Possible Increases in Floodable Areas Due to Climate Change: The Case Study of Calabria (Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Methodology
- Assessment of the floodable areas in the current scenario, without climate change, caused by forcings that include storm surge due to wind and due to barometric effect, high tide height, and wave run-up;
- Assessment of floodable areas in the future scenario, with climate change, and with SSP5-8.5 values in addition to the forcings defined in the current scenario;
- Comparisons between the two scenarios.
3. Results
Sample Area | Code | Sw (m) | Sb (m) | HT (m) | Ru2% (m) | Max h CS (m) | FA CS (km2) | FS (m) | Max h FS (m) | FA FS (km2) | ∆FA (km2) |
---|---|---|---|---|---|---|---|---|---|---|---|
Montegiordano | 4530 | 0.15 | 0.43 | 0.13 | 1.53 | 2.24 | 0.037 | 1.26 | 3.50 | 0.081 | 0.044 |
Roseto Capo Spulico | 4689 | 0.15 | 0.43 | 0.13 | 1.52 | 2.23 | 0.049 | 1.26 | 3.49 | 0.102 | 0.053 |
Trebisacce | 4848 | 0.17 | 0.43 | 0.13 | 1.43 | 2.16 | 0.042 | 1.26 | 3.42 | 0.09 | 0.048 |
Villapiana | 5011 | 0.09 | 0.43 | 0.13 | 1.25 | 1.89 | 0.161 | 1.26 | 3.15 | 0.223 | 0.062 |
Rossano | 5173 | 0.03 | 0.43 | 0.13 | 3.27 | 3.86 | 1.071 | 1.26 | 5.12 | 1.253 | 0.182 |
Calopezzati | 5333 | 0.06 | 0.43 | 0.13 | 1.35 | 1.96 | 0.052 | 1.26 | 3.22 | 0.207 | 0.155 |
Cariati | 5496 | 0.13 | 0.43 | 0.13 | 1.38 | 2.07 | 0.262 | 1.26 | 3.33 | 0.544 | 0.282 |
Crucoli-Torretta | 5497 | 0.13 | 0.43 | 0.13 | 1.57 | 2.26 | 0.063 | 1.26 | 3.52 | 0.098 | 0.035 |
Cirò Marina | 5832 | 0.05 | 0.43 | 0.13 | 1.74 | 2.35 | 0.042 | 1.26 | 3.61 | 0.115 | 0.073 |
Torre Melissa | 6004 | 0.08 | 0.43 | 0.13 | 1.73 | 2.36 | 0.054 | 1.26 | 3.62 | 0.069 | 0.015 |
Crotone-Zigari | 6177 | 0.09 | 0.43 | 0.13 | 1.75 | 2.40 | 0.137 | 1.26 | 3.66 | 0.516 | 0.379 |
Crotone | 6352 | 0.04 | 0.43 | 0.13 | 1.76 | 2.35 | 0.064 | 1.26 | 3.61 | 0.095 | 0.031 |
Isola C.R.—Marinella | 6528 | 0.06 | 0.43 | 0.13 | 1.75 | 2.37 | 0.004 | 1.26 | 3.63 | 0.006 | 0.002 |
Isola Capo Rizzuto | 6715 | 0.04 | 0.43 | 0.13 | 1.79 | 2.39 | 0.010 | 1.26 | 3.65 | 0.013 | 0.003 |
Isola C.R.—Le Castella | 6899 | 0.05 | 0.43 | 0.13 | 1.71 | 2.32 | 0.015 | 1.26 | 3.58 | 0.047 | 0.032 |
Cropani | 6898 | 0.01 | 0.43 | 0.13 | 1.62 | 2.19 | 0.050 | 1.26 | 3.45 | 0.166 | 0.116 |
Catanzaro Lido | 6897 | 0.07 | 0.43 | 0.13 | 1.59 | 2.22 | 0.049 | 1.26 | 3.48 | 0.069 | 0.02 |
Soverato | 7080 | 0.04 | 0.43 | 0.13 | 1.63 | 2.22 | 0.035 | 1.26 | 3.48 | 0.049 | 0.014 |
San Sostene | 7262 | 0.02 | 0.43 | 0.13 | 1.62 | 2.20 | 0.064 | 1.26 | 3.46 | 0.339 | 0.275 |
Badolato | 7443 | 0.09 | 0.43 | 0.13 | 1.71 | 2.35 | 0.633 | 1.26 | 3.61 | 1.15 | 0.517 |
Monasterace | 7624 | 0.06 | 0.43 | 0.13 | 1.69 | 2.31 | 0.063 | 1.26 | 3.57 | 0.083 | 0.02 |
Riace | 7807 | 0.05 | 0.43 | 0.13 | 1.81 | 2.42 | 0.027 | 1.26 | 3.68 | 0.087 | 0.06 |
Caulonia | 7990 | 0.09 | 0.43 | 0.13 | 1.68 | 2.32 | 0.274 | 1.26 | 3.58 | 0.395 | 0.121 |
