Equilibrium Isotherms and Kinetic Effects during the Adsorption of Pb(II) on Titanosilicates Compared with Natural Zeolite Clinoptilolite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Synthesis of Na-K-ETS-4
2.1.2. Synthesis of Na-K-GTS-1
2.1.3. Preparation of Modified Ammonium (NH4+) Forms
2.1.4. Equilibrium Uptake and Kinetic Studies
2.2. Methods
2.2.1. Powder X-ray Diffraction (PXRD) Analysis
2.2.2. Scanning Electron Microscopy (SEM)
2.2.3. Wavelength Dispersive X-ray Fluorescence Spectroscopy (WDXRF)
2.2.4. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)
2.2.5. Fourier-Transform Infrared (FTIR) Spectroscopy
2.2.6. Specific Surface Area Analysis
3. Results and Discussion
3.1. Characterisation of the Initial Materials
3.2. Ion Exchange (IE), Theoretical Exchange Capacity (TEC), and Cation-Exchange Capacity (CEC)
3.2.1. NH4+-Exchanged and H-Forms
3.2.2. Theoretical Ion-Exchange Capacity
3.2.3. Cation-Exchange Capacity
3.3. Equilibrium Uptake Isotherms
3.4. Adsorption Kinetics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Yuna, Z. Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater. Environ. Eng. Sci. 2016, 33, 443–454. [Google Scholar] [CrossRef]
- Cashin, V.B.; Eldridge, D.S.; Yu, A.; Zhao, D. Surface functionalization and manipulation of mesoporous silica adsorbents for improved removal of pollutants: A review. Environ. Sci. Water Res. Technol. 2018, 4, 110–128. [Google Scholar] [CrossRef]
- Prelot, B.; Einhorn, V.; Marchandeau, F.; Douillard, J.-M.; Zajac, J. Bulk hydrolysis and solid–liquid sorption of heavy metals in multi-component aqueous suspensions containing porous inorganic solids: Are these mechanisms competitive or cooperative? J. Colloid Interface Sci. 2012, 386, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Chen, Y.; Khan, M.A.; Xu, H.; Wang, F.; Xia, M. In-depth study of heavy metal removal by an etidronic acid-functionalized layered double hydroxide. ACS Appl. Mater. Interfaces 2022, 14, 7450–7463. [Google Scholar] [CrossRef]
- Zhu, S.; Khan, M.A.; Kameda, T.; Xu, H.; Wang, F.; Xia, M.; Yoshioka, T. New insights into the capture performance and mechanism of hazardous metals Cr3+ and Cd2+ onto an effective layered double hydroxide based material. J. Hazard. Mater. 2022, 426, 128062. [Google Scholar] [CrossRef]
- Bhattacharyya, K.G.; Gupta, S.S. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Adv. Colloid Interface Sci. 2008, 140, 114–131. [Google Scholar] [CrossRef]
- Naseem, R.; Tahir, S. Removal of Pb (II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Res. 2001, 35, 3982–3986. [Google Scholar] [CrossRef]
- Akpomie, G.; Ogbu, I.; Osunkunle, A.; Abuh, M.; Abonyi, M. Equilibrium isotherm studies on the sorption of Pb (II) from solution by Ehandiagu clay. J. Emerg. Trends Eng. Appl. Sci. 2012, 3, 354–358. [Google Scholar]
- Egbosiuba, T.C.; Egwunyenga, M.C.; Tijani, J.O.; Mustapha, S.; Abdulkareem, A.S.; Kovo, A.S.; Krikstolaityte, V.; Veksha, A.; Wagner, M.; Lisak, G. Activated multi-walled carbon nanotubes decorated with zero valent nickel nanoparticles for arsenic, cadmium and lead adsorption from wastewater in a batch and continuous flow modes. J. Hazard. Mater. 2022, 423, 126993. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, X.; Wang, S.; Huang, Y.; Zeng, X.-F.; Maganti, S.; Jiang, Q.; Huang, M.; Guo, Z.; Cao, D. Heavy Metal Removal from Wastewater by a Polypyrrole-derived N-doped Carbon Nanotube Decorated with Fish Scale-like Molybdenum Disulfide Nanosheets. Eng. Sci. 2022, 18, 320–328. [Google Scholar] [CrossRef]
