Combining Fish Passage and Sediment Bypassing: A Conceptual Solution for Increased Sustainability of Dams and Reservoirs
Abstract
:1. Introduction
2. Background: Sediment Bypass Tunnels and Fish Passage
2.1. Sediment Bypass Tunnels
2.2. Fish Passage
2.2.1. Fish Swimming and Hydrodynamics
2.2.2. Fishways
- Technical fish passages: These are the most common fish passages. Technical fish passages aim to disperse the hydraulic head from the headwater to the tailwater using a channel divided into a succession of pools by several cross-walls. Such pools also allow for the dissipation of the energy to levels suitable for fish navigation. Flow discharge between pools occurs through submerged orifices or vertical slots (single or multiple) (e.g., pool-and-weir passes, vertical-slot passes, Denil passes) [92].
- Nature-like fish passages: This type of fish passage aims to imitate as closely as possible the natural river conditions. These structures are characterized by dispersing the hydraulic head over a certain distance by keeping the slope as smooth as possible. The construction material usually corresponds to the one present in the river under natural conditions (e.g., bottom ramps, bypass channels, fish ramps) [93] (Haro et al., 2008).
- Special fish passages: Special fish passage are specific structures designed for particular cases, such as fish lifts, fish locks, and eel ladders. Special fish passages are very selective and are not sufficient for mitigation of several fish species. This is the case of eel ladders that are designed to allow eels’ upstream migration. Similarly, fish lifts have been shown to be very selective structures as they have some restriction of functionality for small fish species, although successful applications exist [94,95,96] (Meyer et al., 2016, Coe, 2016, Schletterer et al., 2017).
3. Combined Structures for Fish Passage and Sediment Bypass Tunnels
3.1. Downstream Fish Passage in SBT
3.1.1. Inlet Structures
3.1.2. Downstream Passage through Tunnel
3.1.3. Outlet Structures
3.2. Upstream Fish Passage in SBT
3.2.1. Inlet Structures
3.2.2. Upstream Passage through the Tunnel
3.2.3. Outlet Structures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vischer, D. Verlandung von Stauseen (‘Reservoir sedimentation’). Schweiz. Ing. Und Archit. 1981, 99, 1081–1086. (In German) [Google Scholar]
- Morris, G.L.; Fan, J. Reservoir Sedimentation Handbook; McGraw-Hill Book, Co.: New York, NY, USA, 1998. [Google Scholar]
- Schleiss, A.; De Cesare, G.; Jenzer Althaus, J. Reservoir sedimentation and sustainable development. In CHR Workshop Erosion, Transport and Deposition of Sediments (No. CONF); University of Berne: Berne, Switzerland, 2008; pp. 23–28. [Google Scholar]
- Inoue, M. Promotion of field-verified studies on sediment transport systems covering mountains, river, and coasts. Sci. Technol. Foresight Cent. NISTEP Q. Rev. 2009, 33, 89–107. [Google Scholar]
- Sedimentation Committee. Sedimentation and Sustainable Use of Reservoirs and River Systems; C ICOLD—Draft ICOLD Bulletin Sedimentation Committee; Kyoto University: Kyoto, Japan, 2009. [Google Scholar]
- Mariño, J.J.; Castro, H.; Manjarrés, F.; Gámez, J.; Daza, A.; Alarcón, W. Sediment management at the Chivor hydroelectric project in Colombia. In Proceedings of the 23rd ICOLD Congress, Brasilia, Brazil, 25–29 May 2009. [Google Scholar]
- Graf, W.L.; Wohl, E.; Sinha, T.; Sabo, J. Sedimentation and sustainability of western American reservoirs. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Kantoush, S.A.; Sumi, T. River Morphology and Sediment Management Strategies for Sustainable Reservoir in Japan and European Alps. Annuals of Disaster Prevention Research Institute 53B; Kyoto University: Kyoto, Japan, 2010. [Google Scholar]
