Artificial Neural Networks for the Prediction of the Reference Evapotranspiration of the Peloponnese Peninsula, Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ID | Station | X | Y | Elevation (m) | Municipality | ID | Station | X | Y | Elevation (m) | Municipality |
---|---|---|---|---|---|---|---|---|---|---|---|
Meteorological Stations for the 3 Empirical Methods (ETo) | Meteorological Stations for the 3 Empirical Methods (ETo) | ||||||||||
1 | Kalavrita | 334349.9 | 4210128 | 781 | Achaia | 32 | Oleni | 282783.4 | 4177872 | 61 | Ilia |
2 | Kato Vlassia | 317683.4 | 4208558 | 773 | Achaia | 33 | Pineia | 285425.3 | 4191240 | 184 | Ilia |
3 | Lappa | 273550 | 4218928 | 15 | Achaia | 34 | Pirgos | 273886.9 | 4171891 | 22 | Ilia |
4 | Olenia | 288845.1 | 4221654 | 34 | Achaia | 35 | Vartholomio | 253773.8 | 4193127 | 15 | Ilia |
5 | Panachaiko | 313491.4 | 4235800 | 1588 | Achaia | 36 | Zacharo | 290302.6 | 4150806 | 5 | Ilia |
6 | Panagopoula | 318709.5 | 4243842 | 15 | Achaia | 37 | Amoni Sofikou | 424227.5 | 4186898 | 55 | Korinthia |
7 | Panepistimio | 305972.3 | 4239289 | 66 | Achaia | 38 | Derveni | 362057.1 | 4221737 | 5 | Korinthia |
8 | Patra | 301697.8 | 4236694 | 6 | Achaia | 39 | Isthmos | 408645.4 | 4200499 | 6 | Korinthia |
9 | Rio | 305898.1 | 4242177 | 2 | Achaia | 40 | Kiato | 389163.5 | 4207722 | 15 | Korinthia |
10 | Romanos | 313476.1 | 4235744 | 228 | Achaia | 41 | Krioneri | 378491.9 | 4203310 | 887 | Korinthia |
11 | Sageika | 280638.4 | 4219575 | 26 | Achaia | 42 | Loutraki | 410248.7 | 4202636 | 30 | Korinthia |
12 | Argos | 386329.1 | 4165059 | 38 | Argolida | 43 | Nemea | 381197.9 | 4188976 | 290 | Korinthia |
13 | Didima | 426936.9 | 4146702 | 175 | Argolida | 44 | Perigiali | 397303.1 | 4199344 | 38 | Korinthia |
14 | Kranidi | 424615.7 | 4137411 | 110 | Argolida | 45 | Trikala Korinthias | 365493.7 | 4206835 | 1077 | Korinthia |
15 | Lagadia | 326139.9 | 4172057 | 970 | Arkadia | 46 | Agioi Theodoroi | 423533.6 | 4198395 | 37 | Korinthia |
16 | Levidi | 349386.5 | 4171330 | 853 | Arkadia | 47 | Apidia | 392819.7 | 4082655 | 230 | Lakonia |
17 | Lykochia | 337772.6 | 4151113 | 870 | Arkadia | 48 | Asteri | 386527.1 | 4076757 | 8 | Lakonia |
18 | Magouliana | 334497.7 | 4171275 | 1256 | Arkadia | 49 | Geraki | 384706.6 | 4094508 | 330 | Lakonia |
19 | Megalopoli | 335363 | 4140782 | 432 | Arkadia | 50 | Krokees | 371576.2 | 4082640 | 241 | Lakonia |
20 | Stemnitsa | 330377.8 | 4157967 | 1094 | Arkadia | 51 | Molaoi | 397984.6 | 4072957 | 128 | Lakonia |
21 | Tripoli | 359989.3 | 4152250 | 650 | Arkadia | 52 | Monemvasia | 413811.4 | 4059051 | 17 | Lakonia |
22 | Vytina | 339989.8 | 4170409 | 1013 | Arkadia | 53 | Sparti | 360929.9 | 4101670 | 204 | Lakonia |
23 | Spetses | 424919.5 | 4124662 | 3 | Attiki | 54 | Alagonia | 343840.9 | 4107863 | 765 | Messinia |
24 | Taktikoupoli Troizinias | 443373.2 | 4152374 | 15 | Attiki | 55 | Arfara | 326299.4 | 4113666 | 96 | Messinia |
25 | Ydra | 452645.8 | 4133727 | 2 | Attiki | 56 | Filiatra | 285439.9 | 4115175 | 65 | Messinia |
26 | Amaliada | 264604.9 | 4186923 | 26 | Ilia | 57 | Kalamata | 331127 | 4098974 | 5 | Messinia |
27 | Andritsaina | 314220.3 | 4152125 | 731 | Ilia | 58 | Kalamata Dytika | 329347.3 | 4100001 | 10 | Messinia |
28 | Archaia Olympia | 287981.3 | 4163856 | 45 | Ilia | 59 | Kardamili | 347857.7 | 4074651 | 13 | Messinia |
29 | Foloi | 297082.7 | 4174732 | 600 | Ilia | 60 | Kopanaki | 306288.6 | 4128741 | 184 | Messinia |
30 | Katakolo | 263537.2 | 4169327 | 2 | Ilia | 61 | Kyparissia | 291691 | 4123584 | 36 | Messinia |
