Influence of Solar Photovoltaic System on the Concentration and Environmental Risks of Heavy Metals in Subsidence Pond Water from Coal Mining Area: A Case Study from Huainan Subsidence Pond
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Collection of Water Samples
2.3. Analytical Methods
2.4. Health Risk Assessment
2.5. Data Analysis
3. Results and Discussion
3.1. Heavy Metals Concentrations in Different Subsidence Ponds
3.2. Heavy Metals Distribution in Different Subsidence Ponds
3.3. Heavy Metals Source Analysis in Different Subsidence Ponds
3.4. The Health Risks of Heavy Metals in Different Subsidence Ponds
3.4.1. Non-Carcinogenic Health Risks
3.4.2. Carcinogenic Health Risk
3.4.3. Uncertainty Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, E.N.; Gui, H.R. Four trace elements contents of water environment of mining subsidence in the Huainan diggings, China. Environ. Monit. Assess. 2008, 146, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.J.; Zhang, J.; Zhang, Y.J. Investigation on heavy metals pollution in coal-mining subsided water of Jining City. Occup. Health 2013, 29, 5–7, (In Chinese with English abstract). [Google Scholar]
- Chen, G.Z.; Wang, X.M.; Wang, R.W.; Liu, G.J. Health risk assessment of potentially harmful elements in subsidence waterbodies using a Monte Carlo approach: An example from the Huainan coal mining area, China. Ecotoxicol. Environ. Saf. 2019, 171, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Gui, H.R.; Yao, E.Q.; Song, X.M.; Yuan, Z.H.; Zhang, G. Research on Recycling Technology of Coal Mine Water; University of Mining and Technology Press: Xuzhou, China, 2011; (In Chinese with English abstract). [Google Scholar]
- Liu, F.; Lu, L. Progress in the study of ecological restoration of coal mining subsidence areas. J. Nat. Resour. 2009, 24, 612–620. [Google Scholar]
- Chen, Y.C.; Yuan, L.; Xu, C. Investigation on using mining subsidence area to build a reservoir in Huainan Coal Mining Area. J. China Coal. Soc. 2016, 41, 2830–2835. [Google Scholar]
- Yan, J.P.; Cheng, F.K.; Gong, C.G.; Gu, D.M.; Fan, T.Y.; Liu, J.; Meng, H.; Yu, H.J.; Zhang, B. Plain reservoir construction and water resources protection and utilization of Linhuan mining area in Huaibei. Coal. Sci. Technol. 2015, 43, 158–162. [Google Scholar]
- Ouyang, Z.Z.; Gao, L.M.; Yang, C. Distribution, sources and influence factors of polycyclic aromatic hydrocarbon at different depths of the soil and sediments of two typical coal mining subsidence areas in Huainan, China. Ecotoxicol. Environ. Saf. 2018, 163, 255–265. [Google Scholar] [CrossRef]
- Li, J.; Gui, H.R.; Hu, R.J.; Chen, L.W.; Xia, Y.T.; Fan, H.X.; Yu, H.; Wang, M.C. Analysis of heavy metal sources and health risk assessment of typical coal mine collapsed lakes in Huaibei coalfield, Anhui Province, China. Pol. J. Environ. Stud. 2020, 29, 3193–3202. [Google Scholar] [CrossRef]