- Auel, C.; Boes, R.M. Sediment bypass tunnel design—Review and outlook. In ICOLD Symposium “Dams under Changing Challenges”; Schleiss, A.J., Boes, R.M., Eds.; Taylor and Francis: Lucerne, Switzerland, 2011; pp. 403–412. [Google Scholar]
- Annandale, G.W.; Morris, G.L.; Karki, P. Extending the Life of Reservoirs: Sustainable Sediment Management for Dams and Run-of-River Hydropower; The World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Wisser, D.; Frolkin, S.; Hagen, S.; Bierkens, M.F. Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs. Water Resour. Res. 2013, 49, 5732–5739. [Google Scholar] [CrossRef] [Green Version]
- Hager, W.H.; Schleiss, A.J.; Boes, R.M.; Pfister, M. Hydraulic Engineering of Dams; Taylor & Francis: London, UK, 2020. [Google Scholar]
- Surian, N.; Rinaldi, M. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 2003, 50, 307–326. [Google Scholar] [CrossRef]
- Cajot, S.; Schleiss, A.; Sumi, T.; Kantoush, S. Reservoir sediment management using replenishment: A numerical study of Nunome Dam. In Proceedings of the (on CD) of the International Symposium on Dams for a changing world-80th Annual Meeting and 24th Congress of CIGB-ICOLD, Kyoto, Japan, 2–6 June 2012; pp. 2–131. [Google Scholar]
- Fukuda, T.; Yamashita, K.; Osada, K.; Fukuoka, S. Study on flushing mechanism of dam reservoir sedimentation and recovery of riffle-pool in downstream reach by a flushing bypass tunnel. In International Symposium on DAMS FOR A CHANGING WORLD–Need for Knowledge Transfer across the Generations & the World; CIGB ICOLD: Kyoto, Japan, 2012. [Google Scholar]
- East, A.E.; Pess, G.R.; Bountry, J.A.; Magirl, C.S.; Ritchie, A.C.; Logan, J.B.; Randle, T.J.; Mastin, M.C.; Minear, J.T.; Duda, J.J. Large-scale dam removal on the Elwha River, Washington, USA: River channel and floodplain geomorphic change. Geomorphology 2015, 228, 765–786. [Google Scholar] [CrossRef]
- Facchini, A.; Siviglia, A.; Boes, R.M. Downstream morphological impact of a sediment bypass tunnel—Preliminary results and forthcoming actions. In Proceedings of the First International Workshop on Sediment Bypass Tunnels, VAW-Mitteilungen; Boes, R., Ed.; ETH Zurich: Zurich, Switzerland, 2015; pp. 137–146. [Google Scholar]
- Martin, E.J.; Doering, M.; Robinson, C.T. Ecological effects of sediment bypass tunnels. In Proceedings of the First International Workshop on Sediment Bypass Tunnels, VAW-Mitteilungen 232; Boes, R., Ed.; ETH Zurich: Zurich, Switzerland, 2015; pp. 147–156. [Google Scholar]
- Auel, C.; Kobayashi, S.; Takemon, Y.; Sumi, T. Effects of sediment bypass tunnels on grain size distribution and benthic habitats in regulated rivers. Int. J. River Basin Manag. 2017, 15, 433–444. [Google Scholar] [CrossRef]
- Basson, G.R. Management of siltation in existing and new reservoirs. General Report Q. 89. In Proceedings of the (on CD) of the 23rd Congress of the International Commission on Large Dams CIGB-ICOLD, Brasilia, Brazil, 25–29 May 2009; Volume 2. [Google Scholar]
- Vorosmarty, J.C.; Meybeck, M.; Fekete, B.; Sharma, K.; Green, P.; Syvitski, J.P.M. Anthropogenic sediment retention: Major global impact from registered river impoundments. Glob. Planet. Chang. 2003, 39, 169–190. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Gao, Y.; Annandale, G.W.; Morris, G.L.; Jiang, E.; Zhang, J.; Cao, Y.; Carling, P.; Fu, K.; Guo, Q.; et al. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth Future 2014, 2, 256–280. [Google Scholar] [CrossRef]
- Kondolf, G.M. Hungry water: Effects of dams and gravel mining on river channels. Environ. Manag. 1997, 21, 533–551. [Google Scholar] [CrossRef]
- Hung, N.N.; Delgado, J.M.; Güntner, A.; Merz, B.; Bárdossy, A.; Apel, H. Sedimentation in the floodplains of the Mekong Delta, Vietnam Part II: Deposition and erosion. Hydrol. Processes 2014, 28, 3145–3160. [Google Scholar] [CrossRef]
