Product diffusion to the masses.
3.2.2. Photocatalysis Reaction Kinetics
4. Zinc Oxide as Photocatalyst
5. Dye Removal: Bioremediation to Nanoremediation
6. Treatment of Industrial Effluent Using ZnO Nanomaterials
6.1. Co-Doped ZnO for Removal of Dye
6.2. ZnO Nanocomposites for Removal of MB Dye
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Activated Charcoal |
AOPs | Advanced Oxidation Process |
BBD | Box–Behnken Design |
BOD | Biological Oxygen Demand |
CB | Conduction Band |
CETP | Common Effluent Treatment Plant |
COD | Chemical Oxygen Demand |
CTP | Conventional Treatment Process |
DLS | Dynamic Light Scattering |
EPS | Exopolysaccharides |
ERP | Emerging Removal Process |
FE-SEM | Field Emission Scanning Electron Microscope |
FTIR | Fourier Transform Infrared Spectroscopy |
GC-MS | Gas Chromatography-Mass spectroscopy |
GIDC | Gujarat Industrial Development Corporation |
LD | Lethal Dose |
L-H | Langmuir Hinshelwood |
MAO | Monoamine Oxidase |
MB | Methylene Blue |
MBR | Membrane bioreactor |
NF | Nanofiltration |
NPs | Nanoparticles |
PL | Photoluminescence |
PUF | Polyurethane Foam |
PVP | Polyvinylpyrrolidone |
RSM | Response Surface Methodology |
SMP | Soluble Microbial Products |
TEM | Transmission Electron Microscope |
TiO2 | Titanium Dioxide |
TOC | Total organic carbon |
UF | Ultrafiltration |
UV | Ultraviolet |
VB | Valance Band |
XRD | X-ray Diffraction |
ZnO | Zinc Oxide |
References
- Malhi, Y.; Franklin, J.; Seddon, N.; Solan, M.; Turner, M.G.; Field, C.B.; Knowlton, N. Climate change and ecosystems: Threats, opportunities and solutions. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Berradi, M.; Hsissou, R.; Khudhair, M.; Assouag, M.; Cherkaoui, O.; El Bachiri, A.; El Harfi, A. Textile finishing dyes and their impact on aquatic environs. Heliyon 2019, 5, e02711. [Google Scholar] [CrossRef] [PubMed]
- Slama, H.B.; Chenari Bouket, A.; Pourhassan, Z.; Alenezi, F.N.; Silini, A.; Cherif-Silini, H.; Oszako, T.; Luptakova, L.; Golińska, P.; Belbahri, L. Diversity of Synthetic Dyes from Textile Industries, Discharge Impacts and Treatment Methods. Appl. Sci. 2021, 11, 6255. [Google Scholar] [CrossRef]
- Sarkar, S.; Banerjee, A.; Halder, U.; Biswas, R.; Bandopadhyay, R. Degradation of Synthetic Azo Dyes of Textile Industry: A Sustainable Approach Using Microbial Enzymes. Water Conserv. Sci. Eng. 2017, 2, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Shindhal, T.; Rakholiya, P.; Varjani, S.; Pandey, A.; Ngo, H.H.; Guo, W.; Ng, H.Y.; Taherzadeh, M.J. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered 2021, 12, 70–87. [Google Scholar] [CrossRef]
- Mohanan, N.; Montazer, Z.; Sharma, P.K.; Levin, D.B. Microbial and Enzymatic Degradation of Synthetic Plastics. Front. Microbiol. 2020, 11, 2837. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Sankaranarayanan, A.; Karthikeyan, S.; Markande, A.; Sharma, A. Remazol reactive dye degrading Bacteria from freshwater fish of River Cauvery, Pallipalayam of Namakkal District, South India. Environ. Syst. Res. 2021, 10, 29. [Google Scholar] [CrossRef]
- Adegoke, K.A.; Bello, O.S. Dye sequestration using agricultural wastes as adsorbents. Water Resour. Ind. 2015, 12, 8–24. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, N.; Lian, H.; Islam, M.S.; Strong, M.; Shi, Z.; Berry, R.M.; Yu, H.-Y.; Tam, K.C. Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals. Chem. Eng. J. 2021, 417, 129237. [Google Scholar] [CrossRef]
- Yusuf, M.; Shabbir, M.; Mohammad, F. Natural Colorants: Historical, Processing and Sustainable Prospects. Nat. Prod. Bioprospect. 2017, 7, 123–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggarwal, S. Indian dye yielding plants: Efforts and opportunities. Nat. Resour. Forum 2021, 45, 63–86. [Google Scholar] [CrossRef]
- Wisniewska, M.; Wawrzkiewicz, M.; Onyszko, M.; Medykowska, M.; Nosal-Wiercinska, A.; Bogatyrov, V. Carbon-Silica Composite as Adsorbent for Removal of Hazardous C.I. Basic Yellow 2 and C.I. Basic Blue 3 Dyes. Materials 2021, 14, 3245. [Google Scholar] [CrossRef]
- Yaseen, D.A.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar] [CrossRef] [Green Version]
- Ardila-Leal, L.D.; Poutou-Pinales, R.A.; Pedroza-Rodriguez, A.M.; Quevedo-Hidalgo, B.E. A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules 2021, 26, 3813. [Google Scholar] [CrossRef]
- Yadav, V.K.; Khan, S.H.; Choudhary, N.; Tirth, V.; Kumar, P.; Ravi, R.K.; Modi, S.; Khayal, A.; Shah, M.P.; Sharma, P.; et al. Nanobioremediation: A sustainable approach towards the degradation of sodium dodecyl sulfate in the environment and simulated conditions. J. Basic Microbiol. 2022, 62, 348–360. [Google Scholar] [CrossRef]
- Nyankson, E.; Adjasoo, J.; Efavi, J.K.; Amedalor, R.; Yaya, A.; Manu, G.P.; Asare, K.; Amartey, N.A. Characterization and Evaluation of Zeolite A/Fe3O4 Nanocomposite as a Potential Adsorbent for Removal of Organic Molecules from Wastewater. J. Chem. 2019, 2019, 8090756. [Google Scholar] [CrossRef] [Green Version]
- Nizam, N.U.M.; Hanafiah, M.M.; Mahmoudi, E.; Halim, A.A.; Mohammad, A.W. The removal of anionic and cationic dyes from an aqueous solution using biomass-based activated carbon. Sci. Rep. 2021, 11, 8623. [Google Scholar] [CrossRef]