- Vesali-Naseh, M.; Naseh, M.R.V.; Ameri, P. Adsorption of Pb (II) ions from aqueous solutions using carbon nanotubes: A systematic review. J. Clean. Prod. 2021, 291, 125917. [Google Scholar] [CrossRef]
- Tao, H.-C.; Zhang, H.-R.; Li, J.-B.; Ding, W.-Y. Biomass based activated carbon obtained from sludge and sugarcane bagasse for removing lead ion from wastewater. Bioresour. Technol. 2015, 192, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Sherugar, P.; Padaki, M.; Naik, N.S.; George, S.D.; Murthy, D.H. Biomass-derived versatile activated carbon removes both heavy metals and dye molecules from wastewater with near-unity efficiency: Mechanism and kinetics. Chemosphere 2022, 287, 132085. [Google Scholar] [CrossRef] [PubMed]
- Haider, S.; Ali, F.A.A.; Haider, A.; Al-Masry, W.A.; Al-Zeghayer, Y. Novel route for amine grafting to chitosan electrospun nanofibers membrane for the removal of copper and lead ions from aqueous medium. Carbohydr. Polym. 2018, 199, 406–414. [Google Scholar] [CrossRef]
- Gao, M.; Ma, Q.; Lin, Q.; Chang, J.; Ma, H. A novel approach to extract SiO2 from fly ash and its considerable adsorption properties. Mater. Des. 2017, 116, 666–675. [Google Scholar] [CrossRef]
- Lv, Q.; Hu, X.; Zhang, X.; Huang, L.; Liu, Z.; Sun, G. Highly efficient removal of trace metal ions by using poly (acrylic acid) hydrogel adsorbent. Mater. Des. 2019, 181, 107934. [Google Scholar] [CrossRef]
- McCusker, L.B.; Baerlocher, C. Zeolite Structures. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2007; pp. 13–37. [Google Scholar]
- Haemmerle, M.M.; Fendrych, J.; Matiasek, E.; Tschegg, C. Adsorption and Release Characteristics of Purified and Non-Purified Clinoptilolite Tuffs towards Health-Relevant Heavy Metals. Crystals 2021, 11, 1343. [Google Scholar] [CrossRef]
- Prajitno, M.Y.; Taufiqurrakhman, M.; Harbottle, D.; Hunter, T.N. Kinetic Studies of Cs+ and Sr2+ Ion Exchange Using Clinoptilolite in Static Columns and an Agitated Tubular Reactor (ATR). ChemEngineering 2021, 5, 9. [Google Scholar] [CrossRef]
- Warchoł, J.K.; Sobolewska, P.; Tylus, W.; Petrus, R. Fixed-Bed Modification of Zeolitic Tuffs and Their Application for Cr(VI) Removal. Materials 2021, 14, 7061. [Google Scholar] [CrossRef]
- Noviello, M.; Gattullo, C.E.; Faccia, M.; Paradiso, V.M.; Gambacorta, G. Application of natural and synthetic zeolites in the oenological field. Food Res. Int. 2021, 150, 110737. [Google Scholar] [CrossRef]
- Tzia, C.; Zorpas, A.A. Zeolites in Food Processing Industries. In Handbook of Natural Zeolites; Bentham Science Publishers: Sharjah, United Arab Emirates, 2012; pp. 601–651. [Google Scholar]
- Nakhli, S.A.A.; Delkash, M.; Bakhshayesh, B.E.; Kazemian, H. Application of zeolites for sustainable agriculture: A review on water and nutrient retention. Water Air Soil Pollut. 2017, 228, 464. [Google Scholar] [CrossRef]