- Taboada, M.E.; Cáceres, L.; Grabera, L.; Galleguillos, H.R.; Cabeza, L.F.; Rojas, R. Solar water heating system and photovoltaic floating cover to reduce evaporation: Experimental results and modeling. Renew. Energy 2017, 105, 601–615. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.J.; Joo, J.C.; Lee, C.S.; Kim, G.Y.; Woo, D.Y.; Kim, J.H. Evaluation of the water quality changes in agricultural reservoir covered with floating photovoltaic solar-tracking systems. J. Korean Soc. Environ. Eng. 2017, 39, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Fang, T.; Liu, G.J.; Zhou, C.C.; Lu, L.L. Lead in soil and agricultural products in the Huainan coal mining area, Anhui, China: Levels, distribution, and health implications. Environ. Monit. Assess. 2015, 187, 152. [Google Scholar] [CrossRef] [PubMed]
- Saha, N.; Rahman, M.S.; Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.S. Industrial metal pollution of water and probabilistic assessment of human health risk. J. Environ. Manag. 2017, 185, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.Z.; Duan, X.L.; Ma, Y.Q.; Zhao, X.G.; Qin, Y.W.; Liu, Y.; Li, S.; Zheng, B.H.; Wei, F.S. Health benefit from decreasing exposure to potentially harmful elements and metalloid after strict pollution control measures near a typical river basin area in China. Chemosphere 2017, 184, 866–878. [Google Scholar] [CrossRef]
- USEPA. Risk assessment guidance for superfund. In Part A: Human Health Evaluation Manual; Part E, Supplemental Guidance for Dermal Risk Assessment; Part F, Supplemental Guidance for Inhalation Risk Assessment; United States Environmental Protection Agency: Washington, DC, USA, 2011; Volume 1. [Google Scholar]
- USEPA. Risk assessment guidance for superfund. EPA/540/R/99/005 office of superfund remediation and technology innovation. In Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment); United States Environmental Protection Agency: Washington, DC, USA, 2014; Volume 1. [Google Scholar]
- RAIS. (Risk Assessment Information System) in the Risk Exposure Models for Chemicals User’s Guide; Risk Assessment Information System: Washington, DC, USA, 2017.
- Nganje, J.N.; Adamu, C.I.; Ugbaja, A.N.; Ebieme, E.; Sikakwe, G.U. Environmental contamination of trace elements in the vicinity of Okpara coal mine, Enugu, Southeastern Nigeria. Arab. J. Geosci. 2011, 4, 199–205. [Google Scholar] [CrossRef]
- PRC. GB3838-2002; National Standard Environmental Quality Standards for Surface Water, China. State Environmental Protection Administration: Beijing, China, 2002.
- WHO. Guidelines for Drinking Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- USEPA. Risk Assessment Guidance for Superfund: Human Health Evaluation Manual (Part E), Supplemental Guidance for Dermal Risk Assessment; Office of Superfund Remediation and Technology Innovation U.S.: Washington, DC, USA, 2009.
- USEPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment); EPA: Washington, DC, USA, 2009; pp. 1–68.
- Neogi, B.; Tiwari, A.K.; Singh, A.K.; Pathak, D.D. Evaluation of metal contamination and risk assessment to human health in a coal mine region of India: A case study of the North Karanpura coalfield. Hum. Ecol. Risk. Assess. 2018, 24, 2011–2023. [Google Scholar] [CrossRef]
