Radiocarbon Dating and Stable Isotopes Content in the Assessment of Groundwater Recharge at Santiago Island, Republic of Cape Verde
Abstract
:1. Introduction
- (i)
- (ii)
- (iii)
- (iv)
- (v)
2. Climatology, Geological and Hydrogeological Setting
2.1. Climatology
2.2. Geology and Hydrogeology
- (i)
- Pico da Antónia (PA) and (A) eruptive complex;
- (ii)
- Monte das Vacas formation (MV), and
- (iii)
- Sedimentary quaternary formations (a).
3. Sampling and Analytical Approach
4. Results and Discussion
4.1. Hydrogeochemical Characterization
- (i)
- (ii)
- (i)
- The existence no correlation between the aquifer formation and the high water salinity;
- (ii)
- The increases in salinity should be ascribed to the dissolution of marine aerosols or to the seawater intrusion mechanism;
- (iii)
- Ion exchange processes play an important role in the chemical evolution of the studied groundwaters.
4.2. Isotope Hydrology
4.2.1. Stable Isotopes (δ2H and δ18O)
- -
- -
- A second group is composed of the other water samples located all over the island (east and west of the island) being, their isotopic composition mainly controlled by the geomorphology (recharge altitude). The local trend of the groundwater isotopic composition was calculated using the groundwater samples with minor mineralization (EC below 500 µS/cm) to minimize the possible contribution of seawater to their composition. Although, the EC value chosen does not exclude a possibility of a slight contribution of seawater in the groundwater samples able to modify their initial isotopic composition. The obtained trend line equation is: δ2H = 7.27 δ18O + 2.82 (r = 0.64; n = 27). The designation of local trend instead of Local Meteoric Water Line is adopted since the water samples, even with low mineralization, can be subject to small mixing processes with seawater or even with recycling water subject to evaporation. All these processes can induce a deviation of the initial isotopic composition. In Figure 9, the mean seawater isotopic composition is also plotted, and it seemed that no relevant mixing occurred between the Eastern Group and seawater.
- 1—
- The origin of the groundwater mineralization is mainly linked to the dissolution of marine aerosols, particularly observed in the samples FT-23, FT-59, FT-202 (2007), 58-1, 58-56, SST-55;
- 2—
- The high percentage of seawater just when using the 18O content, i.e., in the samples SP-12; 49/18 and FT-202 (2006), is probably related to evaporation processes that induced an enrichment in the water isotopic composition;
- 3—
- The similar percentage of mixing is attributed to seawater mixing processes, well noticed in samples FT-153, 51-201, FT-81; and,
- 4—
- The dissimilarities due to the lack of precise information concerning the “correct value”, i.e., the initial end-member composition of the groundwater, either isotopic or electrical conductivity.
4.2.2. Radioactive Isotopes (3H and 14C)
5. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cartwright, I.; Weaver, T.R.; Fulton, S.; Nichol, C.; Reid, M.; Cheng, X. Hydrogeochemical and isotopic constraints on the origins of dryland salinity, Murray Basin, Victoria, Australia. Appl. Geochem. 2004, 19, 1233–1254. [Google Scholar] [CrossRef]