- Milović, T.; Šupić, S.; Malešev, M.; Radonjanin, V. The Effects of Natural Zeolite as Fly Ash Alternative on Frost Resistance and Shrinkage of Blended Cement Mortars. Sustainability 2022, 14, 2736. [Google Scholar] [CrossRef]
- Feng, N.-Q.; Peng, G.-F. Applications of natural zeolite to construction and building materials in China. Constr. Build. Mater. 2005, 19, 579–584. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Yu, J. Applications of zeolites in sustainable chemistry. Chem 2017, 3, 928–949. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. Characteristics and Mechanisms of Heavy Metal and MTBE Adsorption on Zeolites and Applications in Permeable Reactive Barriers. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2019. [Google Scholar]
- De Raffele, G.; Aloise, A.; De Luca, P.; Vuono, D.; Tagarelli, A.; Nagy, J. Kinetic and thermodynamic effects during the adsorption of heavy metals on ETS-4 and ETS-10 microporous materials. J. Porous Mater. 2016, 23, 389–400. [Google Scholar] [CrossRef]
- Kuznicki, S. Preparation of Small-Pored Crystalline Titanium Molecular Sieve Zeolites. U.S. Patent No. 4,938,939, 3 July 1990. [Google Scholar]
- Lei, Y.; Guan, J.-J.; Chen, W.; Ke, Q.-F.; Zhang, C.-Q.; Guo, Y.-P. Fabrication of hydroxyapatite/chitosan porous materials for Pb (II) removal from aqueous solution. RSC Adv. 2015, 5, 25462–25470. [Google Scholar] [CrossRef]
- Wen, X.; Shao, C.-T.; Chen, W.; Lei, Y.; Ke, Q.-F.; Guo, Y.-P. Mesoporous carbonated hydroxyapatite/chitosan porous materials for removal of Pb (ii) ions under flow conditions. RSC Adv. 2016, 6, 113940–113950. [Google Scholar] [CrossRef]
- Chatterjee, A.; Shamim, S.; Jana, A.K.; Basu, J.K. Insights into the competitive adsorption of pollutants on a mesoporous alumina–silica nano-sorbent synthesized from coal fly ash and a waste aluminium foil. RSC Adv. 2020, 10, 15514–15522. [Google Scholar] [CrossRef]
- Loizidou, M.; Haralambous, K.; Loukatos, A.; Dimitrakopoulou, D. Natural zeolites and their ion exchange behavior towards chromium. J. Environ. Sci. Health Part A 1992, 27, 1759–1769. [Google Scholar] [CrossRef]
- Senila, M.; Cadar, O.; Senila, L.; Angyus, B.S. Simulated Bioavailability of Heavy Metals (Cd, Cr, Cu, Pb, Zn) in Contaminated Soil Amended with Natural Zeolite Using Diffusive Gradients in Thin-Films (DGT) Technique. Agriculture 2022, 12, 321. [Google Scholar] [CrossRef]
- Inchaurrondo, N.S.; Font, J. Clay, Zeolite and Oxide Minerals: Natural Catalytic Materials for the Ozonation of Organic Pollutants. Molecules 2022, 27, 2151. [Google Scholar] [CrossRef] [PubMed]
- Robson, H. Verified Synthesis of Zeolitic Materials; Gulf Professional Publishing: Oxford, UK, 2001. [Google Scholar]
- Kuznicki, S.M.; Curran, J.S.; Yang, X. ETS-14 Crystalline Titanium Silicate Molecular Sieves, Manufacture and Use Thereof. U.S. Patent No. 5,882,624, 16 March 1999. [Google Scholar]
- Samburov, G.O.; Kalashnikova, G.O.; Panikorovskii, T.L.; Bocharov, V.N.; Kasikov, A.; Selivanova, E.; Bazai, A.V.; Bernadskaya, D.; Yakovenchuk, V.N.; Krivovichev, S.V. A Synthetic Analog of the Mineral Ivanyukite: Sorption Behavior to Lead Cations. Crystals 2022, 12, 311. [Google Scholar] [CrossRef]