Roccella Ionica | 7989 | 0.06 | 0.43 | 0.13 | 1.54 | 2.16 | 0.032 | 1.26 | 3.42 | 0.061 | 0.029 |
Locri | 8168 | 0.03 | 0.43 | 0.13 | 1.53 | 2.13 | 0.026 | 1.26 | 3.39 | 0.055 | 0.029 |
Bovalino | 8344 | 0.02 | 0.43 | 0.13 | 1.66 | 2.24 | 0.058 | 1.26 | 3.50 | 0.095 | 0.037 |
Ferruzzano | 8514 | 0.05 | 0.43 | 0.13 | 1.71 | 2.32 | 0.037 | 1.26 | 3.58 | 0.052 | 0.015 |
Brancaleone | 8685 | 0.11 | 0.43 | 0.13 | 1.70 | 2.37 | 0.046 | 1.26 | 3.63 | 0.08 | 0.034 |
Palizzi | 8864 | 0.03 | 0.43 | 0.10 | 1.65 | 2.21 | 0.026 | 1.26 | 3.47 | 0.046 | 0.02 |
Bova Marina | 8863 | 0.02 | 0.43 | 0.10 | 1.62 | 2.17 | 0.054 | 1.26 | 3.43 | 0.115 | 0.061 |
Melito Porto Salvo | 8862 | 0.01 | 0.43 | 0.10 | 1.54 | 2.08 | 0.043 | 1.26 | 3.34 | 0.076 | 0.033 |
Lazzaro | 8683 | 0.01 | 0.43 | 0.10 | 6.02 | 6.56 | 0.288 | 1.26 | 7.82 | 0.338 | 0.05 |
Favazzina | 7988 | 0.02 | 0.43 | 0.20 | 1.59 | 2.24 | 0.038 | 1.26 | 3.50 | 0.041 | 0.003 |
Palmi | 7806 | 0.05 | 0.43 | 0.20 | 1.85 | 2.53 | 0.115 | 1.26 | 3.79 | 0.221 | 0.106 |
San Ferdinando | 7622 | 0.07 | 0.43 | 0.20 | 1.81 | 2.51 | 0.151 | 1.26 | 3.77 | 1.369 | 1.218 |
Ricadi | 7442 | 0.02 | 0.43 | 0.20 | 1.64 | 2.29 | 0.016 | 1.26 | 3.55 | 0.028 | 0.012 |
Capo Vaticano | 7261 | 0.03 | 0.43 | 0.25 | 2.04 | 2.74 | 0.025 | 1.26 | 4.00 | 0.051 | 0.026 |
Tropea | 7078 | 0.02 | 0.43 | 0.25 | 2.01 | 2.71 | 0.033 | 1.26 | 3.97 | 0.037 | 0.004 |
Vibo Marina | 6896 | 0.06 | 0.43 | 0.25 | 1.87 | 2.60 | 0.679 | 1.26 | 3.86 | 1.427 | 0.748 |
Gizzeria | 6711 | 0.12 | 0.43 | 0.25 | 1.81 | 2.61 | 0.114 | 1.26 | 3.87 | 0.464 | 0.35 |
Falerna | 6527 | 0.08 | 0.43 | 0.25 | 2.10 | 2.86 | 0.052 | 1.26 | 4.12 | 0.178 | 0.126 |
Amantea | 6350 | 0.05 | 0.43 | 0.25 | 2.01 | 2.74 | 0.071 | 1.26 | 4.00 | 0.158 | 0.087 |
Belmonte | 6175 | 0.04 | 0.43 | 0.25 | 1.98 | 2.70 | 0.056 | 1.26 | 3.96 | 0.091 | 0.035 |
San Lucido | 6002 | 0.06 | 0.43 | 0.25 | 1.94 | 2.68 | 0.077 | 1.26 | 3.94 | 0.107 | 0.03 |
Fuscaldo | 5830 | 0.07 | 0.43 | 0.25 | 1.78 | 2.52 | 0.050 | 1.26 | 3.78 | 0.11 | 0.06 |
Cetraro | 5659 | 0.07 | 0.43 | 0.25 | 2.01 | 2.76 | 0.224 | 1.26 | 4.02 | 0.377 | 0.153 |
Sangineto | 5493 | 0.07 | 0.43 | 0.25 | 1.96 | 2.71 | 0.050 | 1.26 | 3.97 | 0.111 | 0.061 |
Belvedere | 5331 | 0.09 | 0.43 | 0.25 | 2.02 | 2.79 | 0.093 | 1.26 | 4.05 | 0.124 | 0.031 |
S.M. del Cedro | 5172 | 0.04 | 0.43 | 0.25 | 1.90 | 2.62 | 0.106 | 1.26 | 3.88 | 0.962 | 0.856 |
Scalea | 5009 | 0.04 | 0.43 | 0.25 | 1.83 | 2.55 | 0.106 | 1.26 | 3.81 | 0.234 | 0.128 |
Tortora | 4846 | 0.02 | 0.43 | 0.25 | 1.66 | 2.36 | 0.038 | 1.26 | 3.62 | 0.041 | 0.026 |
4. Discussion
4.1. Current Scenario
4.2. Future Scenario
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2021: The Physical Science Basis; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Breaker, L.C.; Ruzmaikin, A. Estimating rates of acceleration based on the 157-year record of sea level from San Francisco, California, USA. J. Coast. Res. 2013, 29, 43–51. [Google Scholar] [CrossRef]