- Carreira, P.M.; Marques, J.M.; Nunes, D. Source of groundwater salinity in coastline aquifers based on environmental isotopes (Portugal): Natural vs. human interference. A review and reinterpretation. Appl. Geochem. 2014, 41, 163–175. [Google Scholar] [CrossRef]
- Carreira, P.M.; Bahir, M.; Ouhamdouch, S.; Galego Fernandes, P.; Nunes, D. Tracing salinization processes in coastal aquifers using an isotopic and geochemical approach: Comparative studies in western Morocco and southwest Portugal. Hydrogeol. J. 2018, 26, 2595–2615. [Google Scholar] [CrossRef]
- Ammar, S.B.; Taupin, J.-D.; Zouari, K.; Khouatmia, M. Identifying recharge and salinization sources of groundwater in the Oussja Ghar el Melah plain (northeast Tunisia) using geochemical tools and environmental isotopes. Environ. Earth Sci. 2016, 75, 606. [Google Scholar] [CrossRef]
- Mahlknecht, J.; Merchán, D.; Rosner, M.; Meixner, A.; Ledesma-Ruiz, R. Assessing seawater intrusion in an arid coastal aquifer under high anthropogenic influence using major constituents, Sr and B isotopes in groundwater. Sci. Total Environ. 2017, 587–588, 282–295. [Google Scholar] [CrossRef]
- Kammoun, S.; Re, V.; Trabelsi, R.; Zouari, K.; Daniele, S. Assessing seasonal variations and aquifer vulnerability in coastal aquifers of semi-arid regions using a multi-tracer isotopic approach: The case of Grombalia (Tunisia). Hydrogeol. J. 2018, 26, 2575–2594. [Google Scholar] [CrossRef]
- Bahir, M.; Ouhamdouch, S.; Carreira, P.M. Geochemical and isotopic approach to decrypt the groundwater salinization origin of coastal aquifers from semi-arid areas (Essaouira basin, Western Morocco). Environ. Earth Sci. 2018, 77, 485. [Google Scholar] [CrossRef]
- Carreira, P.M. Paleoáguas de Aveiro [Aveiro palaeowaters]. Ph.D. Thesis, Universidade Aveiro, Aveiro, Portugal, 1999. [Google Scholar]
- Galego Fernandes, P.; Carreira, P.M. Isotopic evidence of aquifer recharge during the last ice age in Portugal. J. Hydrol. 2008, 361, 291–308. [Google Scholar] [CrossRef]
- Re, V.; Sacchi, E.; Martin-Bordes, J.L.; Aureli, A.; El Hamouti, N.; Bouchnan, R.; Zuppi, G.-M. Processes affecting groundwater quality in arid zones: The case of Bou-Areg Coastal aquifer (North Morocco). Appl. Geochem. 2013, 34, 181–198. [Google Scholar] [CrossRef]
- Re, V.; Sacchi, E.; Mas-Pla, J.; Menció, A.; El Amrani, N. Identifying the effects of human pressure on groundwater quality to support water management strategies in coastal regions: A multi-tracer and statistical approach (Bou-Areg region, Morocco). Sci. Total Environ. 2014, 500–501, 211–213. [Google Scholar] [CrossRef] [Green Version]
- Bouchaou, L.; Michelot, J.L.; Vengosh, A.; Hsissou, Y.; Qurtobi, M.; Gaye, C.B.; Bullen, T.D.; Zuppi, G.M. Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss–Massa aquifer, southwest of Morocco. J. Hydrol. 2008, 352, 267–287. [Google Scholar] [CrossRef]
- Marques, J.M.; Graça, H.; Eggenkamp, H.G.M.; Neves, O.; Carreira, P.M.; Matias, M.J.; Mayer, B.; Nunes, D.; Trancoso, V.N. Isotopic and hydrochemical data as indicators of recharge areas, flow paths and water-rock interaction in the Caldas da Rainha—Quinta das Janelas thermomineral carbonate rock aquifer (Central Portugal). J. Hydrol. 2013, 476, 302–313. [Google Scholar] [CrossRef]
