Assessing Suitable Techniques for Rainwater Harvesting Using Analytical Hierarchy Process (AHP) Methods and GIS Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology Overview
- i.
- Selection of RWHt;
- ii.
- Selection of appropriate criteria for each technique;
- iii.
- Suitability classification for each criterion;
- iv.
- GIS application and maps suitability development.
2.2.1. RWHt Selecting
2.2.2. Criteria Selection
- I.
- Rainfall
- II.
- Runoff depth (curve number, CN)
- III.
- Land use (LU)
- IV.
- Slope
- V.
- Soil texture
2.2.3. Criterion Suitability Classification
2.2.4. GIS Application and Maps Suitability Development
3. Results and Discussion
3.1. Input Maps
3.2. Suitability Score for Each Criterion for the Rwhtt
3.3. The Potential of RWHt
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adham, A.; Sayl, K.N.; Abed, R.; Abdeladhim, M.A.; Wesseling, J.G.; Riksen, M.; Ritsema, C.J. A GIS-based approach for identifying potential sites for harvesting rainwater in the Western Desert of Iraq. Int. Soil Water Conserv. Res. 2018, 6, 297–304. [Google Scholar] [CrossRef]
- PCBS. Manual of Statistical Indicators Provided by Palestinian Central Bureau of Statistics; Palestinian Central Bureau of Statistics: Ramallah, Palestine, 2016; pp. 1–249. Available online: http://www.pcbs.gov.ps/Downloads/book2196.pdf (accessed on 15 March 2022).
- PWA. Status Report of Water Resources in the Occupied State of Palestine; Palestinian Water Authority: Ramallah, Palestine, 2012; pp. 1–22. Available online: http://www.pwa.ps/page.aspx?id=0PHprpa2520241944a0PHprp (accessed on 15 March 2022).
- Shadeed, S.; Judeh, T. Water Supply-Demand Gap Analysis for both Domestic and Agricultural Uses in the West Bank, Palestine [Report], 1st ed.; Paduco: Nablus, Palestine, 2018; pp. 1–22. Available online: http://morwater.najah.edu/WaterAttachment//edcb0bd3-d431-4bc0-ab76-4852d6b124e8.pdf (accessed on 15 March 2022).
- Daoud, A.K.; Swaileh, K.M.; Hussein, R.M.; Matani, M. Quality assessment of roof-harvested rainwater in the West Bank, Palestinian Authority. J. Water Health 2011, 9, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Alawna, S.; Shadeed, S. Rooftop Rainwater Harvesting to Alleviate Domestic Water Shortage in the West Bank, Palestine. An-Najah Univ. J. Res.-A 2021, 35, 83–108. [Google Scholar]
- Adham, A.; Riksen, M.; Ouessar, M.; Abed, R.; Ritsema, C. Development of Methodology for Existing Rainwater Harvesting Assessment in (semi-) Arid Regions. In Water and Land Security in Drylands: Response to Climate Change; Ouessar, M., Gabriels, D., Tsunekawa, A., Evett, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 171–184. ISBN 978-3-319-54021-4. [Google Scholar]
- Prinz, D.; Oweis, T.; Oberle, A. Rainwater harvesting for dry land agriculture-Developing a methodology based on remote sensing and GIS. Proc. XIII Int. Congr. Agric. Eng. 1998, 2, 2–6. [Google Scholar]
- Umugwaneza, A.; Chen, X.; Liu, T.; Mind’je, R.; Uwineza, A.; Kayumba, P.M.; Maniraho, A.P. Integrating a GIS-based approach and a SWAT model to identify potential suitable sites for rainwater harvesting in Rwanda. AQUA Water Infrastruct. Ecosyst. Soc. 2022, 71, 415–432. [Google Scholar] [CrossRef]
- Tahvili, Z.; Khosravi, H.; Malekian, A.; Khalighi Sigaroodi, S.; Pishyar, S.; Singh, V.P.; Ghodsi, M. Locating suitable sites for rainwater harvesting (RWH) in the central arid region of Iran. Sustain. Water Resour. Manag. 2021, 7, 1–11. [Google Scholar] [CrossRef]
- Balkhair, K.S.; Ur Rahman, K. Development and assessment of rainwater harvesting suitability map using analytical hierarchy process, GIS and RS techniques. Geocarto Int. 2021, 36, 421–448. [Google Scholar] [CrossRef]
- Muleta, B.; Seyoum, T.; Assefa, S. GIS-Based Assessment of Suitability Area of Rainwater Harvesting in Daro Labu District, Oromia, Ethiopia. Am. J. Water Sci. Eng. 2022, 8, 21–35. [Google Scholar]
- Ndeketeya, A.; Dundu, M. Application of HEC-HMS Model for Evaluation of Rainwater Harvesting Potential in a Semi-arid City. Water Resour. Manag. 2021, 35, 4217–4232. [Google Scholar] [CrossRef]
- Adham, A.; Riksen, M.; Ouessar, M.; Ritsema, C. Identification of suitable sites for rainwater harvesting structures in arid and semi-arid regions: A review. Int. Soil Water Conserv. Res. 2016, 4, 108–120. [Google Scholar]
- Ziadat, F.; Bruggeman, A.; Oweis, T.; Haddad, N.; Mazahreh, S.; Sartawi, W.; Syuof, M. A participatory GIS approach for assessing land suitability for rainwater harvesting in an arid rangeland environment. Arid. Land Res. Manag. 2012, 26, 297–311. [Google Scholar] [CrossRef] [Green Version]
- Shadeed, S.; Almasri, M. Application of GIS-based SCS-CN method in WB catchments, Palestine. Water Sci. Eng. 2010, 3, 1–13. [Google Scholar] [CrossRef]
- Britannica, West Bank. Encyclopedia Britannica. 2021. Available online: https://www-britannica-com.ezproxy.library.wur.nl/place/West-Bank (accessed on 22 February 2022).