- Warrick, J.A.; Stevens, A.W.; Miller, I.M.; Harrison, S.R.; Ritchie, A.C.; Gelfenbaum, G. World’s largest dam removal reverses coastal erosion. Sci. Rep. 2019, 9, 13968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, A.T.; Lucas, M.C.; Castro-Santos, T.; Katopodis, C.; Baumgartner, L.; Thiem, J.; Aarestrup, K.; Pompeu, P.S.; O’Brien, G.; Braun, D.C.; et al. The future of fish passage science, engineering, and practice. Fish Fish. 2018, 19, 340–362. [Google Scholar] [CrossRef] [Green Version]
- Dudley, R.K.; Platania, S.P. Flow regulation and fragmentation imperil pelagic-spawning riverine fishes. Ecol. Appl. 2007, 17, 2074–2086. [Google Scholar] [CrossRef] [PubMed]
- Letcher, B.H.; Nislow, K.H.; Coombs, J.A.; O’Donnell, M.J.; Dubreuil, T.L. Population response to habitat fragmentation in a stream-dwelling brook trout population. PLoS ONE 2007, 2, e1139. [Google Scholar] [CrossRef] [Green Version]
- Penczak, T.; Głowacki, Ł.; Galicka, W.; Koszaliński, H. A long-term study (1985–1995) of fish populations in the impounded Warta River, Poland. Hydrobiologia 1998, 368, 157. [Google Scholar] [CrossRef]
- Liermann, C.R.; Nilsson, C.; Robertson, J.; Ng, R.Y. Implications of dam obstruction for global freshwater fish diversity. BioScience 2012, 62, 539–548. [Google Scholar] [CrossRef]
- Clay, C.H. Design of Fishways and Other Fish Facilities, 2nd ed.; Lewis Publishers: Boca Raton, FL, USA, 1995. [Google Scholar]
- Castro-Santos, T.; Cotel, A.L.I.N.E.; Webb, P.W. Fishway evaluations for better bioengineering: An integrative approach. In Challenges for diadromous fishes in a dynamic global environment. Am. Fish. Soc. Symp. 2009, 69, 557–575. [Google Scholar]
- Silva, A.T.; Bærum, K.M.; Hedger, R.D.; Baktoft, H.; Fjeldstad, H.P.; Gjelland, K.Ø.; Økland, F.; Forseth, T. The effects of hydrodynamics on the three-dimensional downstream migratory movement of Atlantic salmon. Sci. Total Environ. 2020, 705, 135773. [Google Scholar] [CrossRef]
- Bunt, C.M.; Castro-Santos, T.; Haro, A. Reinforcement and validation of the analyses and conclusions related to fishway evaluation data from Bunt et al.: “Performance of fish passage structures at upstream barriers to migration. River Res. Appl. 2016, 32, 2125–2137. [Google Scholar] [CrossRef]
- Čada, G.; Loar, J.; Garrison, L.; Fisher, R.; Neitzel, D. Efforts to reduce mortality to hydroelectric turbine-passed fish: Locating and quantifying damaging shear stresses. Environ. Manag. 2006, 37, 898–906. [Google Scholar] [CrossRef] [PubMed]
- Caudill, C.C.; Daigle, W.R.; Keefer, M.L.; Boggs, C.T.; Jepson, M.A.; Burke, B.J.; Zabel, R.W.; Bjornn, T.C.; Peery, C.A. Slow dam passage in adult Columbia River salmonids associated with unsuccessful migration: Delayed negative effects of passage obstacles or condition-dependent mortality? Can. J. Fish. Aquat. Sci. 2007, 64, 979–995. [Google Scholar] [CrossRef] [Green Version]
- Noonan, M.J.; Grant, J.W.; Jackson, C.D. A quantitative assessment of fish passage efficiency. Fish Fish. 2012, 13, 450–464. [Google Scholar] [CrossRef]
- Haraldstad, T.; Haugen, T.O.; Olsen, E.M.; Forseth, T.; Höglund, E. Hydropower-induced selection of behavioural traits in Atlantic salmon (Salmo salar). Sci. Rep. 2021, 11, 16444. [Google Scholar] [CrossRef] [PubMed]
- Welton, J.S.; Beaumont, W.R.C.; Clarke, R.T. The efficacy of air, sound and acoustic bubble screens in deflecting Atlantic salmon, Salmo salar L., smolts in the River Frome, UK. Fish. Manag. Ecol. 2002, 9, 11–18. [Google Scholar] [CrossRef]
- Albayrak, I.; Boes, R.M.; Kriewitz-Byun, C.R.; Peter, A.; Tullis, B.P. Fish guidance structures: Hydraulic performance and fish guidance efficiencies. J. Ecohydraulics 2020, 5, 113–131. [Google Scholar] [CrossRef]