- Edmunds, W.M. Contribution of isotopic and nuclear tracers to study of groundwaters. In Isotopes in the Water Cycle. Past Present and Future of Developing Science, 1st ed.; Pradeep, K.A., Gat, J.R., Froehlich, K.F.O., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 171–192. [Google Scholar]
- Gonfiantini, R.; Simonot, M. Isotopic Investigation of Groundwater in the Cul-de-Sac Plain, Haiti. Isotope Techniques in Water Resources Development; International Atomic Energy Agency: Vienna, Austria, 1987; pp. 483–504. [Google Scholar]
- Grassi, S.; Cortecci, G.; Squarci, P. Groundwater resource degradation in coastal plains: The example of the Cecina area (Tuscany—Central Italy). Appl. Geochem. 2007, 22, 2273–2289. [Google Scholar] [CrossRef]
- Bahir, M.; Ouazar, D.; ·Goumih, A.; Ouhamdouch, S. Evolution of the chemical and isotopic composition of groundwater under a semi-arid climate; the case of the Cenomano–Turonian aquifer within the Essaouira basin (Morocco). Environ. Earth Sci. 2019, 78, 353. [Google Scholar] [CrossRef]
- Xu, Y.; Seward, P.; Gaye, C.; Lin, L.; Olago, D.O. Preface: Groundwater in Sub-Saharan Africa. Hydrogeol. J. 2019, 27, 815–822. [Google Scholar] [CrossRef] [Green Version]
- Eissa, M.A.; Shawky, H.; Samy, A.; Khalil, M.M.H.; El Malky, M. Geochemical and isotopic evidence of groundwater salinization processes in El Dabaa area, Northwestern coast, Egypt. Geosciences 2018, 8, 392. [Google Scholar] [CrossRef] [Green Version]
- Mondal, N.C.; Singh, V.S.; Saxena, V.K.; Singh, V.P. Assessment of seawater impact using major hydrochemical ions: A case study from Sadras, Tamilnadu, India. Environ. Monit. Assess. 2011, 177, 315–335. [Google Scholar] [CrossRef] [PubMed]
- Ben Hamouda, M.F.; Carreira, P.M.; Marques, J.M.; Eggenkamp, H.G.M. Geochemical and isotopic investigations to study the origin of mineralization of the coastal aquifer of Sousse, Tunisia. Procedia Earth Planet. Sci. 2013, 7, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Ben Hamouda, M.F.; Carreira, P.M.; Marques, J.M.; Eggenkamp, H.G.M. Multi-isotope approach to study the problem of salinity in the coastal aquifer of Oued Laya, Tunisia. In Advances in Sustainable and Environmental Hydrology, Hydrogeology, Hydrochemistry and Water Resources. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development, 1st ed.; Chaminé, H., Barbieri, M., Kisi, O., Chen, M., Merkel, B., Eds.; Springer: Cham, Switzerland, 2019; pp. 203–206. [Google Scholar]
- Calvache, M.L.; Pulido-Bosch, A. Effects of geology and human activity on the dynamics of salt-water intrusion in three coastal aquifers in southern Spain. Environ. Geol. 1997, 30, 215–223. [Google Scholar] [CrossRef]
- Kloppmann, W.; Bourhane, A.; Schomburgk, S. Groundwater Salinization in France. Procedia Earth Planet. Sci. 2013, 7, 440–443. [Google Scholar] [CrossRef] [Green Version]
- Petelet-Giraud, E.; Négrel, P.; Aunay, B.; Ladouche, B.; Bailly-Comte, V.; Guerrota, C.; Flehoc, C.; Pezard, P.; Lofi, J.; Dörfliger, N. Coastal groundwater salinization: Focus on the vertical variability in a multi-layered aquifer through a multi-isotope fingerprinting (Roussillon Basin, France). Sci. Total Environ. 2016, 566–567, 398–415. [Google Scholar] [CrossRef] [PubMed]
- Tsakiris, G.; Alexakis, D. Karstic spring water quality: The effect of groundwater abstraction from the recharge area. Desalination Water Treat. 2014, 52, 2494–2501. [Google Scholar] [CrossRef]