- Njanja, E.; Mbokou, S.F.; Pontie, M.; Nacef, M.; Tonle, I.K. Comparative assessment of methylene blue biosorption using coffee husks and corn cobs: Towards the elaboration of a lignocellulosic-based amperometric sensor. SN Appl. Sci. 2019, 1, 513. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.S.; Wurster, R.D. Methylene blue induces cytotoxicity in human brain tumor cells. Cancer Lett. 1995, 88, 141–145. [Google Scholar] [CrossRef]
- Al-Fawwaz, A.T.; Abdullah, M. Decolorization of Methylene Blue and Malachite Green by Immobilized Desmodesmus sp. Isolated from North Jordan. Int. J. Environ. Sci. Dev. 2016, 7, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Durão, C.; Pedrosa, F.; Dinis-Oliveira, R.J. Greenish-blue discoloration of the brain and heart after treatment with methylene blue. Forensic Sci. Med. Pathol. 2021, 17, 148–151. [Google Scholar] [CrossRef]
- Salhab, M.; Al Sarakbi, W.; Mokbel, K. Skin and fat necrosis of the breast following methylene blue dye injection for sentinel node biopsy in a patient with breast cancer. Int. Semin. Surg. Oncol. 2005, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Luis-Silva, F.; Menegueti, M.G.; Sepeda, C.D.R.; Petroski-Moraes, B.C.; Sato, L.; Peres, L.M.; Becari, C.; Basile-Filho, A.; Evora, P.R.B.; Martins-Filho, O.A.; et al. Effect of methylene blue on hemodynamic and metabolic response in septic shock patients. Medicine 2022, 101, e28599. [Google Scholar] [CrossRef] [PubMed]
- Clifton, J., II; Leikin, J.B. Methylene Blue. Am. J. Ther. 2003, 10, 289–291. [Google Scholar] [CrossRef]
- Dewachter, P.; Mouton-Faivre, C.; Tréchot, P.; Lleu, J.-C.; Mertes, P.M. Severe Anaphylactic Shock with Methylene Blue Instillation. Anesth. Analg. 2005, 101, 149–150. [Google Scholar] [CrossRef]
- Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D.-T.; Show, P.-L. Microalgae: A potential alternative to health supplementation for humans. Food Sci. Hum. Wellness 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, R.; Pant, D.; Malaviya, P. Engineered algal biochar for contaminant remediation and electrochemical applications. Sci. Total Environ. 2021, 774, 145676. [Google Scholar] [CrossRef]
- Butler, E.; Hung, Y.-T.; Yeh, R.Y.-L.; Suleiman Al Ahmad, M. Electrocoagulation in Wastewater Treatment. Water 2011, 3, 495–525. [Google Scholar] [CrossRef]
- Crini, G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006, 97, 1061–1085. [Google Scholar] [CrossRef] [PubMed]
- Pirkarami, A.; Olya, M.E. Removal of dye from industrial wastewater with an emphasis on improving economic efficiency and degradation mechanism. J. Saudi Chem. Soc. 2017, 21, S179–S186. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, M.; Ghahramani, E.; Zarrabi, M.; Hashemi, S. Efficient De-colorization of Methylene Blue by Electro-coagulation Method: Comparison of Iron and Aluminum Electrode. Iran. J. Chem. Chem. Eng.-Int. 2015, 34, 39–47. [Google Scholar]
- Mahmoud, M.S.; Farah, J.Y.; Farrag, T.E. Enhanced removal of Methylene Blue by electrocoagulation using iron electrodes. Egypt. J. Pet. 2013, 22, 211–216. [Google Scholar] [CrossRef] [Green Version]
- de Carvalho, H.P.; Huang, J.; Zhao, M.; Liu, G.; Dong, L.; Liu, X. Improvement of Methylene Blue removal by electrocoagulation/banana peel adsorption coupling in a batch system. Alex. Eng. J. 2015, 54, 777–786. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.H.; Yang, H.M.; Ou, Y.J.; Xu, C.; Gu, J.C. Treatment of printing and dyeing wastewater by catalytic wet hydrogen peroxide oxidation of honeycomb cinder as carrier catalyst. IOP Conf. Ser. Earth Environ. Sci. 2017, 69, 012039. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Ramachandran, M. Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): Kinetic and competitive adsorption isotherm. Process Saf. Environ. Prot. 2015, 95, 215–225. [Google Scholar] [CrossRef]
- Ullah, H.; Nafees, M.; Iqbal, F.; Awan, S.; Shah, A.; Waseem, A. Adsorption kinetics of malachite green and methylene blue from aqueous solutions using surfactant-modified organoclays. Acta Chim. Slov. 2017, 64, 449–460. [Google Scholar] [CrossRef] [Green Version]
- Ponnusami, V.; Madhuram, R.; Krithika, V.; Srivastava, S.N. Effects of process variables on kinetics of methylene blue sorption onto untreated guava (Psidium guajava) leaf powder: Statistical analysis. Chem. Eng. J. 2008, 140, 609–613. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Potential of jackfruit peel as precursor for activated carbon prepared by microwave induced NaOH activation. Bioresour. Technol. 2012, 112, 143–150. [Google Scholar] [CrossRef]
- Hameed, B.H.; El-Khaiary, M.I. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: Equilibrium isotherms and kinetic studies. J. Hazard. Mater. 2008, 154, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Hameed, B.H.; Krishni, R.R.; Sata, S.A. A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions. J. Hazard. Mater. 2009, 162, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Bendaho, D.; Driss, T.A.; Bassou, D. Adsorption of acid dye onto activated Algerian clay. Bull. Chem. Soc. Ethiop. 2017, 31, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Mishra, R.; Kushwaha, P.; Saha, P. Removal of safranin from aqueous solutions by NaOH-treated rice husk: Thermodynamics, kinetics and isosteric heat of adsorption. Asia-Pac. J. Chem. Eng. 2012, 7, 236–249. [Google Scholar] [CrossRef]