31 | Lampeia | 306840.3 | 4192041 | 840 | Ilia | 62 | Pylos | 294556.8 | 4087590 | 5 | Messinia |
References
- Malamos, N.; Tegos, A. Advances in Evaporation and Evaporative Demand. Hydrology 2022, 9, 78. [Google Scholar] [CrossRef]
- Shamshirband, S.; Hashemi, S.; Salimi, H.; Samadianfard, S.; Asadi, E.; Shadkani, S.; Kargar, K.; Mosavi, A.; Nabipour, N.; Chau, K.W. Predicting Standardized Streamflow index for hydrological drought using machine learning models. Eng. Appl. Comput. Fluid Mech. 2020, 14, 339–350. [Google Scholar] [CrossRef]
- Xu, S.; Yu, Z.; Yang, C.; Ji, X.; Zhang, K. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin. Agric. For. Meteorol. 2018, 263, 118–129. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Nikolakopoulos, K.G. Evapotranspiration Trends and Interactions in Light of the Anthropogenic Footprint and the Climate Crisis: A Review. Hydrology 2021, 8, 163. [Google Scholar] [CrossRef]
- Pereira, L.S.; Perrier, A.; Allen, R.G.; Alves, I. Evapotranspiration: Concepts and Future Trends. J. Irrig. Drain. Eng. 1999, 125, 45–51. [Google Scholar] [CrossRef]
- Malamos, N.; Tsirogiannis, I.L.; Tegos, A.; Efstratiadis, A.; Koutsoyiannis, D. Spatial interpolation of potential evapotranspiration for precision irrigation purposes. Eur. Water 2017, 59, 303–309. [Google Scholar]
- Saggi, M.K.; Jain, S. Reference evapotranspiration estimation and modeling of the Punjab Northern India using deep learning. Comput. Electron. Agric. 2019, 156, 387–398. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, Z.; Zhang, L.; Du, J. Applicability evaluation of different algorithms for daily reference evapotranspiration model in KBE system. Int. J. Comput. Sci. Eng. 2019, 18, 361–374. [Google Scholar] [CrossRef]
- Li, M.; Chu, R.; Islam, A.R.M.T.; Shen, S. Reference Evapotranspiration Variation Analysis and Its Approaches Evaluation of 13 Empirical Models in Sub-Humid and Humid Regions: A Case Study of the Huai River Basin, Eastern China. Water 2018, 10, 493. [Google Scholar] [CrossRef] [Green Version]
- Tabari, H.; Grismer, M.E.; Trajkovic, S. Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig. Sci. 2013, 31, 107–117. [Google Scholar] [CrossRef]
- Roy, D.K.; Sarkar, T.K.; Alam Kamar, S.S.; Goswami, T.; Muktadir, A.; Al-Ghobari, H.M.; Alataway, A.; Dewidar, A.Z.; El-Shafei, A.A.; Mattar, M.A. Daily Prediction and Multi-Step Forward Forecasting of Reference Evapotranspiration Using LSTM and Bi-LSTM Models. Agronomy 2022, 12, 594. [Google Scholar] [CrossRef]
- Ferreira, L.B.; da Cunha, F.F. Multi-step ahead forecasting of daily reference evapotranspiration using deep learning. Comput. Electron. Agric. 2020, 178, 105728. [Google Scholar] [CrossRef]
- Ravindran, S.M.; Bhaskaran, S.K.M.; Ambat, S.K.N. A Deep Neural Network Architecture to Model Reference Evapotranspiration Using a Single Input Meteorological Parameter. Environ. Process. 2021, 8, 1567–1599. [Google Scholar] [CrossRef]
- Granata, F.; Di Nunno, F. Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks. Agric. Water Manag. 2021, 255, 107040. [Google Scholar] [CrossRef]
- Mosavi, A.; Edalatifar, M. A Hybrid Neuro-Fuzzy Algorithm for Prediction of Reference Evapotranspiration. In Recent Advances in Technology Research and Education; Laukaitis, G., Ed.; INTER-ACADEMIA 2018; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2019; Volume 53. [Google Scholar] [CrossRef]
