Experimental and Numerical Study on Vortical Structures and Their Dynamics in a Pump Sump
Abstract
:1. Introduction
2. Test Case Setup
3. Visualizations
4. Methods
4.1. Experimental Techniques
4.2. Numerical Simulations
5. Results
5.1. Surface Vortices
5.2. Bottom Vortex
5.3. Intake Flow
5.4. Vortex Dynamics
5.5. Validation
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFD | Computational Fluid Dynamics |
FoV | Field of View |
IA | Interrogation Area |
POD | Proper Orthogonal Decomposition |
PoM | Plane of Measurement |
PIV | Particle Image Velocimetry |
OPD | Oscillation Pattern Decomposition |
SST | Shear Stress Transport |
TKE | Turbulent Kinetic Energy |
URANS | Unsteady Reynolds-Averaged Navier-Stokes equation |
VoF | Volume of Fluid |
References
- Domfeh, M.K.; Gyamfi, S.; Amo-Boateng, M.; Andoh, R.; Ofosu, E.A.; Tabor, G. Free surface vortices at hydropower intakes: A state-of-the-art review. Sci. Afr. 2020, 8, e00355. [Google Scholar] [CrossRef]
- Kim, C.G.; Kim, B.H.; Bang, B.H.; Lee, Y.H. Experimental and CFD analysis for prediction of vortex and swirl angle in the pump sump station model. IOP Conf. Ser. Mater. Sci. Eng. 2015, 72, 42044. [Google Scholar] [CrossRef] [Green Version]
- Park, I.; Kim, H.-J.; Seong, H.; Rhee, D.S. Experimental Studies on Surface Vortex Mitigation Using the Floating Anti-Vortex Device in Sump Pumps. Water 2018, 10, 441. [Google Scholar] [CrossRef] [Green Version]
- Okamura, T.; Kamemoto, K.; Matsui, J. CFD prediction and model experiment on suction vortices in pump sump. In Proceedings of the 9th Asian International Conference on Fluid Machinery, Jeju, Korea, 16–19 October 2007. [Google Scholar]
- Gupta, S.; Panda, J.P.; Nandi, N. A model study of free vortex flow. In Proceedings of the ICTACEM, Kharagpur, India, 29–31 December 2014. [Google Scholar]
- Nagahara, T.; Sato, T.; Okamura, T. Effect of the Submerged Vortex Cavitation Occurred in Pump Suction Intake on Hydraulic Forces of Mixed Flow Pump Impeller. In Proceedings of the Fourth International Symposium on Cavitation, Pasedena, CA, USA, 20–23 June 2001. [Google Scholar]
- Amin, A.; Kim, B.H.; Kim, C.G.; Lee, Y.H. Numerical Analysis of Vortices Behavior in a Pump Sump. IOP Conf. Ser. Earth Environ. Sci. 2019, 240, 32020. [Google Scholar] [CrossRef]
- Sedlář, M.; Procházka, P.; Komárek, M.; Uruba, V.; Skála, V. Experimental Research and Numerical Analysis of Flow Phenomena in Discharge Object with Siphon. Water 2020, 12, 3330. [Google Scholar] [CrossRef]
- Papierski, A.; Błaszczyk, A.; Kunicki, R.; Susik, M. Surface Vortices and Pressure in Suction Intakes of Vertical Axial-Flow Pumps. Mech. Mech. Eng. 2012, 16, 51–71. [Google Scholar]
- Bayeul-Lainé, A.C.; Bois, G.; Issa, A. Numerical simulation of flow field in water-pump sump and inlet suction pipe. IOP Conf. Ser. Earth Environ. Sci. 2010, 12, 12083. [Google Scholar] [CrossRef] [Green Version]
- Long, N.I.; Shin, B.R.; Doh, D.-H. Study on Surface Vortices in Pump Sump. J. Fluid Mach. 2012, 74, 60–66. [Google Scholar] [CrossRef]
- Shin, B. Numerical Study of Effect of Flow Rate on Free Surface Vortex in Suction Sump. Trans. Jpn. Soc. Comput. Eng. Sci. 2018, 2018, 20180010. [Google Scholar]
- Tokyay, T.; Constantinescu, G. Coherent structures in pump-intake flows: A large eddy simulation (LES) study. In Proceedings of the Korea Water Resources Association Conference, Seoul, Korea, 11–16 September 2005; pp. 231–232. [Google Scholar]
- Sokolovskiy, M.A.; Carton, X.J.; Filyushkin, B.N. Mathematical Modeling of Vortex Interaction Using a Three-Layer Quasigeostrophic Model. Part 2: Finite-Core-Vortex Approach and Oceanographic Application. Mathematics 2020, 8, 1267. [Google Scholar] [CrossRef]
- Uruba, V. Decomposition methods in turbulent research. Eur. Phys. J. Conf. 2012, 25, 1095. [Google Scholar] [CrossRef] [Green Version]
- Uruba, V. Near Wake Dynamics around a Vibrating Airfoil by Means of PIV and Oscillation Pattern Decomposition at Reynolds Number of 65,000. J. Fluids Struct. 2015, 55, 372–383. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSYS CFX-Solver Theory Guide; Release 19.2; ANSYS Inc.: Canonsburg, PA, USA, 2019. [Google Scholar]
- Zwart, P.J.; Gerber, A.G.; Belamri, T. A Two-Phase Flow Model for Predicting Cavitation Dynamics. In Proceedings of the ICMF 2004 International Conference on Multiphase Flow, Yokohama, Japan, 30 May–3 June 2004. [Google Scholar]
- Joa, J.C.; Kanga, D.G.; Kima, H.J.; Roha, K.W.; Yunea, Y.G. The Effect of Coriolis Force on the Formation of Dip on the Free Surface of Water Draining from a Tank. In Proceedings of the Transactions of the Korean Nuclear Society Autumn Meeting, Pyeongchang, Korea, 25–26 October 2007. [Google Scholar]
- Menter, F.R.; Egorov, Y. A scale-adaptive simulation model using two-equation models. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005. [Google Scholar] [CrossRef]
- Menter, F.R.; Schutze, J.; Kurbatskii, K.A. Scale-Resolving Simulation Techniques in Industrial CFD. In Proceedings of the 6th AIAA Theoretical Fluid Mechanics Conference, Honolulu, HI, USA, 27–30 June 2011. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uruba, V.; Procházka, P.; Sedlář, M.; Komárek, M.; Duda, D. Experimental and Numerical Study on Vortical Structures and Their Dynamics in a Pump Sump. Water 2022, 14, 2039. https://doi.org/10.3390/w14132039
Uruba V, Procházka P, Sedlář M, Komárek M, Duda D. Experimental and Numerical Study on Vortical Structures and Their Dynamics in a Pump Sump. Water. 2022; 14(13):2039. https://doi.org/10.3390/w14132039
Chicago/Turabian StyleUruba, Václav, Pavel Procházka, Milan Sedlář, Martin Komárek, and Daniel Duda. 2022. "Experimental and Numerical Study on Vortical Structures and Their Dynamics in a Pump Sump" Water 14, no. 13: 2039. https://doi.org/10.3390/w14132039
APA StyleUruba, V., Procházka, P., Sedlář, M., Komárek, M., & Duda, D. (2022). Experimental and Numerical Study on Vortical Structures and Their Dynamics in a Pump Sump. Water, 14(13), 2039. https://doi.org/10.3390/w14132039