- Muthuraman, G.; Teng, T.T.; Leh, C.P.; Norli, I. Extraction and recovery of methylene blue from industrial wastewater using benzoic acid as an extractant. J. Hazard. Mater. 2009, 163, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Pandit, P.; Basu, S. Removal of Ionic Dyes from Water by Solvent Extraction Using Reverse Micelles. Environ. Sci. Technol. 2004, 38, 2435–2442. [Google Scholar] [CrossRef] [PubMed]
- Belisti Lelisa, M.M. Removal of Methylene Blue (Mb) Dye from Aqueous Solution by Bioadsorption onto Untreated Parthenium hystrophorous Weed. Mod. Chem. Appl. 2014, 2, 146. [Google Scholar] [CrossRef] [Green Version]
- Al Abdallah, Q.; Choe, S.-I.; Campoli, P.; Baptista, S.; Gravelat, F.N.; Lee, M.J.; Sheppard, D.C. A Conserved C-Terminal Domain of the Aspergillus fumigatus Developmental Regulator MedA Is Required for Nuclear Localization, Adhesion and Virulence. PLoS ONE 2012, 7, e49959. [Google Scholar] [CrossRef] [Green Version]
- Eslami, H.; Sedighi Khavidak, S.; Salehi, F.; Khosravi, R.; Fallahzadeh, R.A.; Peirovi, R.; Sadeghi, S. Biodegradation of methylene blue from aqueous solution by bacteria isolated from contaminated soil. J. Adv. Environ. Health Res. 2017, 5, 10–15. [Google Scholar] [CrossRef]
- Singh, R.; Pathak, B.; Fulekar, M.H. Characterization of PGP Traits by Heavy Metals Tolerant Pseudomonas putida and Bacillus safensis Strain Isolated from Rhizospheric Zone of Weed (Phyllanthus urinaria) and its efficiency in Cd and Pb Removal. Int. J. Curr. Microbiol. App. Sci. 2015, 4, 954–975. [Google Scholar]
- Fulekar, M.H.; Wadgaonkar, S.L.; Singh, A. Decolourization of Dye Compounds by Selected Bacterial Strains isolated from Dyestuff Industrial Area. Int. J. Adv. Res. Technol. 2013, 2, 182–192. [Google Scholar]
- Vijayaraghavan, K.; Mao, J.; Yun, Y.-S. Biosorption of methylene blue from aqueous solution using free and polysulfone-immobilized Corynebacterium glutamicum: Batch and column studies. Bioresour. Technol. 2008, 99, 2864–2871. [Google Scholar] [CrossRef] [PubMed]
- Ranade, V.V.; Bhandari, V.M. Chapter 1—Industrial Wastewater Treatment, Recycling, and Reuse: An Overview. In Industrial Wastewater Treatment, Recycling and Reuse; Ranade, V.V., Bhandari, V.M., Eds.; Butterworth-Heinemann: Oxford, UK, 2014; pp. 1–80. [Google Scholar] [CrossRef]
- Yadav, V.K.; Khan, S.H.; Malik, P.; Thappa, A.; Suriyaprabha, R.; Ravi, R.K.; Choudhary, N.; Kalasariya, H.; Gnanamoorthy, G. Microbial Synthesis of Nanoparticles and Their Applications for Wastewater Treatment. In Microbial Biotechnology: Basic Research and Applications; Singh, J., Vyas, A., Wang, S., Prasad, R., Eds.; Springer: Singapore, 2020; pp. 147–187. [Google Scholar] [CrossRef]
- Khan, S.H.; Yadav, V.K. Advanced Oxidation Processes for Wastewater Remediation: An Overview. In Removal of Emerging Contaminants Through Microbial Processes; Shah, M.P., Ed.; Springer: Singapore, 2021; pp. 71–93. [Google Scholar] [CrossRef]
- Jo, W.-K.; Tayade, R.J. Recent developments in photocatalytic dye degradation upon irradiation with energy-efficient light emitting diodes. Chin. J. Catal. 2014, 35, 1781–1792. [Google Scholar] [CrossRef]
- Fetimi, A.; Merouani, S.; Khan, M.S.; Asghar, M.N.; Yadav, K.K.; Jeon, B.-H.; Hamachi, M.; Kebiche-Senhadji, O.; Benguerba, Y. Modeling of Textile Dye Removal from Wastewater Using Innovative Oxidation Technologies (Fe(II)/Chlorine and H2O2/Periodate Processes): Artificial Neural Network-Particle Swarm Optimization Hybrid Model. ACS Omega 2022, 7, 13818–13825. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, N.; Liao, C.; Tian, L.; An, J.; Wang, X. The UV/H2O2 process based on H2O2 in-situ generation for water disinfection. J. Hazard. Mater. Lett. 2021, 2, 100020. [Google Scholar] [CrossRef]
- Kurian, M. Advanced oxidation processes and nanomaterials—A review. Clean. Eng. Technol. 2021, 2, 100090. [Google Scholar] [CrossRef]
- Tijani, J.O.; Fatoba, O.O.; Madzivire, G.; Petrik, L.F. A Review of Combined Advanced Oxidation Technologies for the Removal of Organic Pollutants from Water. Water Air Soil Pollut. 2014, 225, 2102. [Google Scholar] [CrossRef] [Green Version]
- Pawar, M.; Topcu Sendoğdular, S.; Gouma, P. A Brief Overview of TiO2 Photocatalyst for Organic Dye Remediation: Case Study of Reaction Mechanisms Involved in Ce-TiO2 Photocatalysts System. J. Nanomater. 2018, 2018, 5953609. [Google Scholar] [CrossRef] [Green Version]
- Karunakaran, C.; Senthilvelan, S. Photocatalysis with ZrO2: Oxidation of aniline. J. Mol. Catal. A Chem. 2005, 233, 1–8. [Google Scholar] [CrossRef]
- Gnanaprakasam, A.; Sivakumar, V.M.; Thirumarimurugan, M. Influencing Parameters in the Photocatalytic Degradation of Organic Effluent via Nanometal Oxide Catalyst: A Review. Indian J. Mater. Sci. 2015, 2015, 601827. [Google Scholar] [CrossRef]
- Molinari, R.; Lavorato, C.; Argurio, P. Visible-Light Photocatalysts and Their Perspectives for Building Photocatalytic Membrane Reactors for Various Liquid Phase Chemical Conversions. Catalysts 2020, 10, 1334. [Google Scholar] [CrossRef]
- Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef] [Green Version]
- Azeez, F.; Al-Hetlani, E.; Arafa, M.; Abdelmonem, Y.; Nazeer, A.A.; Amin, M.O.; Madkour, M. The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci. Rep. 2018, 8, 7104. [Google Scholar] [CrossRef] [PubMed]