- Andreu, A.; Kustas, W.P.; Polo, M.J.; Carrara, A.; González-Dugo, M.P. Modeling Surface Energy Fluxes over a Dehesa (Oak Savanna) Ecosystem Using a Thermal Based Two Source Energy Balance Model (TSEB) II—Integration of Remote Sensing Medium and Low Spatial Resolution Satellite Images. Remote Sens. 2018, 10, 558. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.M.; da Silva, R.M.; Santos, C.A.G. Automated surface energy balance algorithm for land (ASEBAL) based on automating endmember pixel selection for evapotranspiration calculation in MODIS orbital images. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 1–11. [Google Scholar] [CrossRef]
- Zakeri, M.S.; Mousavi, S.F.; Farzin, S.; Sanikhani, H. Modeling of Reference Crop Evapotranspiration in Wet and Dry Climates Using Data-Mining Methods and Empirical Equations. J. Soft Comput. Civ. Eng. 2022, 6, 1–28. [Google Scholar] [CrossRef]
- Achite, M.; Jehanzaib, M.; Sattari, M.T.; Toubal, A.K.; Elshaboury, N.; Wałęga, A.; Krakauer, N.; Yoo, J.-Y.; Kim, T.-W. Modern Techniques to Modeling Reference Evapotranspiration in a Semiarid Area Based on ANN and GEP Models. Water 2022, 14, 1210. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Kumar, N.; Chandel, A.; Arshad, A.; Pande, C.B.; Islam, A.R.M.T. Modelling the reference crop evapotranspiration in the Beas-Sutlej basin (India): An artificial neural network approach based on different combinations of meteorological data. Environ. Monit. Assess. 2022, 194, 141. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Kushwaha, N.L.; Rajput, J.; Vishwakarma, D.K.; Kulimushi, L.C.; Kumar, M.; Zhang, J.; Pande, C.B.; Choudhari, P.; Meshram, S.G.; et al. Modelling daily reference evapotranspiration based on stacking hybridization of ANN with meta-heuristic algorithms under diverse agro-climatic conditions. Stoch. Hydrol. Hydraul. 2022, 1–24. [Google Scholar] [CrossRef]
- Long, X.; Wang, J.; Gong, S.; Li, G.; Ju, H. Reference evapotranspiration estimation using long short-term memory network and wavelet-coupled long short-term memory network. Irrig. Drain. 2022. [CrossRef]
- Chia, M.Y.; Huang, Y.F.; Koo, C.H. ANN-Based Reference Evapotranspiration Estimation: Effects of Data Normalization and Parameters Selection. In Proceedings of International Conference on Emerging Technologies and Intelligent Systems; Al-Emran, M., Al-Sharafi, M.A., Al-Kabi, M.N., Shaalan, K., Eds.; ICETIS 2021; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2022; pp. 3–12. [Google Scholar] [CrossRef]
- Ferreira, L.B.; da Cunha, F.F.; Filho, E.I.F. Exploring machine learning and multi-task learning to estimate meteorological data and reference evapotranspiration across Brazil. Agric. Water Manag. 2022, 259, 107281. [Google Scholar] [CrossRef]
- Manikumari, N.; Vinodhini, G.; Murugappan, A. Modelling of Reference Evapotransipration using Climatic Parameters for Irrigation Scheduling using Machine learning. ISH J. Hydraul. Eng. 2022, 28, 272–281. [Google Scholar] [CrossRef]
- Krishnashetty, P.H.; Balasangameshwara, J.; Sreeman, S.; Desai, S.; Kantharaju, A.B. Cognitive computing models for estimation of reference evapotranspiration: A review. Cogn. Syst. Res. 2021, 70, 109–116. [Google Scholar] [CrossRef]
- Algretawee, H.; Alshama, G. Modeling of Evapotranspiration (ETo) in a Medium Urban Park within a Megacity by Using Artificial Neural Network (ANN) Model. Period. Polytech. Civ. Eng. 2021, 65, 1260–1268. [Google Scholar] [CrossRef]
- Gao, L.; Gong, D.; Cui, N.; Lv, M.; Feng, Y. Evaluation of bio-inspired optimization algorithms hybrid with artificial neural network for reference crop evapotranspiration estimation. Comput. Electron. Agric. 2021, 190, 106466. [Google Scholar] [CrossRef]