- Nerem, R.S.; Beckley, B.D.; Fasullo, J.T.; Hamlington, B.D.; Masters, D.; Mitchum, G.T. Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. USA 2018, 115, 2022–2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomasicchio, G.R.; Lusito, L.; D’Alessandro, F.; Frega, F.; Francone, A.; De Bartolo, S. A direct scaling analysis for the sea level rise. Stoch. Environ. Res. Risk Assess. 2018, 32, 3397–3408. [Google Scholar] [CrossRef]
- Rubinato, M.; Heyworth, J.; Hart, J. Protecting coastlines from flooding in a changing climate: A preliminary experimental study to investigate a sustainable approach. Water 2020, 12, 2471. [Google Scholar] [CrossRef]
- Freitas, A.; Bernardino, M.; Soares, C.G. The influence of the Arctic Oscillation on North Atlantic wind and wave climate by the end of the 21st century. Ocean. Eng. 2022, 246, 110634. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef]
- Lambeck, K.; Antonioli, F.; Anzidei, M.; Ferranti, L.; Leoni, G.; Scicchitano, G.; Silenzi, S. Sea level change along the Italian coast during the Holocene and projections for the future. Quat. Int. 2011, 232, 250–257. [Google Scholar] [CrossRef]
- IPCC. Summary for policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2007: The Physical Science Basis; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Rahmstorf, S. A semi-empirical approach to projecting future sea-level rise. Science 2007, 315, 368–370. [Google Scholar] [CrossRef] [Green Version]
- Galassi, G.; Spada, G. Sea-level rise in the Mediterranean Sea by 2050: Roles of terrestrial ice melt, steric effects and glacial isostatic adjustment. Glob. Planet. Change 2014, 123, 55–66. [Google Scholar] [CrossRef]
- Zviely, D.; Bitan, M.; Di Segni, D.M. The effect of sea-level rise in the 21st century on marine structures along the Mediterranean coast of Israel: An evaluation of physical damage and adaptation cost. Appl. Geogr. 2015, 57, 154–162. [Google Scholar] [CrossRef]
- Aucelli, P.P.C.; Di Paola, G.; Incontri, P.; Rizzo, A.; Vilardo, G.; Benassai, G.; Buonocore, B.; Pappone, G. Coastal inundation risk assessment due to subsidence and sea level rise in a Mediterranean alluvial plain (Volturno coastal plain–southern Italy). Estuar. Coast. Shelf Sci. 2017, 198, 597–609. [Google Scholar] [CrossRef]
- IPCC. Fifth Assessment Report (AR5). Intergovernmental Panel on Climate Change. In Climate Change 2014: Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Antonioli, F.; Anzidei, M.; Amorosi, A.; Presti, V.L.; Mastronuzzi, G.; Deiana, G.; De Falco, G.; Fontana, A.; Fontolan, G.; Lisco, S.; et al. Sea-level rise and potential drowning of the Italian coastal plains: Flooding risk scenarios for 2100. Quat. Sci. Rev. 2017, 158, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea-level change. Contribution of working group I to the Fifth assessment Report of the intergovernmental Panel on climate change. In Climate Change 2013: The Physical Science Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Da Lio, C.; Tosi, L. Vulnerability to relative sea-level rise in the Po river delta (Italy). Estuar. Coast. Shelf Sci. 2019, 228, 106379. [Google Scholar] [CrossRef]