- Chapman, D.M.; Roe, A.L. Synthesis, characterization and crystal chemistry of microporous titanium-silicate materials. Zeolites 1990, 10, 730–737. [Google Scholar] [CrossRef]
- Ferreira, T.R.; Lopes, C.B.; Lito, P.F.; Otero, M.; Lin, Z.; Rocha, J.; Pereira, E.; Silva, C.M.; Duarte, A. Cadmium(II) removal from aqueous solution using microporous titanosilicate ETS-4. Chem. Eng. J. 2009, 147, 173–179. [Google Scholar] [CrossRef]
- Lopes, C.B.; Otero, M.; Lin, Z.; Silva, C.M.; Pereira, E.; Rocha, J.; Duarte, A.C. Effect of pH and temperature on Hg2+ water decontamination using ETS-4 titanosilicate. J. Hazard. Mater. 2010, 175, 439–444. [Google Scholar] [CrossRef]
- Lopes, C.B.; Pereira, E.; Lin, Z.; Pato, P.; Otero, M.; Silva, C.M.; Rocha, J.; Duarte, A.C. Fixed-bed removal of Hg2+ from contaminated water by microporous titanosilicate ETS-4: Experimental and theoretical breakthrough curves. Microporous Mesoporous Mater. 2011, 145, 32–40. [Google Scholar] [CrossRef]
- Noh, Y.D.; Komarneni, S. Selective Cobalt (II) Exchange Properties of Na-2-Mica and Na-ETS-4. Solvent Extr. Ion Exch. 2012, 30, 524–535. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, S.; Bai, P.; Hu, H.; Jin, L. Adsorption separation performance of H2/CH4 on ETS-4 by concentration pulse chromatography. J. Energy Chem. 2014, 23, 213–220. [Google Scholar] [CrossRef]
- Al Attar, L.; Dyer, A. Sorption of uranium onto titanosilicate materials. J. Radioanal. Nucl. Chem. 2001, 247, 121–128. [Google Scholar]
- Al-Attar, L.; Dyer, A.; Harjula, R. Uptake of radionuclides on microporous and layered ion exchange materials. J. Mater. Chem. 2003, 13, 2963–2968. [Google Scholar] [CrossRef]
- Maple, M.J.; Williams, C.D. Separating nitrogen/methane on zeolite-like molecular sieves. Microporous Mesoporous Mater. 2008, 111, 627–631. [Google Scholar] [CrossRef]
- Vosoughi, M.; Maghsoudi, H. Characterization of size-selective kinetic-based Ba-ETS-4 titanosilicate for nitrogen/methane separation: Chlorine-enhanced steric effects. Sep. Purif. Technol. 2022, 284, 120243. [Google Scholar] [CrossRef]
- Yang, J.; Liu, J.; Liu, P.; Li, L.; Tang, X.; Shang, H.; Li, J.; Chen, B. K-Chabazite Zeolite Nanocrystal Aggregates for Highly Efficient Methane Separation. Angew. Chem. 2022, 134, e202116850. [Google Scholar]
- Bhadra, S.; Farooq, S. Separation of methane–nitrogen mixture by pressure swing adsorption for natural gas upgrading. Ind. Eng. Chem. Res. 2011, 50, 14030–14045. [Google Scholar] [CrossRef]
- Marathe, R.; Farooq, S.; Srinivasan, M. Effects of site occupancy, cation relocation, and pore geometry on adsorption kinetics in ETS-4. J. Phys. Chem. B 2005, 109, 3257–3261. [Google Scholar] [CrossRef] [PubMed]
- Kuznicki, S.M.; Bell, V.A.; Nair, S.; Hillhouse, H.W.; Jacubinas, R.M.; Braunbarth, C.M.; Toby, B.H.; Tsapatsis, M. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature 2001, 412, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Anson, A.; Lin, C.; Kuznicki, T.; Kuznicki, S. Separation of ethylene/ethane mixtures by adsorption on small-pored titanosilicate molecular sieves. Chem. Eng. Sci. 2010, 65, 807–811. [Google Scholar] [CrossRef]
- Lin, C.C.; Sawada, J.A.; Wu, L.; Haastrup, T.; Kuznicki, S.M. Anion-controlled pore size of titanium silicate molecular sieves. J. Am. Chem. Soc. 2009, 131, 609–614. [Google Scholar] [CrossRef]