- Yurtseven, I.; Serengil, Y. Comparison of different empirical methods and data-driven models for estimating reference evapotranspiration in semi-arid Central Anatolian Region of Turkey. Arab. J. Geosci. 2021, 14, 2033. [Google Scholar] [CrossRef]
- He, Y.; Lin, E.S.; Tan, C.L.; Tan, P.Y.; Wong, N.H. Quantitative evaluation of plant evapotranspiration effect for green roof in tropical area: A case study in Singapore. Energy Build. 2021, 241, 110973. [Google Scholar] [CrossRef]
- Gocić, M.; Amiri, M.A. Reference Evapotranspiration Prediction Using Neural Networks and Optimum Time Lags. Water Resour. Manag. 2021, 35, 1913–1926. [Google Scholar] [CrossRef]
- del Cerro, R.T.G.; Subathra, M.; Kumar, N.M.; Verrastro, S.; George, S.T. Modelling the daily reference evapotranspiration in semi-arid region of South India: A case study comparing ANFIS and empirical models. Inf. Process. Agric. 2020, 8, 173–184. [Google Scholar] [CrossRef]
- Khedkar, D.D.; Singh, P.K. Comparison of neural network models for estimation of reference crop evapotranspiration. Agric. Res. J. 2021, 58, 60–67. [Google Scholar] [CrossRef]
- Abdullahi, J.; Rotimi, A.; Malami, S.I.; Jibrin, H.B.; Tahsin, A.; Abba, S. Feasibility of artificial intelligence and CROPWAT models in the estimation of uncertain combined variable using nonlinear sensitivity analysis. In Proceedings of the 2021 1st International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS), Abuja, Nigeria, 15–16 July 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Reddy, K.C. Machine Intelligence-Based Reference Evapotranspiration Modelling: An application of Neural Networks. In Proceedings of the 2021 International Conference on Artificial Intelligence and Machine Vision (AIMV), Gandhinagar, India, 24–26 September 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Nawandar, N.K.; Cheggoju, N.; Satpute, V. ANN-Based Model to Predict Reference Evapotranspiration for Irrigation Estimation. In Advances in Intelligent Systems and Computing: Proceedings of International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications; Gunjan, V.K., Zurada, J.M., Eds.; Springer: Singapore, 2021; Volume 1245, pp. 671–679. [Google Scholar] [CrossRef]
- Yamaç, S.S. Reference evapotranspiration estimation with k-Nearest Neighbour and Artificial neural network models using different climate input variables in the semi-arid environment. J. Agric. Sci. 2021, 27, 129–137. [Google Scholar] [CrossRef]
- Ferreira, L.B.; da Cunha, F.F.; da Silva, G.H.; Campos, F.B.; Dias, S.H.B.; Santos, J.E.O. Generalizability of machine learning models and empirical equations for the estimation of reference evapotranspiration from temperature in a semiarid region. Anais da Academia Brasileira de Ciências 2021, 93, e20200304. [Google Scholar] [CrossRef]
- Yu, H.; Wen, X.; Li, B.; Yang, Z.; Wu, M.; Ma, Y. Uncertainty analysis of artificial intelligence modeling daily reference evapotranspiration in the northwest end of China. Comput. Electron. Agric. 2020, 176, 105653. [Google Scholar] [CrossRef]
- Maroufpoor, S.; Bozorg-Haddad, O.; Maroufpoor, E. Reference evapotranspiration estimating based on optimal input combination and hybrid artificial intelligent model: Hybridization of artificial neural network with grey wolf optimizer algorithm. J. Hydrol. 2020, 588, 125060. [Google Scholar] [CrossRef]
- Alizamir, M.; Kisi, O.; Adnan, R.M.; Kuriqi, A. Modelling reference evapotranspiration by combining neuro-fuzzy and evolutionary strategies. Acta Geophys. 2020, 68, 1113–1126. [Google Scholar] [CrossRef]