- White, R. Evacuation of Sediments from Reservoirs; Thomas Telfors Limited: London, UK, 2001. [Google Scholar]
- Annandale, G.W. Quenching the Thirst—Sustainable Water Supply and Climate Change; CreateSpace Independent Publication Platform: Charleston, SC, USA, 2013. [Google Scholar]
- Boes, R.M.; Hagmann, M. Sedimentation countermeasures—Examples from Switzerland. In Proceedings of the First International Workshop on Sediment Bypass Tunnels, VAW-Mitteilungen 232; Boes, R., Ed.; ETH Zurich: Zurich, Switzerland, 2015; pp. 193–210. [Google Scholar]
- Schleiss, A.J.; Franca, M.J.; Juez, C.; De Cesare, G. Reservoir sedimentation. J. Hydraul. Res. 2016, 54, 595–614. [Google Scholar] [CrossRef]
- Sumi, T. Sediment flushing efficiency and selection of environmentally compatible reservoir sediment management measures. In International Symposium on Sediment Management and Dams, 2nd ed.; EADC Symposium: Yokohama, Japan, 2005. [Google Scholar]
- Morris, G.L. Classification of Management Alternatives to Combat Reservoir Sedimentation. Water 2020, 12, 861. [Google Scholar] [CrossRef] [Green Version]
- Boes, R.M.; Auel, C.; Hagmann, M.; Albayrak, I. Sediment bypass tunnels to mitigate reservoir sedimentation and restore sediment continuity. In Proceedings of the Riverflow 2014, Lausanne, Switzerland, 3–5 September 2014; Schleiss, A.J., De Cesare, G., Franca, M.J., Pfister, M., Eds.; pp. 221–228. [Google Scholar]
- Müller-Hagmann, M. Hydroabrasion in High-Speed Sediment-Laden Flows in Sediment Bypass Tunnels. VAW-Mitteilungen 239; Boes, R., Ed.; Also published as a Doctoral Thesis. Nr. 24291; ETH Zurich: Zurich, Switzerland, 2017. [Google Scholar]
- Albayrak, I.; Müller-Hagmann, M.; Boes, R.M. Efficiency evaluation of Swiss Sediment Bypass Tunnels. In Proceedings of the 3rd International Workshop on Sediment Bypass Tunnels; National Taiwan University: Taipei, Taiwan, 2019; pp. 239–245. [Google Scholar]
- Serrana, J.M.; Yaegashi, S.; Kondoh, S.; Li, B.; Robinson, C.T.; Watanabe, K. Ecological influence of sediment bypass tunnels on macroinvertebrates in dam-fragmented rivers by DNA metabarcoding. Institutional Repository. Sci. Rep. 2018, 8, 10185. [Google Scholar] [CrossRef]
- Boes, R. (Ed.) First International Workshop on Sediment Bypass Tunnels, VAW-Mitteilung 232, Laboratory of Hydraulics, Hydrology and Glaciology (VAW); ETH Zürich: Zürich, Switzerland, 2015. [Google Scholar]
- Sumi, T. (Ed.) Second International Workshop on Sediment Bypass Tunnels; Kyoto University: Kyoto, Japan, 2017. [Google Scholar]
- Boes, R.M.; Müller-Hagmann, M.; Albayrak, I. Design, operation and morphological effects of bypass tunnels as a sediment routing technique. In Proceedings of the 3rd International Workshop on Sediment Bypass Tunnels, Taipei, Taiwan, 9–12 April 2019; National Taiwan University: Taipei, Taiwan, 2019; pp. 239–245. [Google Scholar]
- Vischer, D.; Hager, W.H.; Casanova, C.; Joos, B.; Lier, P.; Martini, O. Bypass tunnels to prevent reservoir sedimentation. In Proceedings of the 19th ICOLD Congress Q74 R37, Florence, Italy, 26–30 May 1997; pp. 605–624. [Google Scholar]
- Kantoush, S.A.; Sumi, T.; Murasaki, M. Evaluation of sediment bypass efficiency by flow field and sediment concentration monitoring techniques. Annu. J. Hydraul. Eng. 2011, 55, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Sumi, T.; Kantoush, S.; Suzuki, S. Performance of Miwa dam sediment bypass tunnel: Evaluation upstream and downstream state and bypass efficiency. Q92 R 38. In Proceedings of the 24th ICOLD Congress, Kyoto, Japan, 2–8 June 2012; pp. 576–596. [Google Scholar]
- Lai, C.H.; Jong, C.G.; Tsai, M.D. Integrated water resources management in Taiwan. In Proceedings of the 3rd International Workshop on Sediment Bypass Tunnels; National Taiwan University: Taipei, Taiwan, 2019; pp. 27–39. [Google Scholar]