- Sawada, J.A.; Rode, E.J.; Kuznicki, S.M.; Lin, C.C.I. Silicate Materials, Method for Their Manufacture, and Method for Using Such Silicate Materials for Adsorptive Fluid Separations. U.S. Patent No. 8,545,608, 1 October 2013. [Google Scholar]
- Clearfield, A. Structure and ion exchange properties of tunnel type titanium silicates. Solid State Sci. 2001, 3, 103–112. [Google Scholar] [CrossRef]
- Behrens, E.A.; Sylvester, P.; Graziano, G.; Clearfield, A. Evaluation of a Sodium Nonatitanate, Sodium Titanosilicate, and Pharmacosiderite-Type Ion Exchangers for Strontium Removal from DOE Waste and Hanford N-Springs Groundwater Simulants. In Science and Technology for Disposal of Radioactive Tank Wastes; Schulz, W.W., Lombardo, N.J., Eds.; Springer US: Boston, MA, USA, 1998; pp. 287–299. [Google Scholar] [CrossRef]
- Lihareva, N.; Kostov-Kytin, V. Sorption of Cs+ by nano-sized microporous titanium silicates with pharmacosiderite structure. Bulg. Chem. Commun. 2014, 46, 569–575. [Google Scholar]
- Dyer, A.; Pillinger, M.; Amin, S. Ion exchange of caesium and strontium on a titanosilicate analogue of the mineral pharmacosiderite. J. Mater. Chem. 1999, 9, 2481–2487. [Google Scholar] [CrossRef]
- Langella, A.; Pansini, M.; Cappelletti, P.; De Gennaro, B.; De’Gennaro, M.; Colella, C. NH+4, Cu2+, Zn2+, Cd2+ and Pb2+ exchange for Na+ in a sedimentary clinoptilolite, North Sardinia, Italy. Microporous Mesoporous Mater. 2000, 37, 337–343. [Google Scholar] [CrossRef]
- Inglezakis, V.; Loizidou, M.; Grigoropoulou, H. Equilibrium and kinetic ion exchange studies of Pb2+, Cr3+, Fe3+ and Cu2+ on natural clinoptilolite. Water Res. 2002, 36, 2784–2792. [Google Scholar] [CrossRef]
- Oter, O.; Akcay, H. Use of natural clinoptilolite to improve water quality: Sorption and selectivity studies of lead (II), copper (II), zinc (II), and nickel (II). Water Environ. Res. 2007, 79, 329–335. [Google Scholar] [CrossRef]
- Orhan, Y.; Kocaoba, S. Adsorption of toxic metals by natural and modified clinoptilolite. Ann. Chim. J. Anal. Environ. Cult. Herit. Chem. 2007, 97, 781–790. [Google Scholar] [CrossRef]
- Li, Y.; Bai, P.; Yan, Y.; Yan, W.; Shi, W.; Xu, R. Removal of Zn2+, Pb2+, Cd2+, and Cu2+ from aqueous solution by synthetic clinoptilolite. Microporous Mesoporous Mater. 2019, 273, 203–211. [Google Scholar] [CrossRef]
- Liu, X.; Tian, R.; Ding, W.; He, Y.; Li, H. Adsorption selectivity of heavy metals by Na-clinoptilolite in aqueous solutions. Adsorption 2019, 25, 747–755. [Google Scholar] [CrossRef]
- Kostov-Kytin, V.; Ferdov, S.; Kalvachev, Y.; Mihailova, B.; Petrov, O. Hydrothermal synthesis of microporous titanosilicates. Microporous Mesoporous Mater. 2007, 105, 232–238. [Google Scholar] [CrossRef]
- Ferdov, S.; Lengauer, C.; Petrov, O.; Kostov-Kytin, V. A rapid method for low-temperature synthesis of the Na analogue of the microporous titanosilicate GTS-1. J. Mater. Sci. 2004, 39, 4343–4344. [Google Scholar] [CrossRef]