- Schirripa Spagnolo, G.; Leccese, F.; Leccisi, M. LED as Transmitter and Receiver of Light: A Simple Tool to Demonstration Photoelectric Effect. Crystals 2019, 9, 531. [Google Scholar] [CrossRef] [Green Version]
- Kang, X.; Liu, S.; Dai, Z.; He, Y.; Song, X.; Tan, Z. Titanium Dioxide: From Engineering to Applications. Catalysts 2019, 9, 191. [Google Scholar] [CrossRef] [Green Version]
- Mammadov, J.; Buyyarapu, R.; Guttikonda, S.K.; Parliament, K.; Abdurakhmonov, I.Y.; Kumpatla, S.P. Wild Relatives of Maize, Rice, Cotton, and Soybean: Treasure Troves for Tolerance to Biotic and Abiotic Stresses. Front. Plant Sci. 2018, 9, 886. [Google Scholar] [CrossRef]
- Pirkanniemi, K.; Sillanpää, M. Heterogeneous water phase catalysis as an environmental application: A review. Chemosphere 2002, 48, 1047–1060. [Google Scholar] [CrossRef]
- Ma, S.; Xue, J.; Zhou, Y.; Zhang, Z. Photochemical synthesis of ZnO/Ag2O heterostructures with enhanced ultraviolet and visible photocatalytic activity. J. Mater. Chem. A 2014, 2, 7272–7280. [Google Scholar] [CrossRef]
- Ribeiro, D.; Freitas, M.; Lima, J.L.F.C.; Fernandes, E. Proinflammatory Pathways: The Modulation by Flavonoids. Med. Res. Rev. 2015, 35, 877–936. [Google Scholar] [CrossRef]
- Adeleke, J.T.; Theivasanthi, T.; Thiruppathi, M.; Swaminathan, M.; Akomolafe, T.; Alabi, A.B. Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles. Appl. Surf. Sci. 2018, 455, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.M. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 2001, 31, 145–157. [Google Scholar] [CrossRef]
- Reza, K.M.; Kurny, A.S.W.; Gulshan, F. Parameters affecting the photocatalytic degradation of dyes using TiO2: A review. Appl. Water Sci. 2017, 7, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Mir, S.A.; Bhat, J.I.A.; Lone, F.; Rehman, M.U.; Nazir, N.; Lone, A.A.; Ali, T.; Jehangir, A. Synergistic effects of vehicular emissions (NO2, SO2 and SPM) on progression of Crocus sativus L.in Saffron bowl Kashmir. Environ. Adv. 2021, 3, 100033. [Google Scholar] [CrossRef]
- Palmisano, L.; García-López, E.I.; Marcì, G. Inorganic materials acting as heterogeneous photocatalysts and catalysts in the same reactions. Dalton Trans. 2016, 45, 11596–11605. [Google Scholar] [CrossRef]
- Ali, H.R.; Motawea, E.A. Ternary Photodegradable Nanocomposite (BiOBr/ZnO/WO3) for the Degradation of Phenol Pollutants: Optimization and Experimental Design. ACS Omega 2021, 6, 22047–22064. [Google Scholar] [CrossRef]
- Tesfay Mulu, Z.; Kirk Amber, C.; Hadac Elizabeth, M.; Griesmann Guy, E.; Federspiel Mark, J.; Barber Glen, N.; Henry Stephen, M.; Peng, K.-W.; Russell Stephen, J. PEGylation of Vesicular Stomatitis Virus Extends Virus Persistence in Blood Circulation of Passively Immunized Mice. J. Virol. 2013, 87, 3752–3759. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Li, D.; Liu, B.; Peng, Z.; Gurzadyan, G.G.; Xiong, Q.; Sun, H. Optical and Excitonic Properties of Crystalline ZnS Nanowires: Toward Efficient Ultraviolet Emission at Room Temperature. Nano Lett. 2010, 10, 4956–4961. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Soares, N.d.F.F.; Coimbra, J.S.d.R.; de Andrade, N.J.; Cruz, R.S.; Medeiros, E.A.A. Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food Bioprocess Technol. 2012, 5, 1447–1464. [Google Scholar] [CrossRef]
- Menad, A.; Benmalti, M.E.; Zaoui, A.; Ferhat, M. Impact of polytypism on the ground state properties of zinc oxide: A first-principles study. Results Phys. 2020, 18, 103316. [Google Scholar] [CrossRef]
- Han, C.; Yang, M.-Q.; Weng, B.; Xu, Y.-J. Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon. Phys. Chem. Chem. Phys. 2014, 16, 16891–16903. [Google Scholar] [CrossRef]
- Jayappa, M.D.; Ramaiah, C.K.; Kumar, M.A.P.; Suresh, D.; Prabhu, A.; Devasya, R.P.; Sheikh, S. Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: Characterization and their applications. Appl. Nanosci. 2020, 10, 3057–3074. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, H.; Venkat Kumar, S.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles—An eco-friendly approach. Resour.-Effic. Technol. 2017, 3, 406–413. [Google Scholar] [CrossRef]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014, 9, 385–406. [Google Scholar] [PubMed]
- Zhang, X.-F.; Liu, Z.-G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef]
- Iravani, S. Bacteria in Nanoparticle Synthesis: Current Status and Future Prospects. Int. Sch. Res. Not. 2014, 2014, 359316. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.K.; Poinern, G.E.J. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials 2015, 8, 7278–7308. [Google Scholar] [CrossRef] [Green Version]
- Sutradhar, P.; Saha, M. Silver Nanoparticles: Synthesis and Its Nanocomposites for Heterojunction Polymer Solar Cells. J. Phys. Chem. C 2016, 120, 8941–8949. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; Husen, A. Plant Response to Engineered Metal Oxide Nanoparticles. Nanoscale Res. Lett. 2017, 12, 92. [Google Scholar] [CrossRef] [Green Version]
- Himanen, L.; Geurts, A.; Foster, A.S.; Rinke, P. Data-Driven Materials Science: Status, Challenges, and Perspectives. Adv. Sci. 2019, 6, 1900808. [Google Scholar] [CrossRef]
