Effects of Regulated Deficit Irrigation on Yield and Quality of Isatis indigotica in a Cold and Arid Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Test Materials and Cultivation Methods
2.3. Experiment Design
2.4. Indicators and Methods for Measurement
2.4.1. Soil Moisture Content
2.4.2. Water Consumption
2.4.3. Dry Matter and Yield
2.4.4. Leaf Gas Exchange
2.4.5. WUE and Irrigation WUE (IWUE)
2.4.6. Quality Measurement
2.5. Data Analysis
3. Results
3.1. Temperature and Precipitation Dynamics in the Whole Plant Growth Period
3.2. Water Consumption
3.3. Leaf Gas Exchange
3.4. Dry Matter Accumulation
3.5. Yield and WUE
3.6. Quality
4. Discussion
4.1. Leaf Gas Exchange
4.2. Dry Matter Accumulation
4.3. Yield and WUE
4.4. Quality of I. indigotica
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Li, J.; Xu, K.; Wang, D.; Yang, Z. Research progress on anti-influenza effective components of Isatidis radix. Chin. J. Mod. Appl. Pharm. 2019, 36, 2618–2623. [Google Scholar] [CrossRef]
- Savi, S.; Stiki, R.; Radovi, B.V.; Bogievi, B.; Jovanovi, Z.; Ukalovi, H.T. Comparative effects of regulated deficit irrigation (rdi) and partial root-zone drying (prd) on growth and cell wall peroxidase activity in tomato fruits. Sci. Hortic. 2008, 117, 15–20. [Google Scholar] [CrossRef]
- Pérez-Pérez, J.G.; Robles, J.M.; García-Sánchez, F.; Botía, P. Comparison of deficit and saline irrigation strategies to confront water restriction in lemon trees grown in semi-arid regions. Agric. Water Manag. 2016, 164, 46–57. [Google Scholar] [CrossRef]
- María, R.; María, D.; José, M.; Juan, P.; Rafael, D.; Alejandro, P. Effects of deficit irrigation applied during fruit growth period of late mandarin trees on harvest quality, cold storage and subsequent shelf-life. Sci. Hortic. 2014, 165, 344–351. [Google Scholar] [CrossRef]
- Igbadun, H.E.; Ramalan, A.A.; Oiganji, E. Effects of regulated deficit irrigation and mulch on yield, water use and crop water productivity of onion in samaru, nigeria. Agric. Water Manag. 2012, 109, 162–169. [Google Scholar] [CrossRef]
- Zhang, H.; Gan, Y.; Huang, G.; Zhao, W.; Li, F. Postharvest residual soil nutrients and yield of spring wheat under water deficit in arid northwest China. Agric. Water Manag. 2009, 96, 1045–1051. [Google Scholar] [CrossRef]
- Wang, H.; Wu, L.; Cheng, M.; Fan, J.; Zhang, F.; Zou, Y.; Chau, H.; Gao, Z.; Wang, X. Coupling effects of water and fertilizer on yield, water and fertilizer use efficiency of drip-fertigated cotton in northern xinjiang, china. Field Crops Res. 2018, 219, 169–179. [Google Scholar] [CrossRef]
- Kou, D.; Su, D.; Wu, D.; Li, Y. Effects of regulated deficit irrigation on water consumption, hay yield and quality of alfalfa under subsurface drip irrigation. Nongye Gongcheng Xuebao Trans. Chin. Soc. Agric. Eng. 2014, 30, 116–123. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Sun, J.; Zhang, Z.; Ren, H.; Sui, X. Rubisco gene expression and photosynthetic characteristics of cucumber seedlings in response to water deficit. Sci. Hortic. 2013, 161, 81–87. [Google Scholar] [CrossRef]