- Tikhamarine, Y.; Malik, A.; Souag-Gamane, D.; Kisi, O. Artificial intelligence models versus empirical equations for modeling monthly reference evapotranspiration. Environ. Sci. Pollut. Res. 2020, 27, 30001–30019. [Google Scholar] [CrossRef]
- Seifi, A.; Riahi, H. Estimating daily reference evapotranspiration using hybrid gamma test-least square support vector machine, gamma test-ANN, and gamma test-ANFIS models in an arid area of Iran. J. Water Clim. Chang. 2020, 11, 217–240. [Google Scholar] [CrossRef]
- Nourani, V.; Elkiran, G.; Abdullahi, J. Multi-step ahead modeling of reference evapotranspiration using a multi-model approach. J. Hydrol. 2019, 581, 124434. [Google Scholar] [CrossRef]
- Zhu, B.; Feng, Y.; Gong, D.; Jiang, S.; Zhao, L.; Cui, N. Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data. Comput. Electron. Agric. 2020, 173, 105430. [Google Scholar] [CrossRef]
- Reis, M.M.; Silva, A.; Junior, J.Z.; Santos, L.T.; Azevedo, A.M.; Lopes, M.G. Empirical and learning machine approaches to estimating reference evapotranspiration based on temperature data. Comput. Electron. Agric. 2019, 165, 104937. [Google Scholar] [CrossRef]
- Ferreira, L.B.; da Cunha, F.F.; de Oliveira, R.A.; Filho, E.I.F. Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM—A new approach. J. Hydrol. 2019, 572, 556–570. [Google Scholar] [CrossRef]
- Sidiropoulos, P.; Dalezios, N.R.; Loukas, A.; Mylopoulos, N.; Spiliotopoulos, M.; Faraslis, I.N.; Alpanakis, N.; Sakellariou, S. Quantitative Classification of Desertification Severity for Degraded Aquifer Based on Remotely Sensed Drought Assessment. Hydrology 2021, 8, 47. [Google Scholar] [CrossRef]
- Raoufi, R.; Beighley, E. Estimating Daily Global Evapotranspiration Using Penman–Monteith Equation and Remotely Sensed Land Surface Temperature. Remote Sens. 2017, 9, 1138. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Nikolakopoulos, K.G. Remote sensing methods to estimate evapotranspiration incorporating MODIS de-rived data and applications over Greece: A review. In Proceedings of the SPIE 11524, Eighth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2020), Paphos, Cyprus, 26 August 2020. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; Zhang, J.; Tang, L.; Bai, Y. Assessment and Comparison of Six Machine Learning Models in Estimating Evapotranspiration over Croplands Using Remote Sensing and Meteorological Factors. Remote Sens. 2021, 13, 3838. [Google Scholar] [CrossRef]
- Proias, G.; Gravalos, I.; Papageorgiou, E.; Poczęta, K.; Sakellariou-Makrantonaki, M. Forecasting Reference Evapotranspiration Using Time Lagged Recurrent Neural Network. WSEAS Trans. Environ. Dev. 2020, 16, 699–707. [Google Scholar] [CrossRef]
- Kitsara, G.; Papaioannou, G.; Retalis, A.; Paronis, D.; Kerkides, P. Estimation of air temperature and reference evapotranspiration using MODIS land surface temperature over Greece. Int. J. Remote Sens. 2018, 39, 924–948. [Google Scholar] [CrossRef]
- Falalakis, G.; Gemitzi, A. A simple method for water balance estimation based on the empirical method and remotely sensed evapotranspiration estimates. J. Hydroinform. 2020, 22, 440–451. [Google Scholar] [CrossRef]
- Tsouni, A.; Kontoes, C.; Koutsoyiannis, D.; Elias, P.; Mamassis, N. Estimation of Actual Evapotranspiration by Remote Sensing: Application in Thessaly Plain, Greece. Sensors 2008, 8, 3586–3600. [Google Scholar] [CrossRef]