- Anbuvannan, M.; Ramesh, M.; Viruthagiri, G.; Shanmugam, N.; Kannadasan, N. Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 143, 304–308. [Google Scholar] [CrossRef]
- Ledakowicz, S.; Paździor, K. Recent Achievements in Dyes Removal Focused on Advanced Oxidation Processes Integrated with Biological Methods. Molecules 2021, 26, 870. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.; Grande-Tovar, C.D.; Vallejo, W.; Chaves-López, C. Bio-Removal of Methylene Blue from Aqueous Solution by Galactomyces geotrichum KL20A. Water 2019, 11, 282. [Google Scholar] [CrossRef] [Green Version]
- Bhawana, P.; Fulekar, M.H. Bioremediation of Dyestuff Compounds using Indigenous Microorganism in a Bioreactor. APCBEE Procedia 2012, 1, 27–33. [Google Scholar] [CrossRef]
- Chauhan, H.A.; Rafatullah, M.; Ali, K.A.; Umar, M.F.; Khan, M.A.; Jeon, B.-H. Photocatalytic activity of graphene oxide/zinc oxide nanocomposite derived from rice husk for the degradation of phenanthrene under ultraviolet-visible light. J. Water Process Eng. 2022, 47, 102714. [Google Scholar] [CrossRef]
- Ashun, E.; Kang, W.; Thapa, B.S.; Gurung, A.; Rahimnejad, M.; Jang, M.; Jeon, B.-H.; Kim, J.R.; Oh, S.-E. A novel gas production bioassay of thiosulfate utilizing denitrifying bacteria (TUDB) for the toxicity assessment of heavy metals contaminated water. Chemosphere 2022, 303, 134902. [Google Scholar] [CrossRef]
- Chavan, A.; Fulekar, M.H. Integration of Photocatalytic Oxidation and Biodegradation Treatment Processes to Enhance Degradation Efficiency of CETP Wastewater Contaminants. BioNanoScience 2018, 8, 761–768. [Google Scholar] [CrossRef]
- Baker, S.; Perianova, O.V.; Prudnikova, S.V.; Kuzmin, A.; Potkina, N.K.; Khohlova, O.Y.; Lobova, T.I. Phytogenic Nanoparticles to Combat Multi Drug Resistant Pathogens and Photocatalytic Degradation of Dyes. BioNanoScience 2020, 10, 486–492. [Google Scholar] [CrossRef]
- Yogalakshmi, K.N.; Das, A.; Rani, G.; Jaswal, V.; Randhawa, J.S. Nano-bioremediation: A New Age Technology for the Treatment of Dyes in Textile Effluents. In Bioremediation of Industrial Waste for Environmental Safety: Volume I: Industrial Waste and Its Management; Saxena, G., Bharagava, R.N., Eds.; Springer: Singapore, 2020; pp. 313–347. [Google Scholar] [CrossRef]
- Aber, S.; Mahmoudikia, E.; Karimi, A.; Mahdizadeh, F. Immobilization of Glucose Oxidase on Fe3O4 Magnetic Nanoparticles and its Application in the Removal of Acid Yellow 12. Water Air Soil Pollut. 2016, 227, 93. [Google Scholar] [CrossRef]
- Nithya, R.; Ragunathan, R. Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Dig. J. Nanomater. Biostruct. 2009, 4, 623–629. [Google Scholar]
- Hynes, N.R.J.; Kumar, J.S.; Kamyab, H.; Sujana, J.A.J.; Al-Khashman, O.A.; Kuslu, Y.; Ene, A.; Suresh Kumar, B. Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector—A comprehensive review. J. Clean. Prod. 2020, 272, 122636. [Google Scholar] [CrossRef]
- Khan, S.H.; Pathak, B.; Fulekar, M.H. A study on the influence of metal (Fe, Bi, and Ag) doping on structural, optical, and antimicrobial activity of ZnO nanostructures. Adv. Compos. Hybrid Mater. 2020, 3, 551–569. [Google Scholar] [CrossRef]
- Nagar, A.; Pradeep, T. Clean Water through Nanotechnology: Needs, Gaps, and Fulfillment. ACS Nano 2020, 14, 6420–6435. [Google Scholar] [CrossRef] [PubMed]
- Abul, A.; Samad, S.; Huq, D.; Moniruzzaman, M.; Masum, M. Textile Dye Removal from Wastewater Effluents Using Chitosan-ZnO Nanocomposite. J. Text. Sci. Eng. 2015, 05, 200. [Google Scholar] [CrossRef]
- Hairom, N.H.H.; Mohammad, A.W.; Ng, L.Y.; Kadhum, A.A.H. Utilization of self-synthesized ZnO nanoparticles in MPR for industrial dye wastewater treatment using NF and UF membrane. Desalination Water Treat. 2015, 54, 944–955. [Google Scholar] [CrossRef]
- Sidik, D.A.B.; Hairom, N.H.H.; Zainuri, N.Z.; Desa, A.L.; Misdan, N.; Yusof, N.; Ong, C.B.; Mohammad, A.W.; Aripen, N.S.M. Photocatalytic Degradation of Industrial Dye Wastewater Using Zinc Oxide-Polyvinylpyrrolidone Nanoparticles. Malays. J. Anal. Sci. 2018, 22, 693–701. [Google Scholar] [CrossRef]
- Inderyas, A.; Bhatti, I.A.; Ashar, A.; Ashraf, M.; Ghani, A.; Yousaf, M.; Mohsin, M.; Ahmad, M.; Rafique, S.; Masood, N.; et al. Synthesis of immobilized ZnO over polyurethane and photocatalytic activity evaluation for the degradation of azo dye under UV and solar light irardiation. Mater. Res. Express 2020, 7, 025033. [Google Scholar] [CrossRef]
- Sheik Mydeen, S.; Raj Kumar, R.; Kottaisamy, M.; Vasantha, V.S. Biosynthesis of ZnO nanoparticles through extract from Prosopis juliflora plant leaf: Antibacterial activities and a new approach by rust-induced photocatalysis. J. Saudi Chem. Soc. 2020, 24, 393–406. [Google Scholar] [CrossRef]
- Balcha, A.; Yadav, O.P.; Dey, T. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods. Environ. Sci. Pollut. Res. 2016, 23, 25485–25493. [Google Scholar] [CrossRef]
- Gnanamoorthy, G.; Yadav, V.K.; Ali, D.; Narayanan, V.; Mohammed Saleh Katubi, K.; Alarifi, S. Trigger action of copper aminophosphate (X-CuAP) nanoparticles for enhanced electrochemical, photocatalyst and biological properties. Opt. Mater. 2021, 117, 111113. [Google Scholar] [CrossRef]
- Dworschak, D.; Brunnhofer, C.; Valtiner, M. Photocorrosion of ZnO Single Crystals during Electrochemical Water Splitting. ACS Appl. Mater. Interfaces 2020, 12, 51530–51536. [Google Scholar] [CrossRef]