- He, J.; Wang, Z.; He, X. The influence of different irrigation water on grapes growth and yield under drip irrigation in extremely arid regions. J. Agric. 2013, 3, 65–69. [Google Scholar] [CrossRef]
- Tan, Y.; Liang, Z.; Dong, J.; Hao, H.; Ye, Q. Effect of stress on growth and accumulation of active components of Isatis indigotica. China J. Chin. Mater. Med. 2008, 33, 19–22. [Google Scholar] [CrossRef]
- Rop, D.K.; Kipkorir, E.C.; Taragon, J.K. Effects of deficit irrigation on yield and quality of onion crop. J. Agric. Sci. 2016, 8, 112–126. [Google Scholar] [CrossRef]
- Yang, L.; Qu, H.; Zhang, Y.; Li, F. Effects of partial root-zone irrigation on physiology, fruit yield and quality and water use efficiency of tomato under different calcium levels. Agric. Water Manag. 2012, 104, 89–94. [Google Scholar] [CrossRef]
- Huang, C.; Zong, L.; Buonanno, M.; Xue, X.; Wang, T.; Tedeschi, A. Impact of saline water irrigation on yield and quality of melon (Cucumis melo cv. huanghemi) in northwest china. Eur. J. Agron. 2012, 43, 68–76. [Google Scholar] [CrossRef]
- Amer, K.H. Effect of irrigation method and quantity on squash yield and quality. Agric. Water Manag. 2011, 98, 1197–1206. [Google Scholar] [CrossRef]
- Zapata-Sierra, A.J.; Agugliaro, F.M. Controlled deficit irrigation for orange trees in mediterranean countries. J. Clean. Prod. 2017, 162, 130–140. [Google Scholar] [CrossRef]
- Topak, R.; Süheri, S.; Acar, B. Effect of different drip irrigation regimes on sugar beet (Beta vulgaris L.) yield, quality and water use efficiency in middle anatolian, turkey. Irrig. Sci. 2011, 29, 79–89. [Google Scholar] [CrossRef]
- Yang, B.; Wang, Z.; Xie, X.; Wang, Z. Effects of drip irrigation regimes under plastic film on sugar beet yield and water use efficiency in Xinjiang. Appl. Eng. Agric. 2019, 35, 231–238. [Google Scholar] [CrossRef]
- Bai, Y.; Tang, X.; Shi, S.; Wang, Y.; Yang, Y.; Wang, Y.; Wang, K. Effect of nitrogen nutrition on growth and accumulation of active ingredients in Isatis indigotica fort. J. Nucl. Agric. Sci. 2017, 31, 169–178. [Google Scholar] [CrossRef]
- Xu, W.; Deng, X.; Xu, B. Effects of water stress and fertilization on leaf gas exchange and photosynthetic light-response curves of Bothriochloa ischaemum L. Photosynthetica 2013, 51, 603–612. [Google Scholar] [CrossRef]
- Dwivedi, S.K.; Arora, A.; Kumar, S. Paclobutrazol-induced alleviation of water-deficit damage in relation to photosynthetic characteristics and expression of stress markers in contrasting wheat genotypes. Photosynthetica 2017, 55, 351–359. [Google Scholar] [CrossRef]
- Ge, T.; Sui, F.; Bai, L.; Tong, C.; Sun, N. Effects of water stress on growth, biomass partitioning, and water-use efficiency in summer maize (Zea mays L.) throughout the growth cycle. Acta Physiol. Plant. 2012, 34, 1043–1053. [Google Scholar] [CrossRef]