- Ju, Y.; Lindbergh, S.; He, Y.; Radke, J.D. Climate-related uncertainties in urban exposure to sea level rise and storm surge flooding: A multi-temporal and multi-scenario analysis. Cities 2019, 92, 230–246. [Google Scholar] [CrossRef]
- Mills, L.; Janeiro, J.; Neves, A.A.S.; Martins, F. The impact of Sea level rise in the guadiana estuary. J. Comput. Sci. 2020, 44, 101169. [Google Scholar] [CrossRef]
- De Lima, L.T.; Fernández-Fernández, S.; Weiss, C.V.; Bitencourt, V.; Bernardes, C. Free and open-source software for Geographic Information System on coastal management: A study case of sea-level rise in southern Brazil. Reg. Stud. Mar. Sci. 2021, 48, 102025. [Google Scholar] [CrossRef]
- Roy, B.; Penha-Lopes, G.P.; Uddin, M.S.; Kabir, M.H.; Lourenço, T.C.; Torrejano, A. Sea level rise induced impacts on coastal areas of Bangladesh and local-led community-based adaptation. Int. J. Disaster Risk Reduct. 2022, 73, 102905. [Google Scholar] [CrossRef]
- Hemer, M.A.; Katzfey, J.; Trenham, C.E. Global dynamical projections of surface ocean wave climate for a future high greenhouse gas emission scenario. Ocean. Model. 2013, 70, 221–245. [Google Scholar] [CrossRef]
- Wandres, M.; Pattiaratchi, C.; Hemer, M.A. Projected changes of the southwest Australian wave climate under two atmospheric greenhouse gas concentration pathways. Ocean. Model. 2017, 117, 70–87. [Google Scholar] [CrossRef]
- Morim, J.; Hemer, M.; Cartwright, N.; Strauss, D.; Andutta, F. On the concordance of 21st century wind-wave climate projections. Glob. Planet. Change 2018, 167, 160–171. [Google Scholar] [CrossRef]
- Wang, L.; Perrie, W.; Long, Z.; Blokhina, M.; Zhang, G.; Toulany, B.; Zhang, M. The impact of climate change on the wave climate in the Gulf of St. Lawrence. Ocean. Model. 2018, 128, 87–101. [Google Scholar] [CrossRef]
- Rusu, L. Evaluation of the near future wave energy resources in the Black Sea under two climate scenarios. Renew. Energy 2019, 142, 137–146. [Google Scholar] [CrossRef]
- Kamranzad, B.; Lin, P. Sustainability of wave energy resources in the South China Sea based on five decades of changing climate. Energy 2020, 210, 118604. [Google Scholar] [CrossRef]
- Başaran, B.; Güner, H.A.A. Effect of wave climate change on longshore sediment transport in Southwestern Black Sea. Estuar. Coast. Shelf Sci. 2021, 258, 107415. [Google Scholar] [CrossRef]
- Goharnejad, H.; Nikaein, E.; Perrie, W. Assessment of wave energy in the Persian Gulf: An evaluation of the impacts of climate change. Oceanologia 2021, 63, 27–39. [Google Scholar] [CrossRef]