- Prandtl, L. Uber die ausgebildete Turbulenz. ZAMM 1952, 5, 136–139. [Google Scholar] [CrossRef]
- Nezu, I.; Nakagawa, H. Turbulence in Open-Channel Flows. IAHR-AIRH Monograph Series; Balkema: Rotterdam, The Netherlamds, 1993; ISBN 978-90-5410-118-5. [Google Scholar]
- Albayrak, I.; Lemmin, U. Secondary currents and corresponding surface velocity patterns in a turbulent open-channel flow over a rough bed. J. Hydraul. Eng. 2011, 137, 1318–1334. [Google Scholar] [CrossRef]
- Auel, C.; Albayrak, I.; Boes, R.M. Turbulence characteristics in supercritical open channel flows: Effects of Froude number and aspect ratio. J. Hydraul. Eng. 2014, 140, 04014004. [Google Scholar] [CrossRef]
- Demiral, D.; Boes, R.M.; Albayrak, I. Effects of Secondary Currents on Turbulence Characteristics of Supercritical Open Channel Flows at Low Aspect Ratios. Water 2020, 12, 3233. [Google Scholar] [CrossRef]
- Auel, C. Flow Characteristics, Particle Motion and Invert Abrasion in Sediment Bypass Tunnels. VAW-Mitteilungen 229; Boes, R., Ed.; ETH Zurich: Zurich, Switzerland, 2014. [Google Scholar]
- Müller-Hagmann, M.; Albayrak, I.; Auel, C.; Boes, R.M. Field investigation on hydroabrasion in high-speed sediment-laden flows at sediment bypass tunnels. Water 2020, 12, 469. [Google Scholar] [CrossRef] [Green Version]
- Auel, C.; Thene, J.R.; Müller-Hagmann, M.; Albayrak, I.; Boes, R.M. Abrasion prediction at Mud Mountain sediment bypass tunnel. In Proceedings of the 2nd International Workshop on Sediment Bypass Tunnels; Sumi, T., Ed.; Paper FP12; Kyoto University: Kyoto, Japan, 2017. [Google Scholar]
- Lucas, M.C.; Baras, E. Migration of Freshwater Fishes; Blackwell Science: Oxford, UK, 2001. [Google Scholar] [CrossRef]
- Chapman, J.; Algera, D.; Dick, M.; Hawkins, E.; Lawrence, M.; Lennox, R.; Rous, A.; Souliere, C.; Stemberger, H.; Struthers, D.; et al. Being relevant: Practical guidance for early career researchers interested in solving conservation problems. Glob. Ecol. Conserv. 2015, 4, 334–348. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, R.A.; Politano, M.; Garvin, J.W.; Nestler, J.M.; Hay, D.; Anderson, J.J.; Weber, L.J.; Dimperio, E.; Smith, D.L.; Timko, M. Fish navigation of large dams emerges from their flow field experience. Proc. Natl. Acad. Sci. USA 2014, 111, 5277–5282. [Google Scholar] [CrossRef] [Green Version]
- Lupandin, A.I. Effect of flow turbulence on swimming speed of fish. Biol. Bull. 2005, 32, 461–466. [Google Scholar] [CrossRef]
- Cotel, A.J.; Webb, P.W.; Tritico, H. Do brown trout choose locationswith reduce turbulence? Trans. Am. Fish. Soc. 2006, 135, 610–619. [Google Scholar] [CrossRef]
- Bleckmann, H.; Zelick, R. Lateral line system of fish. Integr. Zool. 2009, 4, 13–15. [Google Scholar] [CrossRef]
- Coutant, C.C. Integrated, multi-sensory, behavioral guidance systems for fish diversions. In Behavioral Technologies for Fish Guidance. 26; Coutant, C.C., Ed.; American Fisheries Society, Symposium: Bethesda, MD, USA, 2001; pp. 105–113. [Google Scholar]
- Silva, A.T.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N.; Katopodis, C. Effects of water velocity and turbulence on the behaviour of Iberian barbell (Luciobarbus bocagei, Steindachner 1864) in an experimental pool-type fishway. River Res. Appl. 2011, 27, 360–373. [Google Scholar] [CrossRef]
- Voigt, R.; Carton, A.G.; Montgomery, J.C. Responses of anterior lateral line afferent neurons to water flow. J. Exp. Biol. 2000, 203, 2495–2502. [Google Scholar] [CrossRef] [PubMed]
- Beamish, F.W.H. Swimming capacity. In Fish Physiology, Volume VII. Locomotion; Hoar, W.S., Randall, D.J., Eds.; Academic Press: London, UK, 1978; pp. 101–187. [Google Scholar]