- Vasiliades, L.; Spiliotopoulos, M.; Tzabiras, J.; Loukas, A.; Mylopoulos, N. Estimation of crop water requirements using remote sensing for operational water resources management. In Proceedings of the Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015), Paphos, Cyprus, 19 June 2015. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Nikolakopoulos, K.G. Development of GIS models via optical programming and python scripts to implement four empirical methods of reference and actual evapotranspiration (ETo, ETa) incorporating MODIS LST inputs. In Proceedings of the SPIE 11856, Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIII, Madrid, Spain, 12 September 2021. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Valiantzas, J.D. Simplified Reference Evapotranspiration Formula Using an Empirical Impact Factor for Penman’s Aerodynamic Term. J. Hydrol. Eng. 2013, 18, 108–114. [Google Scholar] [CrossRef]
- Djaman, K.; Rudnick, D.; Mel, V.C.; Mutiibwa, D.; Diop, L.; Sall, M.; Kabenge, I.; Bodian, A.; Tabari, H.; Irmak, S. Evaluation of Valiantzas’ Simplified Forms of the FAO-56 Penman-Monteith Reference Evapotranspiration Model in a Humid Climate. J. Irrig. Drain. Eng. 2017, 143, 06017005. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Nikolakopoulos, K.G. Reference Evapotranspiration (ETo) Methods Implemented as ArcMap Models with Remote-Sensed and Ground-Based Inputs, Examined along with MODIS ET, for Peloponnese, Greece. ISPRS Int. J. Geo-Inf. 2021, 10, 390. [Google Scholar] [CrossRef]
- Tegos, A.; Efstratiadis, A.; Malamos, N.; Mamassis, N.; Koutsoyiannis, D. Evaluation of a Parametric Approach for Estimating Potential Evapotranspiration Across Different Climates. Agric. Agric. Sci. Procedia 2015, 4, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, S.S.; Sousa, E.F.; Oliveira, V.P.S.; Almeida, F.T.; Bernardo, S. Estimating Evapotranspiration Using Artificial Neural Network and Minimum Climatological Data. J. Irrig. Drain. Eng. 2007, 133, 83–89. [Google Scholar] [CrossRef]
- ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 2000, 5, 115–123. [Google Scholar] [CrossRef]
- Shakiba, F.M.; Zhou, M. Novel Analog Implementation of a Hyperbolic Tangent Neuron in Artificial Neural Networks. IEEE Trans. Ind. Electron. 2020, 68, 10856–10867. [Google Scholar] [CrossRef]
- Huss, M.; Farinotti, D.; Bauder, A.; Funk, M. Modelling runoff from highly glacierized alpine drainage basins in a changing climate. Hydrol Process. 2009, 2274, 2267–2274. [Google Scholar] [CrossRef]
- Trajkovic, S.; Todorovic, B.; Stankovic, M. Forecasting of Reference Evapotranspiration by Artificial Neural Networks. J. Irrig. Drain. Eng. 2003, 129, 454–457. [Google Scholar] [CrossRef]
- Kumar, N.; Maharshi, S.; Poddar, A.; Shankar, V. Evaluation of Artificial Neural Networks for Estimating Reference Evapotranspiration in Western Himalayan Region. In Proceedings of the 2020 International Conference on Computational Performance Evaluation (ComPE), Shillong, India, 2–4 July 2020; pp. 163–167. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P.H. Multilayer perceptron for reference evapotranspiration estimation in a semiarid region. Neural Comput. Appl. 2012, 23, 341–348. [Google Scholar] [CrossRef]
- Shamshirband, S.; Amirmojahedi, M.; Gocić, M.; Akib, S.; Petković, D.; Piri, J.; Trajkovic, S. Estimation of Reference Evapotranspiration Using Neural Networks and Cuckoo Search Algorithm. J. Irrig. Drain. Eng. 2016, 142, 04015044. [Google Scholar] [CrossRef]
- Sattari, M.T.; Apaydin, H.; Band, S.S.; Mosavi, A.; Prasad, R. Comparative analysis of kernel-based versus ANN and deep learning methods in monthly reference evapotranspiration estimation. Hydrol. Earth Syst. Sci. 2021, 25, 603–618. [Google Scholar] [CrossRef]