- Li, F.; Deng, H.; Wang, Y.; Li, X.; Zhang, H. Potato growth, photosynthesis, yield, and quality response to regulated deficit drip irrigation under film mulching in a cold and arid environment. Sci. Rep. 2021, 11, 15888. [Google Scholar] [CrossRef]
- Leeuwen, C.V.; Pieri, P.; Vivin, P. Comparison of Three Operational Tools for the Assessment of Vine Water Status: Stem Water Potential, Carbon Isotope Discrimination Measured on Grape Sugar and Water Balance. In Methodologies and Results in Grapevine Research; Springer: Dordrecht, The Netherlands, 2010; Volume 7, pp. 87–106. [Google Scholar] [CrossRef]
- Tian, F.; Jia, T.; Yu, B. Physiological regulation of seed soaking with soybean isoflavones on drought tolerance of Glycine max, and Glycine soja. Plant Growth Regul. 2014, 74, 229–237. [Google Scholar] [CrossRef]
- Sharma, M.; Gupta, S.K.; Majumder, B.; Maurya, V.K.; Pandey, V. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. J. Proteom. 2017, 163, 28. [Google Scholar] [CrossRef] [PubMed]
- García, A.; Dorado, M.; Pérez, I.; Montilla, E. Effect of water deficit on the distribution of photoassimilates in rice plants (Orysa sativa L.). Interciencia 2010, 35, 47–54. [Google Scholar]
- Carrera, C.; María, J.; Dardanelli, J.; Mónica, B. Water deficit effect on the relationship between temperature during the seed fill period and soybean seed oil and protein concentrations. Crop Sci. 2009, 49, 990–998. [Google Scholar] [CrossRef]
- Vaio, C.D.; Marra, F.P.; Scaglione, G.; Mantia, M.L.; Caruso, T. The effect of different vigour olive clones on growth, dry matter partitioning and gas exchange under water deficit. Sci. Hortic. 2012, 134, 72–78. [Google Scholar] [CrossRef]
- Kang, S.; Shi, W.; Zhang, J. An improved water-use efficiency for maize grown under regulated deficit irrigation. Field Crops Res. 2000, 67, 207–214. [Google Scholar] [CrossRef]
- Bouazzama, B.; Xanthoulis, D.; Bouaziz, A.; Ruelle, P.; Mailhol, J. Effect of water stress on growth, water consumption and yield of silage maize under flood irrigation in a semi-arid climate of tadla (morocco). Biotechnol. Agron. Soc. 2012, 16, 468–477. [Google Scholar] [CrossRef] [Green Version]
- Akir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res. 2004, 89, 1–16. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J. Photosynthetic physiological characteristics and water use of potato with mulched drip irrigation under water deficit in oasis region. Nongye Gongcheng Xuebao Trans. Chin. Soc. Agric. Eng. 2013, 44, 143–151. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, G.; Huang, Q.; Wang, J.; Zheng, K. Water production function and optimal irrigation schedules for onion with drip irrigation and mulch of plastic film in arid region. Nongye Gongcheng Xuebao Trans. Chin. Soc. Agric. Eng. 2011, 27, 25–30. [Google Scholar] [CrossRef]
- El-Wahed, M.A.; Baker, G.A.; Ali, M.M.; El-Fattah, F.A. Effect of drip deficit irrigation and soil mulching on growth of common bean plant, water use efficiency and soil salinity. Sci. Hortic. 2017, 225, 235–242. [Google Scholar] [CrossRef]