- Lobeto, H.; Menendez, M.; Losada, I.J.; Hermer, M. The effect of climate change on wind-wave directional spectra. Glob. Planet. Change 2022, 213, 103820. [Google Scholar] [CrossRef]
- Panagoulia, D.; Dimou, G. Sensitivity of flood events to global climate change. J. Hydrol. 1997, 191, 208–222. [Google Scholar] [CrossRef]
- Fiori, E.; Comellas, A.; Molini, L.; Rebora, N.; Siccardi, F.; Gochis, D.J.; Tanelli, S.; Parodi, A. Analysis and hindcast simulations of an extreme rainfall event in the Mediterranean area: The Genoa 2011 case. Atmos. Res. 2014, 138, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Tiron, R.; Gallagher, S.; Gleeson, E.; Dias, F.; McGrath, R. The future wave climate of Ireland: From averages to extremes. Procedia IUTAM 2015, 17, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Vanem, E. A regional extreme value analysis of ocean waves in a changing climate. Ocean. Eng. 2017, 144, 277–295. [Google Scholar] [CrossRef]
- Zellou, B.; Rahali, H. Assessment of the joint impact of extreme rainfall and storm surge on the risk of flooding in a coastal area. J. Hydrol. 2019, 569, 647–665. [Google Scholar] [CrossRef]
- Vieira, B.F.; Pinho, J.L.; Barros, J.A. Extreme wave value analysis under uncertainty of climate change scenarios off Iberian Peninsula coast. Ocean. Eng. 2021, 229, 109018. [Google Scholar] [CrossRef]
- Bhavithra, R.S.; Sannasiraj, S.A. Climate change projection of wave climate due to Vardah cyclone in the Bay of Bengal. Dyn. Atmos. Ocean. 2022, 97, 101279. [Google Scholar] [CrossRef]
- Codignotto, J.O.; Dragani, W.C.; Martin, P.B.; Simionato, C.G.; Medina, R.A.; Alonso, G. Wind-wave climate change and increasing erosion in the outer Río de la Plata, Argentina. Cont. Shelf Res. 2012, 38, 110–116. [Google Scholar] [CrossRef]
- Bacino, G.L.; Dragani, W.C.; Codignotto, J.O. Changes in wave climate and its impact on the coastal erosion in Samborombón Bay, Río de la Plata estuary, Argentina. Estuar. Coast. Shelf Sci. 2019, 219, 71–80. [Google Scholar] [CrossRef]
- Sharaan, M.; Udo, K. Projections of future beach loss along the mediterranean coastline of Egypt due to sea-level rise. Appl. Ocean. Res. 2020, 94, 101972. [Google Scholar] [CrossRef]
- Foti, G.; Barbaro, G.; Barillà, G.C.; Mancuso, P.; Puntorieri, P. Shoreline Evolutionary Trends Along Calabrian Coasts: Causes and Classification. Front. Mar. Sci. 2022, 9, 846914. [Google Scholar] [CrossRef]
- Bernatchez, P.; Fraser, C.; Lefaivre, D.; Dugas, S. Integrating anthropogenic factors, geomorphological indicators and local knowledge in the analysis of coastal flooding and erosion hazards. Ocean. Coast. Manag. 2011, 54, 621–632. [Google Scholar] [CrossRef]
- Muis, S.; Haigh, I.D.; Guimarães Nobre, G.; Aerts, J.C.; Ward, P.J. Influence of El Niño-Southern Oscillation on global coastal flooding. Earth’s Future 2018, 6, 1311–1322. [Google Scholar] [CrossRef]