- Alexakis, D.; Tsakiris, G. Drought impacts on karstic spring annual water potential. Application on Almyros (Crete) brackish spring. Desalination Water Treat. 2010, 16, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Milnes, E. Process-based groundwater salinisation risk assessment methodology: Application to the Akrotiri aquifer (Southern Cyprus). J. Hydrol. 2011, 399, 29–47. [Google Scholar] [CrossRef] [Green Version]
- Ergil, M.E. The salination problem of the Guzelyurt aquifer, Cyprus. Water Res. 2000, 34, 1201–1214. [Google Scholar] [CrossRef]
- Jalali, M. Salinization of groundwater in arid and semi-arid zones: An example from Tajarak, western Iran. Environ. Geol. 2007, 52, 1133–1149. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, K.; Koh, D.; Lee, D.; Lee, S.; Park, W. Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: A case study in Jeju volcanic island, Korea. J. Hydrol. 2003, 270, 282–294. [Google Scholar] [CrossRef]
- Carol, E.; Kruse, E.; Mas-Pla, J. Hydrochemical and isotopical evidence of ground water salinization processes on the coastal plain of Samborombón Bay, Argentina. J. Hydrol. 2007, 365, 335–345. [Google Scholar] [CrossRef]
- Pratheepa, V.; Ramesh, S.; Sukumaran, N.; Murugesan, A.G. Identification of sources of groundwater salinization in the coastal aquifers of Southern Tamil Nadu, India. Environ. Earth Sci. 2015, 74, 2819–2829. [Google Scholar] [CrossRef]
- Sebei, A.; Slama, T.; Helali, M.A. Hydrochemical characterisation and geospatial analysis of groundwater Quality in Cap Bon region, northeastern Tunisia. Environ. Earth Sci. 2018, 77, 557. [Google Scholar] [CrossRef]
- Alcalá, F.J.; Custódio, E. Using the Cl/Br ratio as tracer to identify the origin of salinity in aquifers in Spain and Portugal. J. Hydrol. 2008, 359, 189–207. [Google Scholar] [CrossRef]
- Stoecker, F.; Babel, M.S.; Gupta, A.D.; Rivas, A.A.; Evers, M.; Kazama, F.; Nakamura, T. Hydrogeochemical and isotopic characterisation of groundwater salinization in the Bangkok aquifer system, Thailand. Environ. Earth Sci. 2013, 68, 749–763. [Google Scholar] [CrossRef]
- Gaye, C.B.; Tindimugaya, C. Review: Challenges and opportunities for sustainable groundwater management in Africa. Hydrogeol. J. 2019, 27, 1099–1110. [Google Scholar] [CrossRef]
- Heilweil, V.M.; Solomon, D.K.; Gingerich, S.B.; Verstraeten, I.M. Oxygen, hydrogen, and helium isotopes for investigating groundwater systems of the Cape Verde Islands, West Africa. Hydrogeol. J. 2009, 17, 1157–1174. [Google Scholar] [CrossRef]
- Lobo de Pina, A.F. Hidroquímica e qualidade das águas subterrâneas da ilha de Santiago—Cabo Verde [Hydrochemistry and groundwater quality of the island of Santiago—Cape Verde]. Ph.D. Thesis, Universidade de Aveiro, Aveiro, Portugal, 2009. [Google Scholar]
- Instituto Nacional de Estatística. Cabo Verde, Statistical Yearbook 2015; Instituto Nacional de Estatística: Praia, Cape Verde, 2015. [Google Scholar]
- Lobo de Pina, A.F.; Mota Gomes, A.; Condesso de Melo, M.T.; Marques da Silva, M.A. Caracterização hidrogeoquímica das principais unidades aquíferas da ilha de Santiago, Cabo Verde. In Proceedings of the Actas da XIV Semana de Geoquímica e do VIII Congresso de Geoquímica dos Países de Língua Portuguesa, Aveiro, Portugal, 2005; Volume 1, pp. 379–382. [Google Scholar]