- Toraya, H. A new method for quantitative phase analysis using X-ray powder diffraction: Direct derivation of weight fractions from observed integrated intensities and chemical compositions of individual phases. J. Appl. Crystallogr. 2016, 49, 1508–1516. [Google Scholar] [CrossRef]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The highscore suite. Powder Diffr. 2014, 29, S13–S18. [Google Scholar] [CrossRef] [Green Version]
- Hieu, D.T.; Kosslick, H.; Riaz, M.; Schulz, A.; Springer, A.; Frank, M.; Jaeger, C.; Thu, N.T.M.; Son, L.T. Acidity and Stability of Brønsted Acid Sites in Green Clinoptilolite Catalysts and Catalytic Performance in the Etherification of Glycerol. Catalysts 2022, 12, 253. [Google Scholar] [CrossRef]
- Esmaeeli, N.; Faghihian, H. Synthesis and characterization of magnetized ETS-4 modified with lanthanum and iron for fluoride adsorption. Environ. Prog. Sustain. Energy 2020, 39, e13420. [Google Scholar] [CrossRef]
- Nair, S.; Jeong, H.-K.; Chandrasekaran, A.; Braunbarth, C.M.; Tsapatsis, M.; Kuznicki, S.M. Synthesis and structure determination of ETS-4 single crystals. Chem. Mater. 2001, 13, 4247–4254. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Sprynskyy, M.; Terzyk, A.P.; Lebedynets, M.; Namieśnik, J.; Buszewski, B. Porous structure of natural and modified clinoptilolites. J. Colloid Interface Sci. 2006, 297, 77–85. [Google Scholar] [CrossRef]
- Behrens, E.A.; Clearfield, A. Titanium silicates, M3HTi4O4(SiO4)3·4H2O (M = Na+, K+),with three-dimensional tunnel structures for the selective removal of strontium and cesium from wastewater solutions. Microporous Mater. 1997, 11, 65–75. [Google Scholar] [CrossRef]
- Warzywoda, J.; Yilmaz, B.; Miraglia, P.Q.; Sacco, A., Jr. Characterization of titanosilicate ETS-4 crystals grown from synthesis mixtures of different alkalinity. Microporous Mesoporous Mater. 2004, 71, 177–183. [Google Scholar] [CrossRef]
- Behrens, E.A.; Poojary, D.M.; Clearfield, A. Syntheses, Crystal Structures, and Ion-Exchange Properties of Porous Titanosilicates, HM3Ti4O4(SiO4)3·4H2O (M = H+, K+, Cs+), Structural Analogues of the Mineral Pharmacosiderite. Chem. Mater. 1996, 8, 1236–1244. [Google Scholar] [CrossRef]
- Li, Z.; Pan, Z.; Wang, Y. Enhanced adsorption of cationic Pb (II) and anionic Cr (VI) ions in aqueous solution by amino-modified nano-sized illite-smectite clay. Environ. Sci. Pollut. Res. 2019, 26, 11126–11139. [Google Scholar] [CrossRef]
- Ouki, S.K.; Kavannagh, M. Performance of natural zeolites for the treatment of mixed metal-contaminated effluents. Waste Manag. Res. 1997, 15, 383–394. [Google Scholar] [CrossRef]
- Alghamdi, A.A.; Al-Odayni, A.-B.; Saeed, W.S.; Al-Kahtani, A.; Alharthi, F.A.; Aouak, T. Efficient adsorption of lead (II) from aqueous phase solutions using polypyrrole-based activated carbon. Materials 2019, 12, 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zhang, J.; Zhao, R.; Li, Y.; Li, C.; Zhang, C. Adsorption of Pb (II) on activated carbon prepared from Polygonum orientale Linn.: Kinetics, isotherms, pH, and ionic strength studies. Bioresour. Technol. 2010, 101, 5808–5814. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Li, Y.; Xu, Y. Adsorption of Pb (II) and Cr (VI) from Aqueous Solution by Synthetic Allophane Suspension: Isotherm, Kinetics, and Mechanisms. Toxics 2022, 10, 291. [Google Scholar] [CrossRef] [PubMed]
