Characterization of Shallow Groundwater Circulation Based on Chemical Kinetics: A Case Study of Xiong’an New Area, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Methods
2.3. Relationship between Ionic Activity and Concentration in Groundwater
2.4. Calculation of the Mineral Saturation Index in Groundwater
2.5. Calculation of Groundwater Parameters
3. Results
3.1. Major Mineral Saturation Indices
3.2. Calculation of Hydrogeological Parameters
3.3. Analysis of Groundwater Circulation Conditions
3.4. Revealing the Burial Conditions of Paleo-Channels by Groundwater Chemical Kinetics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mattos, J.B.; Cruz, M.; Jeronimo, M.; Paula, F.D.; Carlos, F.; Sales, E.F. Spatio-seasonal changes in the hydrogeochemistry of groundwaters in a highland tropical zone. J. S. Am. Earth Sci. 2018, 88, 275–286. [Google Scholar] [CrossRef]
- Redwan, M.; Moneim, A.A.A. Factors controlling groundwater hydrogeochemistry in the area west of Tahta, Sohag Upper Egypt. J. Afr. Earth Sci. 2016, 118, 328–338. [Google Scholar] [CrossRef]
- Gupta, R.; Misra, A.K. Groundwater quality analysis of quaternary aquifers in Jhajjar District, Haryana, India: Focus on groundwater fluoride and health implications. Alex. Eng. J. 2016, 57, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.C.; Zhang, R.Q. General Hydrogeology, 3rd ed.; Geological Publishing House: Beijing, China, 1986. [Google Scholar]
- Cao, Y.Q.; Hu, K.R. Groundwater Chemical Kinetics and Eco Environmental Zonation, 1st ed.; Science Press: Beijing, China, 2009; pp. 5–8. [Google Scholar]
- Liu, X.; Xiang, W.; Si, B.C. Hydrochemical and isotopic characteristics in the shallow groundwater of the Fenhe River basin and indicative significance. Environ. Sci. 2021, 42, 1739–1749. (In Chinese) [Google Scholar] [CrossRef]
- Moral, F.; Cruz-Sanjulián, J.J.; Olías, M. Geochemical evolution of groundwater in the carbonate aquifers of sierra de segura (betic cordillera, southern spain). J. Hydrol. 2008, 360, 281–296. [Google Scholar] [CrossRef]
- Scheiber, L.; Cendón, D.I.; Iverach, C.P.; Hankin, S.I.; Vázquez-Suñé, E.; Kelly, B.F.J. Hydrochemical apportioning of irrigation groundwater sources in an alluvial aquifer. Sci. Total Environ. 2020, 744, 140506. [Google Scholar] [CrossRef] [PubMed]
- Owen, D.D.R.; Cox, M.E. Hydrochemical evolution within a large alluvial groundwater resource overlying a shallow coal seam gas reservoir. Sci. Total Environ. 2015, 523, 233–252. [Google Scholar] [CrossRef] [PubMed]
- Owen, D.D.R.; Pawlowsky-Glahn, V.; Egozcue, J.J.; Buccianti, A.; Bradd, J.M. Compositional data analysis as a robust tool to delineate hydrochemical facies within and between gas-bearing aquifers. Water Resour. Res. 2016, 52, 5771–5793. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.P.; Bai, J.B.; Zhang, Y.Q.; Wang, L.Y.; Shi, J.S.; Li, W.P.; Zhang, Z.C.; Wang, Y.L.; Zhu, J.Y.; Wang, H.G. The evolution characteristics and mechanism of the land subsidence in typical areas of the North China Plain. Geol. China 2017, 44, 1115–1127. (In Chinese) [Google Scholar] [CrossRef]
- Siebert, S.; Henrich, V.; Frenken, K.; Burke, J. Update of the Digital Global Map of Irrigation Areas to Version 5; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar] [CrossRef]
- Sun, X.M.; Wu, D.D.; Xiao, G.Q.; Ma, Z.; Wang, W.D.; Xu, J.G.; Wang, L.H.; Xing, Z.X. Discussion on ground water research and geo-environment research in Circum-Bohai-Sea Region. China. Geol. Surv. Res. 2006, 29, 47–56. [Google Scholar]
- Yan, J.H.; Chen, J.S.; Zhang, W.Q. Study on the groundwater quality and its influencing factor in Songyuan City, Northeast China, using integrated hydrogeochemical method. Sci. Total. Environ. 2021, 773, 144958. [Google Scholar] [CrossRef]