- Altıntıg, E.; Yenigun, M.; Sarı, A.; Altundag, H.; Tuzen, M.; Saleh, T.A. Facile synthesis of zinc oxide nanoparticles loaded activated carbon as an eco-friendly adsorbent for ultra-removal of malachite green from water. Environ. Technol. Innov. 2021, 21, 101305. [Google Scholar] [CrossRef]
- Gnanamoorthy, G.; Ramar, K.; Padmanaban, A.; Yadav, V.K.; Suresh Babu, K.; Karthikeyan, V.; Narayanan, V. Implementation of ZnSnO3 nanosheets and their RE (Er, Eu, and Pr) materials: Enhanced photocatalytic activity. Adv. Powder Technol. 2020, 31, 1209–1219. [Google Scholar] [CrossRef]
- Liang, Z.; Yan, C.-F.; Rtimi, S.; Bandara, J. Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook. Appl. Catal. B Environ. 2019, 241, 256–269. [Google Scholar] [CrossRef]
- Khalafi, T.; Buazar, F.; Ghanemi, K. Phycosynthesis and Enhanced Photocatalytic Activity of Zinc Oxide Nanoparticles Toward Organosulfur Pollutants. Sci. Rep. 2019, 9, 6866. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.; Verma, R.; Kumari, S.; Sharma, A.; Shandilya, P.; Li, X.; Batoo, K.M.; Imran, A.; Kulshrestha, S.; Kumar, R. Photocatalytic dye degradation and antimicrobial activities of Pure and Ag-doped ZnO using Cannabis sativa leaf extract. Sci. Rep. 2020, 10, 7881. [Google Scholar] [CrossRef] [PubMed]
- Gnanamoorthy, G.; Ali, D.; Yadav, V.K.; Dhinagaran, G.; Venkatachalam, K.; Narayanan, V. New construction of Fe3O4/rGO/ZnSnO3 nanocomposites enhanced photoelectro chemical properties. Opt. Mater. 2020, 109, 110353. [Google Scholar] [CrossRef]
- Kumar, U.; Nabgan, W.; Martis, P.; Sreenivasa, S.; Sharma, S.C.; Raghu, M.S.; Alsalme, A.; Akshatha, S.; Jeon, B.-H.; Parashuram, L. NrGO wrapped Cu-ZrO2 as a multifunctional visible-light-sensitive catalyst for advanced oxidation of pollutants and CO2 reduction. J. Environ. Chem. Eng. 2022, 10, 107679. [Google Scholar]
- Kong, J.-Z.; Li, A.-D.; Li, X.-Y.; Zhai, H.-F.; Zhang, W.-Q.; Gong, Y.-P.; Li, H.; Wu, D. Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle. J. Solid State Chem. 2010, 183, 1359–1364. [Google Scholar] [CrossRef]
- Zhang, D.; Zeng, F. Visible light-activated cadmium-doped ZnO nanostructured photocatalyst for the treatment of methylene blue dye. J. Mater. Sci. 2012, 47, 2155–2161. [Google Scholar] [CrossRef]
- Omidi, A.; Habibi-Yangjeh, A. Microwave-assisted method for preparation of Sb-doped ZnO nanostructures and their photocatalytic activity. J. Iran. Chem. Soc. 2014, 11, 457–465. [Google Scholar] [CrossRef]
- Shirini, F.; Abedini, M.; Zamani, S.; Fallah Moafi, H. Introduction of W-doped ZnO nanocomposite as a new and efficient nanocatalyst for the synthesis of biscoumarins in water. J. Nanostruct. Chem. 2015, 5, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Sanoop, P.K.; Anas, S.; Ananthakumar, S.; Gunasekar, V.; Saravanan, R.; Ponnusami, V. Synthesis of yttrium doped nanocrystalline ZnO and its photocatalytic activity in methylene blue degradation. Arab. J. Chem. 2016, 9, S1618–S1626. [Google Scholar] [CrossRef] [Green Version]
- Hemalatha, P.; Karthick, S.N.; Hemalatha, K.V.; Yi, M.; Kim, H.-J.; Alagar, M. La-doped ZnO nanoflower as photocatalyst for methylene blue dye degradation under UV irradiation. J. Mater. Sci. Mater. Electron. 2016, 27, 2367–2378. [Google Scholar] [CrossRef]
- Bhatia, S.; Verma, N.; Bedi, R.K. Optical application of Er-doped ZnO nanoparticles for photodegradation of direct red-31 dye. Opt. Mater. 2016, 62, 392–398. [Google Scholar] [CrossRef]
- Hemalatha, K.; Manivel, A.; Kumar, M.S.; Mohan, S.C. Synthesis and Characterization of Sn/ZnO Nanoparticles for Removal of Organic Dye and Heavy Metal. Int. J. Biol. Chem. 2017, 12, 1–7. [Google Scholar] [CrossRef]
- Zandsalimi, Y.; Shahmoradi, B.; Dehestani Athar, S.; Maleki, A. Hydrothermal synthesis and characterization of Tungsten-doped ZnO nanoparticles as an environmentally friendly substance. J. Adv. Environ. Health Res. 2018, 6, 173–178. [Google Scholar] [CrossRef]
- Vallejo, W.; Cantillo, A.; Díaz-Uribe, C. Methylene Blue Photodegradation under Visible Irradiation on Ag-Doped ZnO Thin Films. Int. J. Photoenergy 2020, 2020, 1627498. [Google Scholar] [CrossRef] [Green Version]
- Vignesh, K.; Rajarajan, M.; Suganthi, A. Visible light assisted photocatalytic performance of Ni and Th co-doped ZnO nanoparticles for the degradation of methylene blue dye. J. Ind. Eng. Chem. 2014, 20, 3826–3833. [Google Scholar] [CrossRef]
- Gnanamoorthy, G.; Priya, P.; Ali, D.; Lakshmi, M.; Yadav, V.K.; Varghese, R. A new CuZr2S4/rGO and their reduced graphene oxide nanocomposities enhanced photocatalytic and antimicrobial activities. Chem. Phys. Lett. 2021, 781, 139011. [Google Scholar] [CrossRef]
- Yadav, V.K.; Malik, P.; Khan, A.H.; Pandit, P.R.; Hasan, M.A.; Cabral-Pinto, M.M.S.; Islam, S.; Suriyaprabha, R.; Yadav, K.K.; Dinis, P.A.; et al. Recent Advances on Properties and Utility of Nanomaterials Generated from Industrial and Biological Activities. Crystals 2021, 11, 634. [Google Scholar] [CrossRef]
- Okpala, C.C. Nanocomposites—An Overview. Int. J. Eng. Res. Dev. 2013, 8, 17–23. [Google Scholar]
- Pirhashemi, M.; Habibi-Yangjeh, A. Photosensitization of ZnO by AgBr and Ag2CO3: Nanocomposites with tandem n-n heterojunctions and highly enhanced visible-light photocatalytic activity. J. Colloid Interface Sci. 2016, 474, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, R.; Gupta, V.K.; Mosquera, E.; Gracia, F. Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. J. Mol. Liq. 2014, 198, 409–412. [Google Scholar] [CrossRef]