- Barbaro, G.; Foti, G.; Nucera, A.; Barillà, G.C.; Canale, C.; Puntorieri, P.; Minniti, F. Risk mapping of coastal flooding areas. Case studies: Scilla and Monasterace (Italy). Int. J. Saf. Secur. Eng. 2020, 10, 59–67. [Google Scholar] [CrossRef]
- Lemee, C.; Navarro, O.; Restrepo-Ochoa, D.; Mercier, D.; Fleury-Bahi, G. Protective behaviors regarding coastal flooding risk in a context of climate change. Adv. Clim. Change Res. 2020, 11, 310–316. [Google Scholar] [CrossRef]
- Mori, N.; Takemi, T.; Tachikawa, Y.; Tatano, H.; Shimura, T.; Tanaka, T.; Fujimi, T.; Osakada, Y.; Webb, A.; Nakakita, E. Recent nationwide climate change impact assessments of natural hazards in Japan and East Asia. Weather. Clim. Extrem. 2021, 32, 100309. [Google Scholar] [CrossRef]
- Komar, P.D. Coastal erosion–underlying factors and human impacts. Shore Beach 2000, 68, 3–16. [Google Scholar]
- Dada, O.A.; Li, G.; Qiao, L.; Asiwaju-Bello, Y.A.; Anifowose, A.Y.B. Recent Niger Delta shoreline response to Niger River Hydrology: Conflicts between forces of Nature and Humans. J. Afr. Earth Sci. 2018, 139, 222–231. [Google Scholar] [CrossRef]
- Ozpolat, E.; Demir, T. The spatiotemporal shoreline dynamics of a delta under natural and anthropogenic conditions from 1950 to 2018: A dramatic case from the Eastern Mediterranean. Ocean. Coast. Manag. 2019, 180, 104910. [Google Scholar] [CrossRef]
- Anthony, E.J.; Almar, R.; Besset, M.; Reyns, J.; Laibi, R.; Ranasinghe, R.; Abessolo Ondoa, G.; Vacchi, M. Response of the Bight of Benin (Gulf of Guinea, West Africa) coastline to anthropogenic and natural forcing, Part 2: Sources and patterns of sediment supply, sediment cells, and recent shoreline change. Cont. Shelf Res. 2019, 173, 93–103. [Google Scholar] [CrossRef]
- Zhai, T.; Wang, J.; Fang, Y.; Qin, Y.; Huang, L.; Chen, Y. Assessing ecological risks caused by human activities in rapid urbanization coastal areas: Towards an integrated approach to determining key areas of terrestrial-oceanic ecosystems preservation and restoration. Sci. Total Environ. 2020, 708, 135153. [Google Scholar] [CrossRef]
- Barbaro, G.; Foti, G.; Barillà, G.C.; Frega, F. Beach and Dune Erosion: Causes and Interventions, Case Study: Kaulon Archaeological Site. J. Mar. Sci. Eng. 2022, 10, 14. [Google Scholar] [CrossRef]
- Foti, G.; Barbaro, G.; Barillà, G.C.; Frega, F. Effects of Anthropogenic Pressures on Dune Systems—Case Study: Calabria (Italy). J. Mar. Sci. Eng. 2022, 10, 10. [Google Scholar] [CrossRef]
- Dissanayake, P.; Brown, J.; Wisse, P.; Karunarathna, H. Comparison of stormcluster vs isolated event impacts on beach/dune morphodynamics. Estuar. Coast. Shelf Sci. 2015, 164, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Mavromatidi, A.; Briche, E.; Claeys, C. Mapping and analyzing socio-environmental vulnerability to coastal hazards induced by climate change: An application to coastal Mediterranean cities in France. Cities 2018, 72, 189–200. [Google Scholar] [CrossRef]