- Zhao, K.; Qi, J.X.; Yi, C.; Ma, B.H.; Li, Y.; Guo, H.M.; Wang, X.Z.; Wang, L.Y.; Li, H.T. Hydrogeochemical characteristics of groundwater and pore-water and the paleoenvironmental evolution in the past 3.10 Ma in the Xiong’an New Area, North China. China Geol. 2021, 4, 476–486. [Google Scholar] [CrossRef]
- Lu, B.Q.; Zhang, Y.; Sun, H.G.; Zheng, C.M. Lagrangian simulation of multi-step and rate-limited chemical reactions in multi-dimensional porous media. Water Sci. Eng. 2018, 11, 101–113. [Google Scholar] [CrossRef]
- Peyraube, N.; Lastennet, R.; Denis, A. Geochemical evolution of groundwater in the unsaturated zone of a karstic massif, using the PCO2–SIc relationship. J. Hydrol. 2012, 430–431, 13–24. [Google Scholar] [CrossRef]
- Li, S.L.; Liu, C.Q.; Li, J.; Lang, Y.C.; Ding, H.; Li, L.B. Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China: Isotopic and chemical constraints. Chem. Geol. 2010, 277, 301–309. [Google Scholar] [CrossRef]
- Hunkeler, D.; Mudry, J. Hydrochemical methods. In Methods in Karst Hydrogeology; IAH International Contributions to Hydrogeology; Goldscheider, N., Drew, D., Eds.; British Geological Survey: Wallingford, UK; Taylor & Francis Group e-Library: London, UK, 2007; pp. 93–121. [Google Scholar]
- Mercado, A.; Billings, G.K. The kinetics of mineral dissolution in carbonate aquifers as a tool for hydrological investigations, i. concentration-time relationships. J. Hydrol. 1975, 24, 303–331. [Google Scholar] [CrossRef]
- Dreybrodt, G.W. The impact of hydrochemical boundary conditions on the evolution of limestone karst aquifers. J. Hydrol. 2003, 276, 240–253. [Google Scholar] [CrossRef]
- Ptak, T.; Schmid, G. Dual-tracer transport experiments in a physically and chemically heterogeneous porous aquifer: Effective transport parameters and spatial variability. J. Hydrol. 1996, 183, 117–138. [Google Scholar] [CrossRef]
- Atchley, A.L.; Navarre-Sitchler, A.K.; Maxwell, R.M. The effects of physical and geochemical heterogeneities on hydro-geochemical transport and effective reaction rates. J. Contam. Hydrol. 2014, 165, 53–64. [Google Scholar] [CrossRef]
- Guo, S.J.; Yu, L.; Ren, Z.W.; Wang, C.H.; Ming, Y.Y. Application of high-density resistivity method in fine division of Quaternary geological structure in the starting area of Xiongan New Area. N. China Geol. 2021, 44, 45–51. [Google Scholar] [CrossRef]
- Liu, K.M.; Xu, Q.M.; Duan, L.F.; Niu, W.C.; Teng, F.; Wang, X.D.; Zhang, W.; Dong, J. Quaternary stratigraphic architecture and sedimentary evolution from borehole GB014 in the western Xiong’an New Area. Sci. China Press 2020, 65, 2145–2160. [Google Scholar] [CrossRef]
- Wang, S.; Shao, J.; Song, X.; Zhang, Y.; Huo, Z.; Zhou, X. Application of MODFLOW and geographic information system to groundwater flow simulation in North China Plain. China Environ. Geol. 2008, 55, 1449–1462. [Google Scholar] [CrossRef]
- Wang, Y.S.; Yin, D.C.; Qi, X.F.; Xu, R.Z. Hydrogen and Oxygen Isotopic Characteristics of Different Water and Indicative Significance in Baiyangdian Lake. Environ. Sci. 2021, 43, 1920–1929. [Google Scholar] [CrossRef]
- Wang, Y.S.; Yin, D.C.; Wang, X.Q.; Qi, X.F.; Xia, Y.B.; Ma, Z.T.; Zhang, L.; Xu, R.Z. Groundwater- surface water interactions in the Baiyangdian wetland, Xiong’an New Area and its impact on reed land. Geol. China 2021, 48, 1368–1381. [Google Scholar]
- Cao, Y.Q.; Hu, K.R. Karst Hydrogeological Chemistry Environment, 1st ed.; Jilin University Press: Changchun, China, 1994; pp. 13–34. [Google Scholar]
- Geng, X.X.; Wang, F.G.; Gao, Z.K.; Cai, Z.M.; Gao, D.Y. Simulation of hydrochemical evolution characteristics in Yellow river irrigation area of Ling-Wu county. Water. Sav. Iron. 2013, 2, 29–33. (In Chinese) [Google Scholar]