- Wei, Y.; Fan, Z.J.; Sun, L.; Liu, G.J. Study on sustainable utilization of water resources in coal mining subsidence area: A case study in Huainan City, China. J. Muc. Univ. China 2016, 25, 10–14, (In Chinese with English abstract). [Google Scholar]
- Li, P.D.; Gao, X.Q.; Jiang, J.X.; Yang, L.W.; Li, Y.J. Characteristic Analysis of Water Quality Variation and Fish Impact Study of Fish-Lighting Complementary Photovoltaic Power Station. Energies 2020, 13, 4822. [Google Scholar] [CrossRef]
- Doabi, S.A.; Karami, M.; Afyuni, M.; Yeganeh, M. Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province. Iran. Ecotoxicol. Environ. Saf. 2018, 163, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.M.; Chu, Z.X.; Zha, F.G.; Liu, S.M.; Guijian Liu, G.J.; Dong, Z.B. Determination of Heavy Metals in Water and Tissues of Crucian Carp (Carassius auratus Gibelio) Collected from Subsidence Pools in Huainan Coal Fields (China). Anal. Lett. 2015, 48, 861–877. [Google Scholar] [CrossRef]
- Viswanath, N.C.; Kumar, P.G.D.; Ammad, K.K.; Kumari, E.R.U. Ground water quality and multivariate statistical methods. Environ. Process. 2015, 2, 347–360. [Google Scholar] [CrossRef]
- Liu, X.H.; Yu, J.C.; Sun, L.H.; Gui, H.R. Application of positive matrix factorization to identify potential sources of trace metals in water from subsidence area. Fresen. Environ. Bull. 2016, 25, 5953–5959. [Google Scholar]
- Fei, Z.J.; Wang, Z.H.; Tang, Y. Characteristics and source analysis of heavy metals in water of Aha lake during the rain and dry seasons. Earth. Environ. 2021, 49, 42–50. [Google Scholar]
- Gao, J.J.; Tian, H.Z.; Cheng, K.; Lu, L.; Wang, Y.X.; Wu, X.; Zhu, C.Y.; Liu, K.Y.; Zhou, J.R.; Liu, X.G.; et al. Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Beijing, China: Mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability. Atmos. Environ. 2014, 99, 257–265. [Google Scholar] [CrossRef]
- Weerasundara, L.; Amarasekara, R.W.K.; Magana-Arachchi, D.N.; Ziyath, A.M.; Karunaratne, D.G.G.P.; Goonetilleke, A.; Vithanage, M. Microorganisms and heavy metals associated with atmospheric deposition in a congested urban environment of a developing country: Sri Lanka. Sci. Total Environ. 2017, 584–585, 803–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, F.M.; Lin, Y.S.; Wang, H.D.; Xie, H.F. Source exposure characteristics and its environmental effect of heavy metals in urban surface dust. Acta Ecol. Sin. 2011, 31, 7301–7310. [Google Scholar]
- IARC. Agents Classified by the IARC Monographs; International Agency for Research on Cancer: Lyon, France, 2013; pp. 1–108. [Google Scholar]
- Chen, J.; Liu, G.J.; Jiang, M.M.; Chou, C.L.; Li, H.; Wu, B.; Zheng, L.G.; Jiang, D.D. Geochemistry of environmentally sensitive trace elements in Permian coals from the Huainan coalfield, Anhui, China. Int. J. Coal. Geol. 2011, 88, 41–54. [Google Scholar] [CrossRef]