- Gavili, S.; Sanikhani, H.; Kisi, O.; Mahmoudi, M.H. Evaluation of several soft computing methods in monthly evapotranspiration modelling. Meteorol. Appl. 2017, 25, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Diamantopoulou, M.J.; Georgiou, P.E.; Papamichail, D.M. Performance evaluation of artificial neural networks in estimating reference evapotranspiration with minimal meteorological data. Glob. NEST J. 2011, 13, 18–27. [Google Scholar]
- Antonopoulos, V.Z.; Gianniou, S.K.; Antonopoulos, A.V. Artificial neural networks and empirical equations to estimate daily evaporation: Application to Lake Vegoritis, Greece. Hydrol. Sci. J. 2016, 61, 2590–2599. [Google Scholar] [CrossRef] [Green Version]
- Antonopoulos, V.Z.; Antonopoulos, A.V. Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables. Comput. Electron. Agric. 2017, 132, 86–96. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Katsanou, K.; Charalabopoulos, S.; Lambrakis, N. Interpretation of the Factors Defining Groundwater Quality of the Site Subjected to the Wildfire of 2007 in Ilia Prefecture, South-Western Greece. Geosciences 2018, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Copernicus Land Monitoring Service. CLC 2018. ©European Union, Copernicus Land Monitoring Service 2018, European Environment Agency (EEA). Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 11 April 2022).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Nagy, A.; Mohammed, S.; Pande, C.B.; Kumar, M.; Bhat, S.A.; Zsembeli, J.; Huzsvai, L.; Tamás, J.; Kovács, E.; et al. Combination of Limited Meteorological Data for Predicting Reference Crop Evapotranspiration Using Artificial Neural Network Method. Agronomy 2022, 12, 516. [Google Scholar] [CrossRef]
- Abrishami, N.; Sepaskhah, A.R.; Shahrokhnia, M.H. Estimating wheat and maize daily evapotranspiration using artificial neural network. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2019, 135, 945–958. [Google Scholar] [CrossRef]
- Kisi, O.; Sanikhani, H.; Zounemat-Kermani, M.; Niazi, F. Long-term monthly evapotranspiration modeling by several data-driven methods without climatic data. Comput. Electron. Agric. 2015, 115, 66–77. [Google Scholar] [CrossRef]
- Rahimikhoob, A. Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2010, 101, 83–91. [Google Scholar] [CrossRef]
- Gomar, S.; Mirhassani, M.; Ahmadi, M. Precise digital implementations of hyperbolic tanh and sigmoid function. In Proceedings of the 2016 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 6–9 November 2016; pp. 1586–1589. [Google Scholar] [CrossRef]
- Genaidy, M.A. Estimating of evapotranspiration using artificial neural network. Misr. J. Agric. Eng. 2020, 37, 81–94. Available online: https://mjae.journals.ekb.eg/article_94971_382909fe6190f50b2edcab1dc6d3c8b9.pdf (accessed on 15 May 2022). [CrossRef]
- Cococcioni, M.; Rossi, F.; Ruffaldi, E.; Saponara, S. A Fast Approximation of the Hyperbolic Tangent When Using Posit Numbers and Its Application to Deep Neural Networks. In Applications in Electronics Pervading Industry, Environment and Society; Saponara, S., De Gloria, A., Eds.; ApplePies. Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2019; Volume 627, pp. 213–221. [Google Scholar] [CrossRef]
Performance Evaluating Indices | ||
---|---|---|
ANN | Architecture | RMSE | NRMSE | MAE | MBE | R2 | Pearson’s r | IoA | SSE Testing | RE Testing | RE Holdout |
---|---|---|---|---|---|---|---|---|---|---|---|