- Liao, J.C. A review of fish swimming mechanics and behavior in altered flows. Phil. Trans. R. Soc. B 2007, 362, 1973–1993. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.T.; Katopodis, C.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N. Cyprinid swimming behaviour in response to turbulent flow. Ecol. Eng. 2012, 44, 314–328. [Google Scholar] [CrossRef] [Green Version]
- Enders, E.C.; Boisclair, D.; Roy, A.G. The effect of turbulence on the cost of swimming for juvenile Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 2003, 60, 1149–1160. [Google Scholar] [CrossRef]
- Beck, C.; Albayrak, I.; Meister, J.; Peter, A.; Selz, O.M.; Leuch, C.; Vetsch, D.F.; Boes, R.M. Swimming Behavior of Downstream Moving Fish at Innovative Curved-Bar Rack Bypass Systems for Fish Protection at Water Intakes. Water 2020, 12, 3244. [Google Scholar] [CrossRef]
- Pavlov, D.S.; Lupandin, A.I.; Skorobogatov, M.A. The effects of flow turbulence on the behavior and distribution of fish. J. Ichthyol. 2000, 40, S232–S261. [Google Scholar]
- Tritico, H.M.; Cotel, A.J. The effects of turbulent eddies on the stability and critical swimming speed of creek chub (Semotilus atromaculatus). J. Exp. Biol. 2010, 213, 2284–2293. [Google Scholar] [CrossRef] [Green Version]
- Rodi, W. Turbulence Models and Their Application in Hydraulics. IAHR Monograph; IAHR: Delft, The Netherlands, 1980. [Google Scholar]
- Odeh, M.; Noreika, J.F.; Haro, A.; Maynard, A.; Castro-Santos, T. Evaluation of the Effects of Turbulence on the Behavior of Migratory Fish. In Final Report to the Bonneville Power Administration; Contract 00000022, Project 200005700; Bonneville Power Administration: Portland, OR, USA, 2002. [Google Scholar]
- Enders, E.C.; Boisclair, D.; Roy, A.G. A model of the total swimming costs in turbulent flow for Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 2005, 62, 1079–1089. [Google Scholar] [CrossRef] [Green Version]
- Cada, G.F.; Carlson, T.; Ferguson, J.; Richmond, M.; Sale, M. Exploring the role of shear stress and severe turbulence in downstream fish passage. In Proceedings of Waterpower’99. Hydro’s Future: Technology, Markets, and Policy; Brookshier, P.A., Ed.; American Society of Civil Engineers: Reston, VA, USA, 1999; p. 10. [Google Scholar]
- Larinier, M. Pool fishways, pre-barrages and natural bypass channels. Bull. Fr. Pêche Piscic. 2002, 364, 54–82. [Google Scholar] [CrossRef] [Green Version]
- Liao, J.C.; Beal, D.N.; Lauder, G.V.; Triantafyllou, M.S. Fish exploiting vortices decrease muscle activity. Science 2003, 302, 1566–1569. [Google Scholar] [CrossRef]
- Radinger, J.; Wolter, C. Patterns and predictors of fish dispersal in rivers. Fish Fish. 2014, 15, 456–473. [Google Scholar] [CrossRef]
- Tummers, J.S.; Hudson, S.; Lucas, M.C. Evaluating the effectiveness of restoring longitudinal connectivity for stream fish communities: Towards a more holistic approach. Sci. Total Environ. 2016, 569–570, 850–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulik, G. Dams, fish, and farmers: Defense of public rights in eighteenth-century Rhode Island. In The Countryside in the Age of Capitalist Transformation: Essays in the Social History of Rural America; Hahn, S., Prude, J., Eds.; University of North Carolina Press: Chapel Hill, CA, USA, 1985; pp. 25–50. [Google Scholar]
- Castro-Santos, T.; Haro, A. Fish guidance and passage at barriers. In Fish locomotion: An Eco-Ethological Perspective I; Domenci, P., Kapoor, B.G., Eds.; Enfield; NH Science Publishers: New York, NY, USA, 2010; pp. 62–89. [Google Scholar] [CrossRef]
- FAO/DVWK. Fish Passes—Design, Dimensions and Monitoring; FAO: Rome, Italy, 2002. [Google Scholar]
- Haro, A.; Franklin, A.; Castro-Santos, T.; Noreika, J. Design and Evaluation of Nature-like Fishways for Passage of Northeastern Diadromous Fishes. Available online: https://repository.library.noaa.gov/view/noaa/4015 (accessed on 15 June 2022).