- Wang, X.M.; Dong, Z.B.; Liu, G.J. Health risk of some trace elements in the water of the subsidence pool in Huainan. Adv. Mater. Res. 2012, 347–353, 2021–2027. [Google Scholar] [CrossRef]
- Qiu, H.L.; Gui, H.R.; Song, Q.X. Human health risk assessment of trace elements in shallow groundwater of the Linhuan coal-mining district, Northern Anhui Province, China. Hum. Ecol. Risk. Assess. 2018, 24, 1342–1351. [Google Scholar] [CrossRef]
- Wu, D.S. Leaching behavior of coal spoils and environmental impacts. Earth. Env. 2004, 32, 55–59, (In Chinese with English abstract). [Google Scholar]
Subsidence Pond/Criterion | Pb | Cr | Ni | Cu | As | Mn | Zn | |
---|---|---|---|---|---|---|---|---|
NPP | Range | 1.39–2.78 | 26.65–63.05 | 10.55–20.70 | 3.21–6.42 | 1.36–3.40 | 44.87–138.07 | 33.81–68.60 |
Average | 1.93 | 38.30 | 13.73 | 4.43 | 2.27 | 84.34 | 49.74 | |
C.V. a/% | 27.23 | 44.07 | 29.24 | 27.86 | 32.11 | 37.89 | 23.61 | |
FPP | Range | 1.14–2.13 | 23.52–62.17 | 12.46–26.94 | 4.14–7.25 | 1.44–2.30 | 34.31–160.78 | 35.71–63.34 |
Average | 1.62 | 42.11 | 19.61 | 5.85 | 1.82 | 69.94 | 49.98 | |
C.V./% | 27.39 | 36.78 | 26.47 | 20.58 | 16.14 | 65.13 | 21.81 | |
PPP | Range | 0.85–0.99 | 19.70–57.35 | 9.26–19.05 | 3.06–5.89 | 1.36–2.34 | 67.17–131.32 | 38.75–63.15 |
Average | 1.47 | 43.32 | 14.16 | 4.76 | 1.74 | 94.56 | 50.88 | |
C.V./% | 32.06 | 37.28 | 27.01 | 25.09 | 26.23 | 23.92 | 15.24 | |
Average values for the water from FPP and PPP | Average | 1.55 | 42.71 | 16.89 | 5.30 | 1.78 | 82.25 | 50.43 |
Environmental quality standards for surface water (GB3838-2002) (China, Grade II) b [19] | 10 | 50 | 20 | 1000 | 50 | - | 1000 | |
WHO (2017) [17] | 10 | 50 | 20 | 2000 | 10 | 400 | 50 | |
USEPA (2009) [21] | - | 100 | 70 | 1300 | 30 | 50 | - | |
Subsidence Pond in Huaibei coal mine area [9] | 0.06 | 0.73 | 0.81 | 0.53 | - | 0.67 | 0.98 | |
Subsidence pond in Jining City c [2] | 117.9 | 42 | - | 183.1 | 433.2 | - | ||
Subsidence pond in Karanpura coal mine area [23] | - | 2.04 | 15.49 | 2.36 | 0.67 | 1161.2 | 46.8 | |
Subsidence pond in Okpara coal mine area [18] | 6.47 | 0.97 | 53.1 | 1.34 | 0.48 | 3350 | 253.85 |
Subsidence Pond | Elements | Pb | Cr | Ni | Cu | As | Mn | Zn |
---|---|---|---|---|---|---|---|---|
NPP | Pb | 1 | ||||||
Cr | −0.630 | 1 | ||||||
Ni | −0.383 | 0.897 * | 1 | |||||
Cu | −0.57 | 0.940 ** | 0.984 ** | 1 | ||||
As | 0.079 | 0.340 | 0.579 | 0.457 | 1 | |||
Mn | −0.338 | 0.771 | 0.744 | 0.705 | 0.499 | 1 | ||
Zn | 0.412 | 0.042 | −0.001 | −0.109 | 0.330 | 0.515 | 1 | |
FPP | Pb | 1 | ||||||
Cr | 0.783 | 1 | ||||||
Ni | 0.404 | 0.836 * | 1 | |||||
Cu | 0.564 | 0.902 * | 0.952 ** | 1 | ||||
As | 0.531 | 0.902 * | 0.844 * | 0.869 * | 1 | |||
Mn | 0.274 | 0.767 | 0.797 | 0.705 | 0.898 * | 1 | ||
Zn | 0.735 | 0.933 ** | 0.751 | 0.885 * | 0.923 ** | 0.683 | 1 | |
PPP | Pb | 1 | ||||||
Cr | 0.071 | 1 | ||||||
Ni | 0.180 | 0.909 * | 1 | |||||
Cu | 0.092 | 0.971 ** | 0.965 ** | 1 | ||||
As | −0.089 | 0.703 | 0.891 * | 0.807 | 1 | |||
Mn | −0.399 | 0.673 | 0.476 | 0.642 | 0.472 | 1 | ||