- Barbaro, G.; Petrucci, O.; Canale, C.; Foti, G.; Mancuso, P.; Puntorieri, P. Contemporaneity of floods and storms. A case study of Metropolitan Area of Reggio Calabria in Southern Italy. In Proceedings of the 3rd International Symposium New Metropolitan Perspectives (ISTH2020), Reggio Calabria, Italy, 22–25 May 2108; Smart Innovation, Systems and Technologies. Springer: Cham, Switzerland, 2019; Volume 101, pp. 614–620. [Google Scholar] [CrossRef]
- Canale, C.; Barbaro, G.; Petrucci, O.; Fiamma, V.; Foti, G.; Barillà, G.C.; Puntorieri, P.; Minniti, F.; Bruzzaniti, L. Analysis of floods and storms: Concurrent conditions. Ital. J. Eng. Geol. Environ. 2020, 1, 23–29. [Google Scholar] [CrossRef]
- Canale, C.; Barbaro, G.; Foti, G.; Petrucci, O.; Besio, G.; Barillà, G.C. Bruzzano river mouth damage due to meteorological events. Int. J. River Basin Manag. 2021. [Google Scholar] [CrossRef]
- Foti, G.; Barbaro, G.; Barillà, G.C.; Mancuso, P.; Puntorieri, P.; Mandalari, M. Analysis of the correlation between coastal erosion and anthropogenic pressure using remote sensing. Case study: Calabria (Italy). In Proceedings of the X AIT International Conference—Italian Society of Remote Sensing, Cagliari, Italy, 13–15 September 2021. (Virtual event). [Google Scholar]
- Bretschneider, C.L. Engineering Aspects of Hurricane Surge. In Estuary and Coastline Hydrodynamics; Ippen, A.T., Ed.; McGraw-Hill: New York, NY, USA, 1966. [Google Scholar]
- Istituto Idrografico della Marina. Tavole di Marea e Delle Correnti di Marea; Istituto Idrografico della Marina: Genoa, Italy, 2020; p. 144. ISBN 97888II3133. (In Italian) [Google Scholar]
- Sannino, G.; Carillo, A.; Pisacane, G.; Naranjo, C. On the relevance of tidal forcing in modeling the Mediterranean thermohailine circulation. Prog. Oceanogr. 2015, 134, 304–329. [Google Scholar] [CrossRef]
- Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H., Jr. Empirical parameterization of setup, swash, and runup. Coast. Eng. 2006, 53, 573–588. [Google Scholar] [CrossRef]
- Tolman, H.L. User Manual and System Documentation of WAVEWATCH III TM Version 3.14. Technical Note. Available online: https://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf276 (accessed on 15 February 2022).
- Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Developing and validating a forecast/hindcast system for the Mediterranean Sea. J. Coast. Res. 2013, 65, 1551–1556. [Google Scholar] [CrossRef]
- Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Performance evaluation of Wavewatch III in the Mediterranean Sea. Ocean. Model. 2015, 90, 82–94. [Google Scholar] [CrossRef]
- Boccotti, P. Wave Mechanics for Ocean Engineering; Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 2000; Available online: https://www.sciencedirect.com/bookseries/lsevier-oceanography-series/vol/64/suppl/C (accessed on 15 March 2022).