- Nourmoradi, H.; Ghiasvand, A.R.; Noorimotlagh, Z. Removal of methylene blue and acid orange 7 from aqueous solutions by activated carbon coated with zinc oxide (ZnO) nanoparticles: Equilibrium, kinetic, and thermodynamic study. Desalination Water Treat. 2015, 55, 252–262. [Google Scholar] [CrossRef]
- Nasir, M.; Irnameria, D.; Zulfikar, M.A. Synthesis and characterization of novel TiO2-ZnO-CoO nanocomposite photocatalyst for photodegradation of methylene blue dye. IOP Conf. Ser. Earth Environ. Sci. 2017, 60, 012015. [Google Scholar] [CrossRef] [Green Version]
- Darvishi Cheshmeh Soltani, R.; Jorfi, S.; Ramezani, H.; Purfadakari, S. Ultrasonically induced ZnO–biosilica nanocomposite for degradation of a textile dye in aqueous phase. Ultrason. Sonochem. 2016, 28, 69–78. [Google Scholar] [CrossRef]
- Prasanna, L.; Rajagopalan, V. A New Synergetic Nanocomposite for Dye Degradation in Dark and Light. Sci. Rep. 2016, 6, 38606. [Google Scholar] [CrossRef]
- Patil, S.P.; Shrivastava, V.S.; Sonawane, G.H. Photocatalytic degradation of Rhodamine 6G using ZnO-montmorillonite nanocomposite: A kinetic approach. Desalination Water Treat. 2015, 54, 374–381. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Babaei, S. Graphene Oxide/Zinc Oxide (GO/ZnO) Nanocomposite as a Superior Photocatalyst for Degradation of Methylene Blue (MB)-Process Modeling by Response Surface Methodology (RSM). J. Braz. Chem. Soc. 2016, 28, 299–307. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, P.; Guo, R.; Wang, Y.; Zhan, H.; Yuan, Y. Synthesis of Rectorite/Fe3O4/ZnO Composites and Their Application for the Removal of Methylene Blue Dye. Catalysts 2018, 8, 107. [Google Scholar] [CrossRef] [Green Version]
- Ritika; Kaur, M.; Umar, A.; Mehta, S.K.; Singh, S.; Kansal, S.K.; Fouad, H.; Alothman, O.Y. Rapid Solar-Light Driven Superior Photocatalytic Degradation of Methylene Blue Using MoS(2)-ZnO Heterostructure Nanorods Photocatalyst. Materials 2018, 11, 2254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munawaroh, H.; Sari, P.L.; Wahyuningsih, S.; Ramelan, A.H. The photocatalytic degradation of methylene blue using graphene oxide (GO)/ZnO nanodrums. AIP Conf. Proc. 2018, 2014, 020119. [Google Scholar] [CrossRef]
- Micheal, K.; Ayeshamariam, A.; Devanesan, S.; Bhuvaneswari, K.; Pazhanivel, T.; AlSalhi, M.S.; Aljaafreh, M.J. Environmental friendly synthesis of carbon nanoplates supported ZnO nanorods for enhanced degradation of dyes and organic pollutants with visible light driven photocatalytic performance. J. King Saud Univ.—Sci. 2020, 32, 1081–1087. [Google Scholar] [CrossRef]
- Lee, J.-E.; Khoa, N.T.; Kim, S.W.; Kim, E.J.; Hahn, S.H. Fabrication of Au/GO/ZnO composite nanostructures with excellent photocatalytic performance. Mater. Chem. Phys. 2015, 164, 29–35. [Google Scholar] [CrossRef]
- Daneshvar, N.; Salari, D.; Khataee, A.R. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. A Chem. 2004, 162, 317–322. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Dutta, B.K. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 2004, 112, 269–278. [Google Scholar] [CrossRef]
- Byrappa, K.; Subramani, A.K.; Ananda, S.; Rai, K.M.L.; Dinesh, R.; Yoshimura, M. Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO. Bull. Mater. Sci. 2006, 29, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Behnajady, M.A.; Modirshahla, N.; Hamzavi, R. Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. 2006, 133, 226–232. [Google Scholar] [CrossRef]
- Pare, B.; Jonnalagadda, S.B.; Tomar, H.; Singh, P.; Bhagwat, V.W. ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation. Desalination 2008, 232, 80–90. [Google Scholar] [CrossRef]
- Salem, I.A.; Salem, M.A.; El-Ghobashy, M.A. The dual role of ZnO nanoparticles for efficient capture of heavy metals and Acid blue 92 from water. J. Mol. Liq. 2017, 248, 527–538. [Google Scholar] [CrossRef]
- Aminuzzaman, M.; Ying, L.P.; Goh, W.-S.; Watanabe, A. Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bull. Mater. Sci. 2018, 41, 50. [Google Scholar] [CrossRef] [Green Version]
- Laouedj, N. ZnO-Assisted Photocatalytic Degradation of Congo Red and Benzopurpurine 4B in Aqueous Solution. J. Chem. Eng. Process Technol. 2011, 2, 106. [Google Scholar] [CrossRef]
- Amini, M.; Ashrafi, M. Photocatalytic degradation of some organic dyes under solar light irradiation using TiO2 and ZnO nanoparticles. Nanochem. Res. 2016, 1, 79–86. [Google Scholar] [CrossRef]
- Salim, H.A.; Salih, S.A.; Rashid, R.A. Removal of Acid Alizarin Black Dye from Aqueous Solution by Adsorption Using Zinc Oxide. Int. Res. J. Pure Appl. Chem. 2015, 11, 1–8. [Google Scholar] [CrossRef]
- Kumar, R.; Umar, A.; Kumar, G.; Akhtar, M.S.; Wang, Y.; Kim, S.H. Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye. Ceram. Int. 2015, 41, 7773–7782. [Google Scholar] [CrossRef]
- Vivekraj, P.; Gideon, A.V. Enhanced Photocatalytic Degradation Properties of Zinc Oxide Nanoparticles Synthesized by using Turnera subulata Sm. Int. J. Pharm. Res. Sch. 2018, 7, 30–40. [Google Scholar] [CrossRef]