- International Atomic Energy Agency. Atlas of Isotope Hydrology–Africa, 1st ed.; International Atomic Energy Agency: Vienna, Austria, 2007; pp. 15–16. [Google Scholar]
- Varela-Lopes, G.E.; Molion, L.C.B. Precipitation patterns in Cape Verde Islands: Santiago Island Case Study. Atmos. Clim. Sci. 2014, 4, 854–865. [Google Scholar] [CrossRef] [Green Version]
- Serralheiro, A. A geologia da Ilha de Santiago (Cabo Verde) [Santiago Island Geology (Cape Verde)]. Ph.D. Thesis, Universidade de Lisboa, Lisboa, Portugal, 1974. [Google Scholar]
- Matos Alves, C.A.; Macedo, J.R.; Celestino Silva, L.; Serralheiro, A.; Peixoto Faria, A.F. Geologic, petrological and vulcanological study of Santiago Island (Cape Verde). Rev. Garcia Orta Série Geol. 1979, 3, 70–81. [Google Scholar]
- Mota Gomes, A. Hidrogeologia e recursos hídricos da ilha de Santiago—Cabo Verde [Hydrogeology and water resources of the Santiago Island—Cape Verde]. Ph.D. Thesis, Universidade de Aveiro, Aveiro, Portugal, 2007. [Google Scholar]
- Martins, S.; Mata, J.; Munhá, J.; Mendes, M.H.; Maerschalk, C.; Caldeira, R.; Mattielli, N. Chemical and mineralogical evidence of the occurrence of mantle metasomatism by carbonate-rich melts in an oceanic environment (Santiago Island, Cape Verde). Miner. Petrol. 2010, 99, 4365. [Google Scholar] [CrossRef]
- Monteiro Santos, F.A.; Almeida, E.P.; Mota Gomes, A.; Lobo de Pina, A. Hydrogeological investigation in Santiago Island (Cabo Verde) using magnetotellurics and VLF methods. J. Afr. Earth Sci. 2006, 45, 421–430. [Google Scholar] [CrossRef]
- Gonçalves, R.; Farzamian, M.; Monteiro Santos, F.A.; Represas, P.; Mota Gomes, A.; Lobo de Pina, A.F.; Almeida, E.P. Application of time-domain electromagnetic method in investigating saltwater intrusion of Santiago Island (Cape Verde). Pure Appl. Geophys. 2017, 174, 4171–4182. [Google Scholar] [CrossRef]
- Gonçalves, R.; Monteiro Santos, F.A.; Farzamian, M.; Represas, P.; Mota Gomes, A.; Lobo de Pina, A.F.; Almeida, E.P. Water resources detection at Santiago Island, Cape Verde using electromagnetic methods. First Break. Spec. Top. EM Potential Methods 2018, 36, 53–59. [Google Scholar] [CrossRef]
- Friedman, I. Deuterium content of natural waters and other substances. Geochim. Cosmochim. Acta 1953, 4, 89–103. [Google Scholar] [CrossRef]
- Tanweer, A.; Hut, G.; Burgman, J.O. Optimal conditions for reduction of water to hydrogen by zinc for mass spectrometric analysis of the deuterium content. Chem. Geol. 1988, 73, 199–203. [Google Scholar] [CrossRef]
- Tanweer, A. Importance of clean metallic zinc for hydrogen isotope analysis. Am. Chem. Soc. 1990, 62, 2158–2160. [Google Scholar] [CrossRef]
- Epstein, S.; Mayeda, T. Variation of 18O content of waters from natural sources. Geochem. Cosmochim. Acta 1953, 4, 213–224. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Procedure and Technique Critique for Tritium Enrichment by Electrolysis at IAEA Laboratory; Technical Procedure 19; International Atomic Energy Agency: Vienna, Austria, 1976. [Google Scholar]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution; Appelo, C.A.J., Postma, D., Eds.; Balkema: Rotterdam, The Netherlands, 1994. [Google Scholar]