- Coe, T. Swimming abilities of Mekong fish species. In Proceedings of the Fish Passage 2016 Conference, Amherst, MA, USA, 20–22 June 2016. [Google Scholar]
- Meyer, M.; Schweizer, S.; Andrey, E.; Fankhauser, A.; Schläppi, S.; Müller, W.; Flück, M. Der Fischlift am Gadmerwasser im Berner Oberland, Schweiz. WasserWirtschaft 2016, 321, 42–48. [Google Scholar] [CrossRef]
- Schletterer, M.; Reindl, R.; Thonhauser, S. Ökologische Grundlagen und Randbedingungen für die Planung des 1. Fischliftes Österreichs an der Wehranlage Runserau, Tirol. In Biologische Durchgängigkeit von Fließgewässern; Heimerl, S., Ed.; Springer Vieweg: Wiesbaden, Germany, 2017. [Google Scholar]
- Larinier, M.; Travade, F. Downstream migration: Problems and facilities. Bull. Français Pêche Piscic. 2002, 364, 102–118, 181–207. [Google Scholar] [CrossRef] [Green Version]
- Boes, R.M.; Albayrak, I.; Kriewitz, C.R.; Peter, A. Fischschutz und Fischabstieg mittels vertikaler Leitrechen-Bypass-Systeme: Rechenverluste und Leiteffizienz [Fish protection and downstream fish migration by means of guidance systems with vertical bars: Head loss and bypass efficiency]. WasserWirtschaft 2016, 106, 29–35. (In German) [Google Scholar] [CrossRef]
- Ebel, G. Fischschutz und Fischabstieg an Wasserkraftanlagen—Handbuch Rechen- und Bypasssysteme [Fish protection and downstream fish migration at hydropower plants—Hand book for fish guidance and bypass system]. Ingenieurbiologische Grundlagen, Modellierung und Prognose, Bemessung und Gestaltung. 2. Auflage. Büro für Gewässerökologie und Fischereibiologie Dr. Ebel, Halle (Saale) 2016. (In German)
- Albayrak, I.; Kriewitz, C.R.; Hager, W.H.; Boes, R.M. An experimental investigation on louvres and angled bar racks. J. Hydraul. Res. 2017, 56, 59–75. [Google Scholar] [CrossRef]
- Tomanova, S.; Courret, D.; Richard, S.; Tedesco, P.A.; Mataix, V.; Frey, A.; Lagarrigue, T.; Chatellier, L.; Tétard, S. Protecting the downstream migration of salmon smolts from hydroelectric power plants with inclined racks and optimized bypass water discharge. J. Environ. Manag. 2021, 284, 112012. [Google Scholar] [CrossRef]
- Nyqvist, D.; Goerig, E.; Calles, O.; Ardren, W.R.; Greenberg, L.A.; Bergman, E.; Castro-Santos, T. Migratory delay leads to reduced passage success of Atlantic salmon smolts at a hydroelectric dam. Ecol. Freshw. Fish 2017, 26, 707–718. [Google Scholar] [CrossRef]
- Schilt, C.R. Developing fish passage and protection at hydropower dams. Appl. Anim. Behav. Sci. 2007, 104, 295–325. [Google Scholar] [CrossRef]
- Rieman, B.E.; Beamesderfer, R.C.; Vigg, S.; Poe, T.P. Estimated Loss of Juvenile Salmonids to Predation by Northern Squawfish, Walleyes, and Smallmouth Bass in John Day Reservoir, Columbia River. Trans. Am. Fish. Soc. 1991, 120, 448–458. [Google Scholar] [CrossRef]
- Schwinn, M.; Baktoft, H.; Aarestrup, K.; Lucas, M.C.; Koed, A. Telemetry observations of predation and migration behaviour of brown trout (Salmo trutta) smolts negotiating an artificial lake. River Res. Appl. 2018, 34, 898–906. [Google Scholar] [CrossRef] [Green Version]
- Castro-Santos, T.; Haro, A. Quantifying migratory delay: A new application of survival analysis methods. Can. J. Fish. Aquat. Sci. 2003, 60, 986–996. [Google Scholar] [CrossRef] [Green Version]
Solution | Description | Advantages | Disadvantages | |
---|---|---|---|---|