- Yifru, B.A.; Kim, M.G.; Lee, J.W.; Kim, I.H.; Chang, S.W.; Chung, I.M. Water Storage in Dry Riverbeds of Arid and Semi-Arid Regions: Overview, Challenges, and Prospects of Sand Dam Technology. Sustainability 2021, 13, 5905. [Google Scholar] [CrossRef]
- Melesse, A.M.; Shih, S.F. Spatially distributed storm runoff depth estimation using Landsat images and GIS. Comput. Electron. Agric. 2002, 37, 173–183. [Google Scholar] [CrossRef]
- Alves, G.J.; de Mello, C.R.; Beskow, S.; Junqueira, J.A.; Nearing, M.A. Assessment of the Soil Conservation Service–Curve Number method performance in a tropical Oxisol watershed. J. Soil Water Conserv. 2019, 74, 500–512. [Google Scholar] [CrossRef]
- Krois, J.; Schulte, A. AGIS-based multi-criteria evaluation to identify potential sites for soil and water conservation techniques in the Ronquillo watershed, northern Peru. Appl. Geogr. 2014, 51, 131–142. [Google Scholar] [CrossRef]
- Adham, A.; Riksen, M.; Ouessar, M.; Ritsema, C.J. A water harvesting model for optimizing rainwater harvesting in the wadi Oum Zessar watershed, Tunisia. Agric. Water Manag. 2016, 176, 191–202. [Google Scholar] [CrossRef]
- Mwenge Kahinda, J.; Lillie, E.S.B.; Taigbenu, A.E.; Taute, M.; Boroto, R.J. Developing suitability maps for rainwater harvesting in South Africa. Phys. Chem. Earth 2008, 33, 788–799. [Google Scholar] [CrossRef]
- Adham, A.; Riksen, M.; Ouessar, M.; Ritsema, C.J. A Methodology to Assess and Evaluate Rainwater Harvesting Techniques in (Semi-) Arid Regions. Water 2016, 8, 198. [Google Scholar] [CrossRef] [Green Version]
- Al-Adamat, R. GIS as a decision support system for siting water harvesting ponds in the Basalt Aquifer/NE Jordan. J. Environ. Assess. Policy Manag. 2008, 10, 189–206. [Google Scholar] [CrossRef]
- Al-Adamat, R.; AlAyyash, S.; Al-Amoush, H.; Al-Meshan, O.; Rawajfih, Z.; Shdeifat, A.; Al-Harahsheh, A.; Al-Farajat, M. The Combination of Indigenous Knowledge and Geo-Informatics for Water Harvesting Siting in the Jordanian Badia. J. Geogr. Inf. Syst. 2012, 4, 366–376. [Google Scholar] [CrossRef] [Green Version]
- Singh, L.K.; Jha, M.K.; Chowdary, V.M. Multi-criteria analysis and GIS modeling for identifying prospective water harvesting and artificial recharge sites for sustainable water supply. J. Clean. Prod. 2017, 142, 1436–1456. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Al-Adamat, R.; Diabat, A.; Shatnawi, G. Combining GIS with multicriteria decision making for siting water harvesting ponds in Northern Jordan. J. Arid. Environ. 2010, 74, 1471–1477. [Google Scholar] [CrossRef]
- Jha, M.K.; Chowdary, V.M.; Kulkarni, Y.; Mal, B.C. Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis. Resour. Conserv. Recycl. 2014, 83, 96–111. [Google Scholar] [CrossRef]
- Matomela, N.; Li, T.; Ikhumhen, H.O. Siting of rainwater harvesting potential sites in arid or semi-arid watersheds using GIS-based techniques. Environ. Processes 2020, 7, 631–652. [Google Scholar] [CrossRef]