Zn | −0.103 | 0.766 | 0.711 | 0.781 | 0.723 | 0.895 * | 1 |
Variable | NPP | FPP | PPP | ||
---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC1 | PC2 | |
Pb | −0.538 | 0.678 | 0.670 | −0.040 | 0.925 |
Cr | 0.955 | −0.158 | 0.978 | 0.940 | 0.128 |
Ni | 0.958 | −0.011 | 0.903 | 0.929 | 0.313 |
Cu | 0.958 | −0.171 | 0.947 | 0.967 | 0.173 |
As | 0.562 | 0.532 | 0.961 | 0.860 | 0.066 |
Mn | 0.854 | 0.344 | 0.828 | 0.765 | −0.535 |
Zn | 0.109 | 0.896 | 0.946 | 0.902 | −0.210 |
Eigenvalue | 4.095 | 1.719 | 5.621 | 4.821 | 1.335 |
Contribution value/% | 58.495 | 24.555 | 80.300 | 68.877 | 19.072 |
Cumulative contribution rate/% | 58.495 | 83.050 | 80.300 | 68.877 | 87.949 |
Element | NPP | FPP | PPP | |||
---|---|---|---|---|---|---|
Adult | Child | Adult | Child | Adult | Child | |
Pb | 1.79 × 10−2 | 4.82 × 10−3 | 1.50 × 10−2 | 4.05 × 10−3 | 1.37 × 10−2 | 3.69 × 10−3 |
Cr | 1.66 × 10−1 | 4.48 × 10−2 | 1.82 × 10−1 | 4.92 × 10−2 | 1.87 × 10−1 | 5.06 × 10−2 |
Ni | 8.91 × 10−3 | 2.41 × 10−3 | 1.27 × 10−2 | 3.44 × 10−3 | 9.19 × 10−3 | 2.48 × 10−3 |
Cu | 1.44 × 10−3 | 3.88 × 10−4 | 1.90 × 10−3 | 5.13 × 10−4 | 1.55 × 10−3 | 4.18 × 10−4 |
As | 9.81 × 10−2 | 2.65 × 10−2 | 7.88 × 10−2 | 2.13 × 10−2 | 7.53 × 10−2 | 2.03 × 10−2 |
Mn | 2.38 × 10−2 | 6.43 × 10−3 | 1.97 × 10−2 | 5.33 × 10−3 | 2.67 × 10−2 | 7.21 × 10−3 |
Zn | 2.15 × 10−3 | 5.81 × 10−4 | 2.16 × 10−3 | 5.84 × 10−4 | 2.20 × 10−3 | 5.95 × 10−4 |
HI | 3.18 × 10−1 | 8.59 × 10−2 | 3.12 × 10−1 | 8.44 × 10−2 | 3.16 × 10−1 | 8.53 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhao, Y.; Chu, Z.; Yu, X.; Fan, T.; Li, G.; Zhang, J.; Xu, X.; Zhen, Q.; Cheng, X.; et al. Influence of Solar Photovoltaic System on the Concentration and Environmental Risks of Heavy Metals in Subsidence Pond Water from Coal Mining Area: A Case Study from Huainan Subsidence Pond. Water 2022, 14, 2257. https://doi.org/10.3390/w14142257
Wang X, Zhao Y, Chu Z, Yu X, Fan T, Li G, Zhang J, Xu X, Zhen Q, Cheng X, et al. Influence of Solar Photovoltaic System on the Concentration and Environmental Risks of Heavy Metals in Subsidence Pond Water from Coal Mining Area: A Case Study from Huainan Subsidence Pond. Water. 2022; 14(14):2257. https://doi.org/10.3390/w14142257
Chicago/Turabian StyleWang, Xingming, Yingying Zhao, Zhaoxia Chu, Xiaokun Yu, Tingyu Fan, Gang Li, Jiamei Zhang, Xiaoping Xu, Quan Zhen, Xiaojing Cheng, and et al. 2022. "Influence of Solar Photovoltaic System on the Concentration and Environmental Risks of Heavy Metals in Subsidence Pond Water from Coal Mining Area: A Case Study from Huainan Subsidence Pond" Water 14, no. 14: 2257. https://doi.org/10.3390/w14142257
APA StyleWang, X., Zhao, Y., Chu, Z., Yu, X., Fan, T., Li, G., Zhang, J., Xu, X., Zhen, Q., Cheng, X., & Dong, Z. (2022). Influence of Solar Photovoltaic System on the Concentration and Environmental Risks of Heavy Metals in Subsidence Pond Water from Coal Mining Area: A Case Study from Huainan Subsidence Pond. Water, 14(14), 2257. https://doi.org/10.3390/w14142257