- Wang, N.; Cao, J.F.; Jiang, J.X.; Ping, J.H.; Shen, Y.Y.; Qin, L.J. Attempt to use the theory of hydrochemical dynamics to calculate the permeability coefficient of panshi’s groundwater system. J. Jilin Univ. 2004, B10, 74–79. (In Chinese) [Google Scholar] [CrossRef]
- Sun, Y.Q.; Qian, H.; Duan, L. Impact of pH dissolution and precipitation of mineral in mixing solution. J. Earth Sci. Environ. 2009, 31, 413–417. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Golubev, S.V.; Schott, J. Dissolution kinetics of calcite, dolomite and magnesite at 25 °C and 0 to 50 atm pCO2. Chem. Geol. 2005, 217, 239–255. [Google Scholar] [CrossRef]
- Mayo, A.L.; Loucks, M.D. Solute and isotopic geochemistry and ground water flow in the central Wasatch Range, Utah. J. Hydrol. 1995, 172, 31–59. [Google Scholar] [CrossRef]
- Chao, Y.Q.; Hu, K.R.; Hu, Z.Y. Hydrogeochemical reaction–migration—differentiation model. J. Changchun Univ. Sci. Tech. 2000, 30, 251–256. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, C.M.; Ma, R. Discriminant analysis on iron ion provenance in groundwater, eastern Hebei Plain. Geol. Surv. Res. 2019, 42, 135–142. [Google Scholar]
- Kenoyer, G.J.; Bowser, C.J. Groundwater chemical evolution in a sandy silicate aquifer in northern Wisconsin: 1. Patterns and rates of change. Water Resour. Res. 1992, 28, 579–589. [Google Scholar] [CrossRef]
Area Number | Reaction Rate Constant/(×10−8 mol−1·d−1) | |||
---|---|---|---|---|
kc | kd | kg | kh | |
zone I1 | 0.845 | 0.299 | 0.063 | 0.008 |
zone I2 | 9.031 | 0.145 | 0.372 | 0.086 |
zone II1 | 1.199 | 0.030 | 0.063 | 0.008 |
zone II2 | 23.971 | 0.720 | 4.011 | 0.259 |
Area Number | Potential Lines Number | Aquifer Test (m/d) | Hydraulic Conductivity (m/d) | Average Hydraulic Conductivity (m/d) |
---|---|---|---|---|
zone I1 | 1 | 6.43 | 5.51 | 5.66 |
2 | - | 2.97 | ||
3 | - | 7.63 | ||
4 | - | 1.07 | ||
5 | 8.90 | 7.93 | ||
6 | - | 3.77 | ||
12 | - | 9.14 | ||
13 | - | 2.36 | ||
16 | - | 10.51 | ||
zone I2 | 7 | - | 5.66 | 7.29 |
8 | - | 8.92 | ||
zone II1 | 9 | - | 3.68 | 2.75 |
10 | - | 3.20 | ||
11 | - | 1.36 | ||
zone II2 | 14 | - | 2.95 | 3.05 |
15 | - | 3.16 |
Area Number | Chemical Kinetics Method | Aquifer Test |
---|---|---|
zone I1 | 5.66 | 6.49 |
zone I2 | 7.29 | 8.09 |
zone II1 | 2.75 | 2.8 |
zone II2 | 3.05 | 3.26 |
Area Number | Potential Lines Number | Retention Time/(a) | Velocity/(m/d) |
---|---|---|---|
zone I1 | 1 | 0.53 | 15.98 |
2 | 0.86 | 9.16 | |
3 | 0.17 | 23.27 | |
4 | 0.67 | 5.24 | |
5 | 0.14 | 29.02 | |
6 | 0.78 | 9.69 | |
12 | 0.58 | 18.58 | |
13 | 0.42 | 12.78 | |
16 | 0.17 | 27.28 | |
average | 0.48 | 16.78 | |
zone I2 | 7 | 0.74 | 7.48 |
8 | 0.14 | 36.94 | |
average | 0.44 | 22.21 | |
zone II1 | 9 | 0.54 | 8.16 |
10 | 4.68 | 2.58 | |
11 | 2.64 | 2.97 | |
average | 2.62 | 4.57 | |
zone II2 | 14 | 0.24 | 24.70 |
15 | 0.28 | 27.99 | |
average | 0.26 | 26.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Li, H.; Wang, B.; Ma, Z.; Guo, X.; Zhao, K.; Zhao, C. Characterization of Shallow Groundwater Circulation Based on Chemical Kinetics: A Case Study of Xiong’an New Area, China. Water 2022, 14, 1880. https://doi.org/10.3390/w14121880
Xia Y, Li H, Wang B, Ma Z, Guo X, Zhao K, Zhao C. Characterization of Shallow Groundwater Circulation Based on Chemical Kinetics: A Case Study of Xiong’an New Area, China. Water. 2022; 14(12):1880. https://doi.org/10.3390/w14121880
Chicago/Turabian StyleXia, Yubo, Haitao Li, Bing Wang, Zhen Ma, Xu Guo, Kai Zhao, and Changrong Zhao. 2022. "Characterization of Shallow Groundwater Circulation Based on Chemical Kinetics: A Case Study of Xiong’an New Area, China" Water 14, no. 12: 1880. https://doi.org/10.3390/w14121880
APA StyleXia, Y., Li, H., Wang, B., Ma, Z., Guo, X., Zhao, K., & Zhao, C. (2022). Characterization of Shallow Groundwater Circulation Based on Chemical Kinetics: A Case Study of Xiong’an New Area, China. Water, 14(12), 1880. https://doi.org/10.3390/w14121880