- Chiew, C.S.C.; Yeoh, H.K.; Pasbakhsh, P.; Krishnaiah, K.; Poh, P.E.; Tey, B.T.; Chan, E.S. Halloysite/alginate nanocomposite beads: Kinetics, equilibrium and mechanism for lead adsorption. Appl. Clay Sci. 2016, 119, 301–310. [Google Scholar] [CrossRef]
- Srivastava, S.; Singh, A.; Sharma, A. Studies on the uptake of lead and zinc by lignin obtained from black liquor–a paper industry waste material. Environ. Technol. 1994, 15, 353–361. [Google Scholar] [CrossRef]
- Saeed, K.; Haider, S.; Oh, T.-J.; Park, S.-Y. Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J. Membr. Sci. 2008, 322, 400–405. [Google Scholar] [CrossRef]
- Song, X.; Li, L.; Zhou, L.; Chen, P. Magnetic thiolated/quaternized-chitosan composites design and application for various heavy metal ions removal, including cation and anion. Chem. Eng. Res. Des. 2018, 136, 581–592. [Google Scholar] [CrossRef]
- Nyairo, W.N.; Eker, Y.R.; Kowenje, C.; Akin, I.; Bingol, H.; Tor, A.; Ongeri, D.M. Efficient adsorption of lead (II) and copper (II) from aqueous phase using oxidized multiwalled carbon nanotubes/polypyrrole composite. Sep. Sci. Technol. 2018, 53, 1498–1510. [Google Scholar] [CrossRef]
- Tehrani, M.S.; Azar, P.A.; Namin, P.E.; Dehaghi, S.M. Removal of lead ions from wastewater using functionalized multiwalled carbon nanotubes with tris (2-aminoethyl) amine. J. Environ. Prot. 2013, 4, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Jamshidian, M.; Sadeghalvad, B.; Ghasemi, I.; Ebrahimi, H.; Rezaeian, I. Fabrication of polyethersulfone/functionalized MWCNTs nanocomposite and investigation its efficiency as an adsorbent of Pb (II) ions. Arab. J. Sci. Eng. 2021, 46, 6259–6273. [Google Scholar] [CrossRef]
- Papageorgiou, S.; Kouvelos, E.; Katsaros, F. Calcium alginate beads from Laminaria digitata for the removal of Cu+2 and Cd+2 from dilute aqueous metal solutions. Desalination 2008, 224, 293–306. [Google Scholar] [CrossRef]
- Ozdes, D.; Duran, C.; Senturk, H.B. Adsorptive removal of Cd (II) and Pb (II) ions from aqueous solutions by using Turkish illitic clay. J. Environ. Manag. 2011, 92, 3082–3090. [Google Scholar] [CrossRef] [PubMed]
- Jha, V.K.; Matsuda, M.; Miyake, M. Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni2+, Cu2+, Cd2+ and Pb2+. J. Hazard. Mater. 2008, 160, 148–153. [Google Scholar] [CrossRef]
- Bektaş, N.; Kara, S. Removal of lead from aqueous solutions by natural clinoptilolite: Equilibrium and kinetic studies. Sep. Purif. Technol. 2004, 39, 189–200. [Google Scholar] [CrossRef]
- Ćurković, L.; Cerjan-Stefanović, Š.; Filipan, T. Metal ion exchange by natural and modified zeolites. Water Res. 1997, 31, 1379–1382. [Google Scholar] [CrossRef]
Initial Samples | “H” Forms | Ion-Exchanged Forms |
---|---|---|
CPT | ||
(Na0.31Mg0.41K3.52Ca3.04) (Si30.60Al4.93Fe0.46)O72.98 | (Mg0.22K0.79Ca0.36) (Si31.04Al4.58Fe0.38)O67.92 | (Mg0.29K0.72Ca0.36Pb0.19) (Si30.84Al4.80Fe0.37)O68.56 |
ETS-4 | ||
(Na4.78K1.69) Ti5.43Si11.57O38.61 | (Na0.92K0.23) Ti5.43Si11.57O35.85 | (Na0.15K0.20Pb2.05) Ti5.12Si11.85O34.53 |
GTS-1 | ||
(Na2.57K1.84) Ti4.12Si2.88O17.38 | (Na0.08K0.02) Ti4.13Si2.87O14.69 | (K0.04Pb1.32) Ti4.04Si2.96O14.88 |
Pb-ETS-4 | ||
Freundlich | Temkin | Langmuir |
n = 4.64203 ± 1.02509 | KT = 2.0759 ± 1.0863 | Qmax = 313.42039 ± 20.87612 |