- Meena, S.; Vaya, D.; Das, B.K. Photocatalytic degradation of Malachite Green dye by modified ZnO nanomaterial. Bull. Mater. Sci. 2016, 39, 1735–1743. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Kim, J.H.; Park, S.S.; Hong, S.S.; Lee, G.D. Degradation kinetics for photocatalytic reaction of methyl orange over Al-doped ZnO nanoparticles. J. Ind. Eng. Chem. 2015, 25, 199–206. [Google Scholar] [CrossRef]
- Soltani, R.D.C.; Rezaee, A.; Khataee, A.R.; Safari, M. Photocatalytic process by immobilized carbon black/ZnO nanocomposite for dye removal from aqueous medium: Optimization by response surface methodology. J. Ind. Eng. Chem. 2014, 20, 1861–1868. [Google Scholar] [CrossRef]
- Jorfi, S.; Barkhordari, M.J.; Ahmadi, M.; Jaafarzadeh, N.; Moustofi, A.; Ramavandi, B. Photodegradation of Acid red 18 dye by BiOI/ZnO nanocomposite: A dataset. Data Brief 2018, 16, 608–611. [Google Scholar] [CrossRef]
- Nakkeeran, E.; Varjani, S.J.; Dixit, V.; Kalaiselvi, A. Synthesis, characterization and application of zinc oxide nanocomposite for dye removal from textile industrial wastewater. Indian J. Exp. Biol. 2018, 56, 498–503. [Google Scholar]
Reagent/Adsorbent | Type | Removal % | Reference |
---|---|---|---|
Fe Electrode | Electrocoagulation | 100% | [33] |
Fe electrode | Electrocoagulation | 80% | [34] |
Al and stainless steel | Electrocoagulation in couple | 99% | [35] |
Hydrogen peroxide | Oxidation | 86% | [36] |
Bentonite Clay | Natural | 99.9% | [37] |
Teak Tree Bark powder | Natural | 33% | [37] |
HDTMA clay (surfactant modified) | Natural | 30% | [38] |
HDPy-Clay (surfactant modified) | Natural | 29% | [38] |
Guava peel | Natural | 19% | [39] |
Jack fruit peel | Natural | 29% | [40] |
Broad Bean peel | Natural | 19% | [41] |
Pineapple stem | Natural | 12% | [42] |
Algerian clay | Natural | 65 | [43] |
NaOH treated rice husk | Agriculture | 4% | [44] |
Xylene with benzoic acid | Surfactant | 99% | [45] |
SDBS/amyl alcohol | Surfactant | 98% | [46] |
AOT/amyl alcohol | Surfactant | 97% | [46] |
Toluene (extractant) benzoic acid | Surfactant | 95% | [45] |
Parthenium hysterophorus weed (untreated) | Biosorbent | 2.4% | [47] |
Aspergillus fumigates | Fungi | 80% | [48] |
Pseudomonas aeruginosa | Bacteria | 82% | [49] |
Pseudomonas putida | Bacteria | 69% | [50] |
Aeromonas hydrophila | Bacteria | 40% | [51] |
Comamonas testosterone | Bacteria | 40% | [51] |
P. plecoglossicida | Bacteria | 34% | [51] |
Corynebacterium glutamicum | Bacteria | 34% | [52] |
P. monteilli | Bacteria | 47% | [51] |
Lysinibacillus fusiformis | Bacteria | 25% | [51] |
Type of Nanomaterial | Dye | Mode of Synthesis | Source of Light | Kinetics | Reference |
---|---|---|---|---|---|
ZnO | Acid red 14 | - | UV light | First-order | [149] |
Eosin Y | Chemical | UV lamp | First-order | [150] | |
Rhodamine B | Hydrothermal method | Solar light | First-order | [151] | |
Acid Yellow 23 | Chemical | UV light | First-order | [152] | |
Acridine orange | - | Visible light | First-order | [153] | |
Acid Blue 92 | UV light | First-order | [154] | ||
Malachite green | Garcinia mangostana fruit pericarp extract | Solar light | First-order | [155] | |
Congo red | Purchased from Merck | UV-A light | First-order | [156] | |
Rhodamine B Acridine orange | Sol-gel methods | Solar light | - | [157] | |
Alizarin Black S | Purchased from Alpha Chemika, India | UV light 254 nm | First-order | [158] | |
Direct red 23 | Chemical synthesis | Low-pressure mercury lamp | First-order | [159] | |
Methyl Red, Methyl Violet, MB Ethyl Eosin Safranin | Turnera subulata leaf extract | Solar light | [160] | ||
Modified ZnO (EDTA, Citric acid, Cis Oleic acid) | Malachite Green | Sol-gel | Visible light | First-order | [161] |
Al-doped ZnO | Methyl orange | Chemical | First-order | [162] | |
Carbon black/ZnO NC | Methyl orange | Chemical-sonication | UV C light | First-order | [163] |
BiOI/ZnO NC | Acid red 18 | Chemical | Visible light halogen lamp (300W) | First-order | [164] |
Chitosan ZnO NC | Congo red Brown BR | Chemical | Visible light | [165] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modi, S.; Yadav, V.K.; Gacem, A.; Ali, I.H.; Dave, D.; Khan, S.H.; Yadav, K.K.; Rather, S.-u.; Ahn, Y.; Son, C.T.; et al. Recent and Emerging Trends in Remediation of Methylene Blue Dye from Wastewater by Using Zinc Oxide Nanoparticles. Water 2022, 14, 1749. https://doi.org/10.3390/w14111749
Modi S, Yadav VK, Gacem A, Ali IH, Dave D, Khan SH, Yadav KK, Rather S-u, Ahn Y, Son CT, et al. Recent and Emerging Trends in Remediation of Methylene Blue Dye from Wastewater by Using Zinc Oxide Nanoparticles. Water. 2022; 14(11):1749. https://doi.org/10.3390/w14111749
Chicago/Turabian StyleModi, Shreya, Virendra Kumar Yadav, Amel Gacem, Ismat H. Ali, Dhruv Dave, Samreen Heena Khan, Krishna Kumar Yadav, Sami-ullah Rather, Yongtae Ahn, Cao Truong Son, and et al. 2022. "Recent and Emerging Trends in Remediation of Methylene Blue Dye from Wastewater by Using Zinc Oxide Nanoparticles" Water 14, no. 11: 1749. https://doi.org/10.3390/w14111749
APA StyleModi, S., Yadav, V. K., Gacem, A., Ali, I. H., Dave, D., Khan, S. H., Yadav, K. K., Rather, S. -u., Ahn, Y., Son, C. T., & Jeon, B. -H. (2022). Recent and Emerging Trends in Remediation of Methylene Blue Dye from Wastewater by Using Zinc Oxide Nanoparticles. Water, 14(11), 1749. https://doi.org/10.3390/w14111749