- Long, Y.; Yang, R.; Zhong, Z.C.; Tan, F. Effect of different water and nitrogen on biomass and gypenosides in Gynostemma pentaphyllum. Chin. Tradit. Herb. Drugs 2008, 39, 1872–1876. [Google Scholar]
- Yuan, Y.; Liu, Y.; Wu, C.; Chen, S.; Wang, Z.; Yang, Z.; Qin, S.; Huang, L.; Wu, K. Water deficit affected flavonoid accumulation by regulating hormone metabolism in Scutellaria baicalensis georgi roots. PLoS ONE 2012, 7, e42946. [Google Scholar] [CrossRef] [PubMed]
- National Pharmacopoeia Committee. Chinese Pharmacopoeia Commission; China Medical Science and Technology Press: Beijing, China, 2015. [Google Scholar]
Treatments | Seedling Stage | Vegetative Stage | Fleshy Root Growth Stage | Fleshy Root Maturity |
---|---|---|---|---|
CK | 75–85% | 75–85% | 75–85% | 75–85% |
WD1 | 75–85% | 65–75% | 75–85% | 75–85% |
WD2 | 75–85% | 55–65% | 75–85% | 75–85% |
WD3 | 75–85% | 45–55% | 75–85% | 75–85% |
WD4 | 75–85% | 65–75% | 65–75% | 75–85% |
WD5 | 75–85% | 65–75% | 55–65% | 75–85% |
WD6 | 75–85% | 55–65% | 65–75% | 75–85% |
WD7 | 75–85% | 55–65% | 55–65% | 75–85% |
WD8 | 75–85% | 45–55% | 65–75% | 75–85% |
WD9 | 75–85% | 45–55% | 55–65% | 75–85% |
Year | Treatment | Water Consumption (mm) | ||||
---|---|---|---|---|---|---|
Seedling Stage | Vegetative Stage | Fleshy Root Growth Stage | Fleshy Root Maturity | Whole Growth Period | ||
2016 | CK | 33.56 a | 138.09 a | 125.67 a | 76.72 a | 374.04 a |
WD1 | 35.08 a | 128.77 b | 126.55 a | 52.88 d | 343.28 bc | |
WD2 | 34.86 a | 126.65 bc | 118.52 b | 73.02 ab | 353.05 b | |
WD3 | 35.21 a | 110.76 f | 117.65 b | 72.30 ab | 335.92 c | |
WD4 | 34.13 a | 125.65 bc | 118.56 b | 62.51 c | 340.85 c | |
WD5 | 32.45 a | 120.01 cde | 117.43 b | 76.17 a | 346.06 bc | |
WD6 | 33.78 a | 117.36 def | 120.67 b | 66.57 bc | 338.38 c | |
WD7 | 31.87 a | 122.56 bcd | 119.54 b | 64.59 c | 338.56 c | |
WD8 | 31.11 a | 115.33 def | 109.21 c | 60.38 c | 316.03 d | |
WD9 | 32.17 a | 113.65 ef | 105.21 c | 64.24 c | 315.27 d | |
2017 | CK | 35.55 a | 140.89 a | 128.48 a | 76.83 ab | 381.75 a |
WD1 | 35.35 a | 136.73 b | 125.86 a | 57.31 d | 355.25 cd | |
WD2 | 35.46 a | 128.57 c | 127.85 a | 74.18 ab | 366.06 b | |
WD3 | 33.55 ab | 113.52 f | 122.35 b | 74.20 ab | 343.62 f | |
WD4 | 32.77 ab | 126.87 c | 125.65 a | 68.64 abc | 353.93 cde | |
WD5 | 33.58 ab | 125.74 c | 120.85 b | 77.48 a | 357.65 c | |
WD6 | 31.75 b | 120.78 d | 118.82 b | 77.31 a | 348.66 def | |
WD7 | 32.06 b | 119.65 de | 121.73 b | 73.91 ab | 347.35 ef | |
WD8 | 32.98 ab | 117.37 e | 114.22 c | 64.45 cd | 329.02 g | |
WD9 | 32.75 ab | 118.87 de | 108.36 d | 67.80 bc | 327.78 g |
Year | Treatment | Precipitation (mm) | Total Water Consumption (mm) | Yield (kg·hm−2) | IWUE (kg·hm−2·mm−1) | WUE (kg·hm−2·mm−1) |
---|---|---|---|---|---|---|
2016 | CK | 185.8 | 374.04 | 8315.58 a | 50.94 b | 22.23 b |
WD1 | 185.8 | 343.28 | 8239.56 a | 54.04 a | 24.01 a | |