KF = 72.184 ± 20.677 | B = 42.8093 ± 5.07527 | KL = 0.07663 ± 0.02091 |
R2 = 0.69311 | R2 = 0.83362 | R2 = 0.90896 |
Pb-GTS-1 | ||
n = 2.89261 ± 0.5482 | KT = 0.35742 ± 0.0931 | Qmax = 342.20151 ± 23.73971 |
KF = 36.3433 ± 14.0089 | B = 61.0059 ± 4.9647 | KL = 0.0226 ± 0.00705 |
R2 = 0.91572 | R2 = 0.94936 | R2 = 0.95571 |
Pb-CPT | ||
n = 4.33825 ± 0.7453 | KT = 35.23702 ± 39.5469 | Qmax = 9.98319 ± 1.1036 |
KF = 2.29507 ± 0.4646 | B = 0.85214 ± 0.12803 | KL = 0.02271 ± 0.00938 |
R2 = 0.91572 | R2 = 0.84405 | R2 = 0.85493 |
Pb ETS-4 | |
Pseudo 1st order | Pseudo 2nd order |
qeq = 183.60 ± 6.34 | qeq = 198.57 ± 13.07 |
k1 = 0.1242 ±0.015 | k2= 0.0009 ± 0.0003 |
R2 = 0.96632 | R2 = 0.91479 |
Pb GTS-1 | |
qeq = 319.02 ± 3.50 | qeq = 342.79 ± 12.31 |
k1 = 0.1236 ± 0.005 | k2 = 0.0005 ± 0.0001 |
R2 = 0.99623 | R2 = 0.97152 |
Pb CPT | |
qeq = 12.18 ± 0.47 | qeq =13.58 ± 0.65 |
k1 = 0.06 ± 0.007 | k2 = 0.006 ± 0.001 |
R2 = 0.96641 | R2 = 0.96705 |
Adsorbent | qm (mg/g) Pb2+ | Reference |
---|---|---|
Bentonite | 52.6 | [6] |
Montmorillonite | 21.6 | [6] |
Montmorillonite after acid activation | 22.7 | [6] |
Kaolinite | 5.2 | [6] |
Kaolinite after acid activation | 6.3 | [6] |
Illite–smectite clay | 131.23 | [77] |
Chabazite | 6.0 | [78] |
Polypyrrole-based AC | 50.0 | [79] |
Polygonum orientale Linn | 98.39 | [80] |
Coconut shell | 76.66 | [80] |
Allophane | 90.17 | [81] |
Halloysite/alginate beads (nano) | 325.00 | [82] |
Lignin | 1865.00 | [83] |
Amidoxime improvised polyacrylonitrile | 263.45 | [84] |
Cyshtcc-Fe3O4 | 235.63 | [85] |
PPy/oMWCNT composite | 26.32 | [86] |
TAA-MWCNTs | 71.1 | [87] |
PES/MWCNTs-NH2 | 227.1 | [88] |
Ca-alginate beads functionalised | 360.11 | [89] |
Ehandiagu clay | 0.45 | [8] |
Illitic clay (Turkish) | 238.98 | [90] |
NaX + activated carbon | 228 | [91] |
Clinoptilolite | 6.0 | [78] |
Clinoptilolite (Turkey) | 10 | [92] |
Clinoptilolite (Croatia) | 78.7 | [93] |
Na-clinoptilolite (Croatia) | 91.2 | [93] |
H-clinoptilolite (Beli Plast) | 4.33 | this work |
ETS-4 | 313 | this work |
GTS-1 | 342 | this work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsvetanova, L.; Barbov, B.; Rusew, R.; Delcheva, Z.; Shivachev, B. Equilibrium Isotherms and Kinetic Effects during the Adsorption of Pb(II) on Titanosilicates Compared with Natural Zeolite Clinoptilolite. Water 2022, 14, 2152. https://doi.org/10.3390/w14142152
Tsvetanova L, Barbov B, Rusew R, Delcheva Z, Shivachev B. Equilibrium Isotherms and Kinetic Effects during the Adsorption of Pb(II) on Titanosilicates Compared with Natural Zeolite Clinoptilolite. Water. 2022; 14(14):2152. https://doi.org/10.3390/w14142152
Chicago/Turabian StyleTsvetanova, Liliya, Borislav Barbov, Rusi Rusew, Zlatka Delcheva, and Boris Shivachev. 2022. "Equilibrium Isotherms and Kinetic Effects during the Adsorption of Pb(II) on Titanosilicates Compared with Natural Zeolite Clinoptilolite" Water 14, no. 14: 2152. https://doi.org/10.3390/w14142152
APA StyleTsvetanova, L., Barbov, B., Rusew, R., Delcheva, Z., & Shivachev, B. (2022). Equilibrium Isotherms and Kinetic Effects during the Adsorption of Pb(II) on Titanosilicates Compared with Natural Zeolite Clinoptilolite. Water, 14(14), 2152. https://doi.org/10.3390/w14142152