- Toosi, A.S.; Tousi, E.G.; Ghassemi, S.A.; Cheshomi, A.; Alaghmand, S. A multi-criteria decision analysis approach towards efficient rainwater harvesting. J. Hydrol. 2020, 582, 124501. [Google Scholar] [CrossRef]
# | Criteria | Classes | Score | ||||||
---|---|---|---|---|---|---|---|---|---|
Runoff Basin | Contour Ridges | Cistern | Eyebrow Terrace | Check Dam | On-Farm Pond | Bench Terrace | |||
1 | Annual rainfall (mm) | <250 | 7 | 3 | 9 | 7 | 5 | 5 | 5 |
250–500 | 9 | 9 | 7 | 9 | 7 | 7 | 9 | ||
500–750 | 3 | 7 | 5 | 5 | 9 | 9 | 7 | ||
2 | Land use | Arable Land (supporting grains) | 7 | 9 | 1 | 7 | 5 | 7 | 7 |
Built-up Areas | 1 | 1 | 5 | 1 | 1 | 1 | 1 | ||
Woodland/Forest | 1 | 1 | 1 | 3 | 1 | 1 | 1 | ||
Rough Grazing/Subsistence Farming | 3 | 5 | 1 | 5 | 5 | 5 | 3 | ||
Irrigated Farming | 1 | 3 | 9 | 1 | 9 | 9 | 1 | ||
Permanent Crops (Fruits trees) | 9 | 7 | 7 | 9 | 3 | 3 | 9 | ||
Israeli Settlements | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
3 | Slope (%) | flat (0–2) | 9 | 3 | 3 | 7 | 5 | 3 | 1 |
gentle (2–5) | 7 | 5 | 9 | 9 | 9 | 7 | 1 | ||
moderate (5–10) | 5 | 9 | 7 | 5 | 7 | 9 | 3 | ||
rolling (10–15) | 1 | 7 | 5 | 3 | 3 | 5 | 7 | ||
hilly (15–30) | 1 | 1 | 1 | 1 | 1 | 1 | 9 | ||
steep >30 | 1 | 1 | 1 | 1 | 1 | 1 | 5 | ||
4 | Soil texture | Sandy loam | 3 | 5 | 1 | 5 | 3 | 3 | 7 |
Loamy | 5 | 7 | 3 | 7 | 5 | 5 | 5 | ||
Clay loam | 9 | 9 | 5 | 9 | 7 | 7 | 9 | ||
Clay | 7 | 3 | 9 | 3 | 9 | 9 | 3 | ||
5 | Curve number | ≤50 | 3 | 5 | 3 | 3 | 3 | 3 | 5 |
51–60 | 7 | 7 | 5 | 7 | 5 | 5 | 7 | ||
61–70 | 9 | 9 | 7 | 9 | 7 | 7 | 9 | ||
>70 | 5 | 3 | 9 | 5 | 9 | 9 | 3 |
Suitability Score | Low | Moderate | High | Very High |
---|---|---|---|---|
<20.0 | 20 to 29 | 30 to 39 | >40 | |
On farm pond | 3.4 | 52.9 | 42.8 | 1.0 |
Bench terraces | 0.9 | 29.6 | 69.5 | 0.0 |
Check dam | 1.7 | 40.1 | 51.7 | 6.4 |
Eyebrow terraces | 14.8 | 72.8 | 12.3 | 0.0 |
Cistern | 0.0 | 53.7 | 46.2 | 0.1 |
Contour ridges | 3.3 | 33.0 | 59.9 | 3.8 |
Runoff basin | 6.3 | 64.4 | 28.7 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adham, A.; Riksen, M.; Abed, R.; Shadeed, S.; Ritsema, C. Assessing Suitable Techniques for Rainwater Harvesting Using Analytical Hierarchy Process (AHP) Methods and GIS Techniques. Water 2022, 14, 2110. https://doi.org/10.3390/w14132110
Adham A, Riksen M, Abed R, Shadeed S, Ritsema C. Assessing Suitable Techniques for Rainwater Harvesting Using Analytical Hierarchy Process (AHP) Methods and GIS Techniques. Water. 2022; 14(13):2110. https://doi.org/10.3390/w14132110
Chicago/Turabian StyleAdham, Ammar, Michel Riksen, Rasha Abed, Sameer Shadeed, and Coen Ritsema. 2022. "Assessing Suitable Techniques for Rainwater Harvesting Using Analytical Hierarchy Process (AHP) Methods and GIS Techniques" Water 14, no. 13: 2110. https://doi.org/10.3390/w14132110
APA StyleAdham, A., Riksen, M., Abed, R., Shadeed, S., & Ritsema, C. (2022). Assessing Suitable Techniques for Rainwater Harvesting Using Analytical Hierarchy Process (AHP) Methods and GIS Techniques. Water, 14(13), 2110. https://doi.org/10.3390/w14132110