- Sartini, L.; Mentaschi, L.; Besio, G. Comparing different extreme wave analysis models for wave climate assessment along the Italian coast. Coast. Eng. 2015, 100, 37–47. [Google Scholar] [CrossRef]
- Kotz, S.; Balakrishnan, N.; Read, C.B.; Vidakovic, B. Encyclopedia of Statistical Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 1. [Google Scholar]
- Foti, G.; Barbaro, G.; Besio, G.; Barillà, G.C.; Mancuso, P.; Puntorieri, P. Wave Climate along Calabrian Coasts. Climate 2022, 10, 80. [Google Scholar] [CrossRef]
- Schambach, L.; Grilli, S.T.; Tappin, D.R.; Gangemi, M.D.; Barbaro, G. New simulations and understanding of the 1908 Messina tsunami for a dual seismic and deep submarine mass failure source. Mar. Geol. 2020, 421, 106093. [Google Scholar] [CrossRef]
- Sukop, M.C.; Rogers, M.; Guannel, G.; Infanti, J.M.; Hagemann, K. High temporal resolution modeling of the impact of rain, tides, and sea level rise on water table flooding in the Arch Creek basin, Miami-Dade County Florida USA. Sci. Total Environ. 2018, 616, 1668–1688. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yi, S.; Li, M.; Wang, L.; Song, C. Effects of sea level rise, land subsidence, bathymetric change and typhoon tracks on storm flooding in the coastal areas of Shanghai. Sci. Total Environ. 2018, 621, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, K.S.; Wang, S. Characterizing the Indian Ocean sea level changes and potential coastal flooding impacts under global warming. J. Hydrol. 2019, 569, 373–386. [Google Scholar] [CrossRef]
- Gornitz, V.; Oppenheimer, M.; Kopp, R.; Horton, R.; Orton, P.; Rosenzweig, C.; Solecki, W.; Patrick, L. Enhancing New York City’s resilience to sea level rise and increased coastal flooding. Urban Clim. 2020, 33, 100654. [Google Scholar] [CrossRef]
- Cao, A.; Esteban, M.; Valenzuela, V.P.B.; Onuki, M.; Takagi, H.; Thao, N.D.; Tsuchiya, N. Future of Asian Deltaic Megacities under sea level rise and land subsidence: Current adaptation pathways for Tokyo, Jakarta, Manila, and Ho Chi Minh City. Curr. Opin. Environ. Sustain. 2021, 50, 87–97. [Google Scholar] [CrossRef]
- Paulik, R.; Stephens, S.; Wild, A.; Wadhwa, S.; Bell, R.G. Cumulative building exposure to extreme sea level flooding in coastal urban areas. Int. J. Disaster Risk Reduct. 2021, 66, 102612. [Google Scholar] [CrossRef]
- Xu, L.; Cui, S.; Wang, X.; Tang, J.; Nitivattananon, V.; Ding, S.; Nguyen, M.N. Dynamic risk of coastal flood and driving factors: Integrating local sea level rise and spatially explicit urban growth. J. Clean. Prod. 2021, 321, 129039. [Google Scholar] [CrossRef]
- Amoura, R.; Dahmani, K. Visualization of the spatial extent of flooding expected in the coastal area of Algiers due to sea level rise. Horizon 2030/2100. Ocean. Coast. Manag. 2022, 219, 106041. [Google Scholar] [CrossRef]
- Furlan, E.; Dalla Pozza, P.; Michetti, M.; Torresan, S.; Critto, A.; Marcomini, A. Development of a Multi-Dimensional Coastal Vulnerability Index: Assessing vulnerability to inundation scenarios in the Italian coast. Sci. Total Environ. 2021, 772, 144650. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbaro, G.; Bombino, G.; Foti, G.; Barillà, G.C.; Puntorieri, P.; Mancuso, P. Possible Increases in Floodable Areas Due to Climate Change: The Case Study of Calabria (Italy). Water 2022, 14, 2240. https://doi.org/10.3390/w14142240
Barbaro G, Bombino G, Foti G, Barillà GC, Puntorieri P, Mancuso P. Possible Increases in Floodable Areas Due to Climate Change: The Case Study of Calabria (Italy). Water. 2022; 14(14):2240. https://doi.org/10.3390/w14142240
Chicago/Turabian StyleBarbaro, Giuseppe, Giuseppe Bombino, Giandomenico Foti, Giuseppina Chiara Barillà, Pierfabrizio Puntorieri, and Pierluigi Mancuso. 2022. "Possible Increases in Floodable Areas Due to Climate Change: The Case Study of Calabria (Italy)" Water 14, no. 14: 2240. https://doi.org/10.3390/w14142240
APA StyleBarbaro, G., Bombino, G., Foti, G., Barillà, G. C., Puntorieri, P., & Mancuso, P. (2022). Possible Increases in Floodable Areas Due to Climate Change: The Case Study of Calabria (Italy). Water, 14(14), 2240. https://doi.org/10.3390/w14142240