- Carreira, P.M.; Marques, J.M.; Pina, A.L.; Mota Gomes, A.; Galego Fernandes, P.; Monteiro Santos, F.A. Groundwater assessment at Santiago Island (Cabo Verde): A multidisciplinary approach to a recurring source of water supply. Water Resour. Manag. 2010, 24, 1139–1159. [Google Scholar] [CrossRef]
- Carreira, P.M.; Lobo de Pina, A.; Mota Gomes, A.; Marques, J.M.; Monteiro Santos, F. Geochemical and isotopic marks for tracing groundwater salinization: Santiago Island, Republic of Cape Verde, case study. In Advances in Sustainable and Environmental Hydrology, Hydrogeology, Hydrochemistry and Water Resources. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development, 1st ed.; Chaminé, H., Barbieri, M., Kisi, O., Chen, M., Merkel, B., Eds.; Springer: Cham, Switzerland, 2019; pp. 161–164. [Google Scholar]
- Re, V.; Sacchi, E. Tackling and salinity-pollution nexus in coastal aquifers from arid regions using nitrate and boron isotopes. Environ. Sci. Pollut. Res. 2017, 24, 13247–13261. [Google Scholar] [CrossRef]
- Mata, J.; Moreira, M.; Doucelance, R.; Ader, M.; Silva, L.C. Noble gas and carbon isotopic signatures of Cape Verde oceanic carbonatites: Implications of carbon provenance. Earth Planet Sci. Lett. 2010, 291, 70–83. [Google Scholar] [CrossRef]
- Shirke, K.D.; Kadam, A.K.; Pawar, N.J. Temporal variations in hydro-geochemistry and potential health risk assessment of groundwater from lithological diversity of semi-arid region, Western Gujarat, India. Appl. Water Sci. 2020, 10, 156. [Google Scholar] [CrossRef]
- Shirke, K.D.; Kadam, A.; Pawar, N.J. Health risk assessment and prevalence of fluoride in groundwater around the geological diversity of Ambadongar South Gujarat, India. Hum. Ecol. Risk Assess. Int. J. 2021, 27, 1523–1542. [Google Scholar] [CrossRef]
- Möller, D. The Na/Cl ratio in rainwater and the seasalt chloride cycle. Tellus 1990, 42, 254–262. [Google Scholar] [CrossRef]
- Mukhopadhyay, A. Cl-SO4 mass ratio as an indicator of contamination of freshwater resources in Kuwait by seawater and oilfield brine. J. Water Resour. Hydraul. Eng. 2015, 4, 23–55. [Google Scholar] [CrossRef]
- Pennisi, M.; Bianchini, G.; Muti, A.; Kloppmann, W.; Gonfiantini, R. Behaviour of boron and strontium isotopes in groundwater-aquifer interactions in Cornia Plain (Tuscany, Italy). Appl. Geochem. 2006, 21, 1169–1183. [Google Scholar] [CrossRef]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Rozanski, K.; Araguás-Aráguas, L.; Gonfiantini, R. Relation between long-term of oxygen-18 isotope composition of precipitation and climate. Science 1992, 258, 981–985. [Google Scholar] [CrossRef]
- Mook, W.G. Environmental isotopes in hydrological cycle. In Principles and Applications. IHP-V Technical Documents in Hydrology; UNESCO and IAEA: Paris, France, 2000. [Google Scholar]
- Rozanski, K. Deuterium and oxygen-18 in European groundwaters: Links to atmospheric circulation in the past. Chem. Geol. 1985, 52, 349–363. [Google Scholar] [CrossRef]
- Araguás-Araguás, L.; Gonfiantini, R. Environmental Isotopes in Seawater Intrusion Studies; Internal Report; International Atomic Energy Agency: Vienna, Austria, 1989. [Google Scholar]