V1 | Pipe for fish passage attached to SBT ceiling. | Separates fish passage from parts of tunnel with high abrasion (floor and walls). Relatively cheap and easy to install. Minimizes water usage for fish bypass. | Difficult to manually inspect, potentially reduces max. capacity of SBT for sediment flushing if retrofitted. | |
V2 | Depression in SBT floor, to concentrate bypass flow. | Easy to inspect, cheap to construct. Minimizes water usage for fish bypass. | Will increase abrasion especially in SBT tunnels designed for bypassing bed load and might get filled with sediment. | |
V3 | Wall separating SBT into channels for fish and sediment movement. | Separates fish passage from sediment bypass. Possible to inspect if wide enough for humans. Minimizes water usage for fish bypass. | Can severely reduce capacity of SBT for sediment bypassing if retrofitted. | |
V4 | “Single use” plywood structures raising water level and/or concentrating flow. | Easy to inspect, minimizes water usage for fish bypass. Cheap material. Non-permanent solution. | Must be completely replaced after every sediment bypassing. Can be laborious to attach to tunnel wall and floor. |
Solution | Description | Advantages | Disadvantages | |
---|---|---|---|---|
V5 | Pipe(s) or channel(s) close to SBT ceiling with baffles/vanes/vertical slots for upstream fish passage, thereby using separate pipes for up- and downstream passage. | Separates fish passage from parts of tunnel with high abrasion (floor and walls). Relatively easy to install. Minimizes water usage for fish bypass. | Difficult to access and inspect, potentially reduces maximum capacity of SBT for sediment bypassing if retrofitted. | |
V6 | Wall dividing the tunnel into fishway and sediment bypass channels. Channel for upstream passage fitted with baffles/vanes/vertical slots. | Separates fish passage from sediment bypass. Possible to inspect if wide enough for humans to walk through. Minimizes water usage for fish bypass. | Can severely reduce capacity of SBT for sediment bypassing if retrofitted. | |
V7 | “Single use” plywood baffles/vanes/vertical slots raising water level and/or concentrating flow. | Easy to inspect, minimizes water usage for fish bypass. Cheap material. Non-permanent solution. | Must be completely replaced after every sediment bypassing. Can be challenging to attach to tunnel wall and floor. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foldvik, A.; Silva, A.T.; Albayrak, I.; Schwarzwälder, K.; Boes, R.M.; Ruther, N. Combining Fish Passage and Sediment Bypassing: A Conceptual Solution for Increased Sustainability of Dams and Reservoirs. Water 2022, 14, 1977. https://doi.org/10.3390/w14121977
Foldvik A, Silva AT, Albayrak I, Schwarzwälder K, Boes RM, Ruther N. Combining Fish Passage and Sediment Bypassing: A Conceptual Solution for Increased Sustainability of Dams and Reservoirs. Water. 2022; 14(12):1977. https://doi.org/10.3390/w14121977
Chicago/Turabian StyleFoldvik, Anders, Ana T. Silva, Ismail Albayrak, Kordula Schwarzwälder, Robert M. Boes, and Nils Ruther. 2022. "Combining Fish Passage and Sediment Bypassing: A Conceptual Solution for Increased Sustainability of Dams and Reservoirs" Water 14, no. 12: 1977. https://doi.org/10.3390/w14121977
APA StyleFoldvik, A., Silva, A. T., Albayrak, I., Schwarzwälder, K., Boes, R. M., & Ruther, N. (2022). Combining Fish Passage and Sediment Bypassing: A Conceptual Solution for Increased Sustainability of Dams and Reservoirs. Water, 14(12), 1977. https://doi.org/10.3390/w14121977