WD2 | 185.8 | 353.05 | 7219.67 b | 49.03 c | 20.45 d | |
WD3 | 185.8 | 335.92 | 6894.60 d | 51.03 b | 20.52 d | |
WD4 | 185.8 | 340.85 | 8215.52 a | 54.67 a | 24.11 a | |
WD5 | 185.8 | 346.06 | 7164.91 bc | 49.32 c | 20.70 cd | |
WD6 | 185.8 | 338.38 | 7083.69 c | 49.68 c | 20.93 c | |
WD7 | 185.8 | 338.56 | 6965.85 d | 50.57 b | 20.57 d | |
WD8 | 185.8 | 316.03 | 5311.57 e | 46.10 d | 16.81 e | |
WD9 | 185.8 | 315.27 | 5228.54 e | 46.48 d | 16.58 e | |
2017 | CK | 196.5 | 381.75 | 8322.25 a | 50.36 bc | 21.80 b |
WD1 | 196.5 | 355.25 | 8390.80 a | 54.57 a | 23.62 a | |
WD2 | 196.5 | 366.06 | 7462.24 b | 49.89 c | 20.39 c | |
WD3 | 196.5 | 343.62 | 6800.36 e | 51.47 b | 19.79 d | |
WD4 | 196.5 | 353.93 | 8235.32 a | 54.03 a | 23.27 a | |
WD5 | 196.5 | 357.65 | 7051.11 c | 48.25 d | 19.72 d | |
WD6 | 196.5 | 348.66 | 6981.71 cd | 49.11 cd | 20.02 cd | |
WD7 | 196.5 | 347.35 | 6819.79 de | 50.20 bc | 19.63 d | |
WD8 | 196.5 | 329.02 | 5686.71 f | 48.39 d | 17.28 e | |
WD9 | 196.5 | 327.78 | 5539.79 f | 48.48 d | 16.90 e |
2016 | 2017 | |||||
---|---|---|---|---|---|---|
Treatment | Indigo (mg·kg−1) | Indirubin (mg·kg−1) | (R,S)-Goitrin (mg·g−1) | Indigo (mg·kg−1) | Indirubin (mg·kg−1) | (R,S)-Goitrin (mg·g−1) |
CK | 6.117 cd | 9.663 c | 0.237 bc | 6.121 d | 9.687 c | 0.239 c |
WD1 | 6.153 c | 9.653 c | 0.230 c | 6.139 d | 9.616 cd | 0.234 cd |
WD2 | 6.093 d | 9.510 d | 0.231 bc | 6.109 d | 9.594 d | 0.232 d |
WD3 | 5.737 e | 8.487 e | 0.216 d | 5.722 e | 8.474 e | 0.212 e |
WD4 | 6.463 b | 9.690 c | 0.251 a | 6.458 b | 9.788 b | 0.252 b |
WD5 | 6.670 a | 10.173 a | 0.253 a | 6.733 a | 10.195 a | 0.258 a |
WD6 | 6.443 b | 9.813 b | 0.240 b | 6.415 bc | 9.854 b | 0.249 b |
WD7 | 6.410 b | 9.807 b | 0.239 bc | 6.344 c | 9.666 cd | 0.238 cd |
WD8 | 5.733 e | 8.440 e | 0.208 de | 5.741 e | 8.463 e | 0.210 e |
WD9 | 5.713 e | 8.463 e | 0.205 e | 5.715 e | 8.412 e | 0.208 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, H.; He, Z.; Li, F.; Wang, Z.; Zhou, C.; Han, Y.; Lei, L. Effects of Regulated Deficit Irrigation on Yield and Quality of Isatis indigotica in a Cold and Arid Environment. Water 2022, 14, 1798. https://doi.org/10.3390/w14111798
Wang Y, Zhang H, He Z, Li F, Wang Z, Zhou C, Han Y, Lei L. Effects of Regulated Deficit Irrigation on Yield and Quality of Isatis indigotica in a Cold and Arid Environment. Water. 2022; 14(11):1798. https://doi.org/10.3390/w14111798
Chicago/Turabian StyleWang, Yucai, Hengjia Zhang, Zhongsheng He, Fuqiang Li, Zeyi Wang, Chenli Zhou, Yi Han, and Lian Lei. 2022. "Effects of Regulated Deficit Irrigation on Yield and Quality of Isatis indigotica in a Cold and Arid Environment" Water 14, no. 11: 1798. https://doi.org/10.3390/w14111798
APA StyleWang, Y., Zhang, H., He, Z., Li, F., Wang, Z., Zhou, C., Han, Y., & Lei, L. (2022). Effects of Regulated Deficit Irrigation on Yield and Quality of Isatis indigotica in a Cold and Arid Environment. Water, 14(11), 1798. https://doi.org/10.3390/w14111798