7 inputs: N, Rs, Rn, u2, es-ea, Tmean, Z | |||||||||||
MLP1 | 7-2 | 0.290 | 0.086 | 0.217 | 0.017 | 0.980 | 0.990 | 0.995 | 0.695 | 0.027 | 0.022 |
MLP2 | 7-4-3 | 0.305 | 0.090 | 0.230 | 0.024 | 0.978 | 0.989 | 0.994 | 0.573 | 0.021 | 0.029 |
RBF1 | 7-5 | 0.423 | 0.125 | 0.267 | 0.004 | 0.957 | 0.978 | 0.989 | 0.948 | 0.027 | 0.100 |
RBF2 | 7-9 | 0.333 | 0.098 | 0.246 | −0.032 | 0.974 | 0.987 | 0.993 | 1.547 | 0.045 | 0.028 |
6 inputs: Rs, Rn, u2, es-ea, Tmean, Z | |||||||||||
MLP8 | 6-4 | 0.311 | 0.092 | 0.240 | 0.005 | 0.977 | 0.988 | 0.994 | 0.827 | 0.024 | 0.025 |
MLP9 | 6-4-3 | 0.296 | 0.088 | 0.218 | −0.008 | 0.979 | 0.989 | 0.995 | 1.188 | 0.035 | 0.024 |
RBF3 | 6-9 | 0.318 | 0.094 | 0.232 | 0.016 | 0.976 | 0.988 | 0.994 | 0.623 | 0.026 | 0.022 |
4 inputs: Rs, u2, es-ea, Tmean and 4’ inputs: Rn, u2, es-ea, Tmean | |||||||||||
MLP7 | 4-3 | 0.309 | 0.091 | 0.233 | −0.002 | 0.977 | 0.989 | 0.994 | 0.543 | 0.020 | 0.027 |
MLP10 | 4-3-2 | 0.300 | 0.089 | 0.221 | 0.001 | 0.978 | 0.989 | 0.995 | 0.541 | 0.020 | 0.028 |
RBF4 | 4-10 | 0.406 | 0.120 | 0.263 | −0.042 | 0.961 | 0.980 | 0.990 | 1.044 | 0.031 | 0.092 |
MLP3 | 4’-1 | 0.319 | 0.094 | 0.245 | −0.025 | 0.976 | 0.988 | 0.994 | 0.459 | 0.160 | 0.300 |
3 inputs: Rn, u2, Tmean | |||||||||||
MLP5 | 3-1 | 0.314 | 0.093 | 0.244 | −0.019 | 0.976 | 0.988 | 0.994 | 1.101 | 0.032 | 0.030 |
2 inputs: Rn, Tmean; 2’ inputs: Rn, u2; 2’’ inputs: u2, Tmean | |||||||||||
MLP4 | 2-1 | 0.377 | 0.111 | 0.268 | −0.023 | 0.966 | 0.983 | 0.991 | 1.443 | 0.042 | 0.034 |
MLP6 | 2’-1 | 0.343 | 0.101 | 0.268 | 0.026 | 0.972 | 0.986 | 0.093 | 0.961 | 0.037 | 0.028 |
MLP13 | 2’’-1 | 0.352 | 0.104 | 0.267 | −0.008 | 0.970 | 0.985 | 0.992 | 0.819 | 0.029 | 0.029 |
1 input: Tmean; 1’ input: Rn | |||||||||||
MLP14 | 1-1 | 0.360 | 0.106 | 0.258 | 0.014 | 0.969 | 0.984 | 0.992 | 0.747 | 0.027 | 0.041 |
MLP16 | 1’-1 | 0.404 | 0.119 | 0.313 | −0.014 | 0.961 | 0.980 | 0.990 | 0.594 | 0.030 | 0.042 |
RBF6 | 1-1 | 0.363 | 0.107 | 0.259 | 0.006 | 0.968 | 0.984 | 0.992 | 0.710 | 0.028 | 0.033 |
RBF9 | 1’-1 | 0.383 | 0.113 | 0.298 | −0.005 | 0.965 | 0.982 | 0.991 | 1.109 | 0.036 | 0.033 |
Predictor | Predicted | |||
---|---|---|---|---|
Hidden Layer 1 | Output Layer | |||
H (1:1) | H (1:2) | ETο | ||
Input Layer | (Bias) | −0.616 | −0.638 | |
Rs | −0.010 | −0.355 | ||
Rn | 0.397 | 0.173 | ||
es-ea | 0.224 | −0.181 | ||
u2 | 0.214 | −0.049 | ||
N | −0.100 | −0.520 | ||
Tmean | 0.461 | −0.394 | ||
Z | 0.059 | −0.040 | ||
Hidden Layer 1 | (Bias) | −0.009 | ||
H (1:1) | 0.578 | |||
H (1:2) | −0.867 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitriadou, S.; Nikolakopoulos, K.G. Artificial Neural Networks for the Prediction of the Reference Evapotranspiration of the Peloponnese Peninsula, Greece. Water 2022, 14, 2027. https://doi.org/10.3390/w14132027
Dimitriadou S, Nikolakopoulos KG. Artificial Neural Networks for the Prediction of the Reference Evapotranspiration of the Peloponnese Peninsula, Greece. Water. 2022; 14(13):2027. https://doi.org/10.3390/w14132027
Chicago/Turabian StyleDimitriadou, Stavroula, and Konstantinos G. Nikolakopoulos. 2022. "Artificial Neural Networks for the Prediction of the Reference Evapotranspiration of the Peloponnese Peninsula, Greece" Water 14, no. 13: 2027. https://doi.org/10.3390/w14132027
APA StyleDimitriadou, S., & Nikolakopoulos, K. G. (2022). Artificial Neural Networks for the Prediction of the Reference Evapotranspiration of the Peloponnese Peninsula, Greece. Water, 14(13), 2027. https://doi.org/10.3390/w14132027