- Edmunds, W.M.; Droubi, A. Groundwater salinity and environmental change. In Isotope Techniques in the Study of Environmental Change; International Atomic Energy Agency: Vienna, Austria, 1998; pp. 503–518. [Google Scholar]
- Lucas, L.L.; Unterweger, M.P. Comprehensive review and critical evaluation of the half-life of tritium. J. Res. Natl. Inst. Technol. 2000, 105, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, I.; Cendón, D.; Currell, M.; Meredith, K. A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: Possibilities, changes and limitations. J. Hydrol. 2017, 555, 797–811. [Google Scholar] [CrossRef]
- Akiti, T. Environmental Isotope Study of the Groundwaters of the Island of Santiago, Cape Verde. Report; International Atomic Energy Agency, Division of Research and Laboratories, Section of Isotope Hydrology: Vienna, Austria, 1985; p. 54. [Google Scholar]
- Carreira, P.M.; Marques, J.M.; Graça, R.C.; Aires-Barros, L. Radiocarbon application in dating ‘‘complex” hot and cold CO2-rich mineral water systems: A review of case studies ascribed to the northern Portugal. Appl. Geochem. 2008, 23, 2817–2828. [Google Scholar] [CrossRef]
- Han, L.F.; Plummer, L.N. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater. Earth-Sci. Rev. 2016, 152, 119–142. [Google Scholar] [CrossRef]
- Han, L.F.; Plummer, L.N.; Aggarwal, P. A graphical method to evaluate predominant geochemical processes occurring in groundwater systems for radiocarbon dating. Chem. Geol. 2012, 318–319, 88–112. [Google Scholar] [CrossRef]
- Gonfiantini, R.; Zuppi, J.-M. Carbon isotope exchange rate of DIC in karst groundwater. Chem. Geol. 2003, 197, 319–336. [Google Scholar] [CrossRef]
- Monge Soares, A.M.; Martins, J.M.M.; Cardoso, J.L. Marine radiocarbon reservoir effect of coastal waters off Cape Verde. Radiocarbon 2011, 50, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Palacios, J.; Nogué, S.; Criado, C.; Connors, S.; Góis-Marques, C.; Sequeira, M.; Nascimento, L. Climate change and human impact in Macaronesia. Past Glob. Changes Mag. 2016, 24, 68–69. [Google Scholar] [CrossRef] [Green Version]
Reference | Electrical Conductivity (µS/cm) | A Seawater Percentage (%) | δ18O (‰) | B Seawater Percentage (%) |
---|---|---|---|---|
PT-29 | 2130 | 3.3 | −3.85 | 0.8 |
SP-12 | 2510 | 4.1 | −2.61 | 32.7 |
FBE-194 | 2320 | 3.7 | −3.5 | 9.8 |
49/18 | 2650 | 4.3 | −2.96 | 23.7 |
FT-47 | 2160 | 3.4 | −3.61 | 6.9 |
FT-84 | 3560 | 6.1 | −3.43 | 11.6 |
FT-153 | 8800 | 16.3 | −3.28 | 15.4 |
SST-55 | 3340 | 5.7 | −4.27 | - |
51-201 | 3005 | 5.0 | −3.55 | 8.5 |
FT-81 | 2460 | 3.9 | −3.64 | 6.2 |
FT-23 | 9400 | 17.4 | −3.94 | - |
FT-59 | 3870 | 6.7 | −4.48 | - |
58-1 | 3800 | 6.6 | −4.07 | - |
58-56 | 2160 | 3.4 | −3.99 | - |
FT-202 (2006) | 2610 | 4.3 | −3.22 | 17 |
FT-202 (2007) | 8840 | 16.3 | −4.05 | - |
Seawater | 52,000 | 0 | ||
Groundwater | 415.8 | −3.88 |
Ref | 3H (TU) | δ13CTDIC (‰) | 14 C ± σ (pMC) | 14C Uncorrected Age (ka) | C3 Plants 14C Apparent Age (ka) | C4 Plants 14C Apparent Age (ka) |
---|---|---|---|---|---|---|
FT-39 | n.d. | -13.1 | 95.24 ± 0.38 | FT-39 | ||
FT-39 | n.d. | −13.1 | 95.24 ± 0.38 | 0.40 | Modern | 4.36 ± 1.42 |
FT-40 | n.d. | −11.9 | 83.43 ± 0.37 | 1.50 | Modern | 4.77 ± 1.44 |
FT-78 | n.d. | −12.7 | 95.72 ± 0.38 | 0.36 | Modern | 4.10 ± 1.42 |
FBE-201 | −9.0 | 76.91 ± 0.36 | 2.17 | Modern | 3.51 ± 1.51 | |
FT-44 | n.d. | −12.7 | 85.12 ± 0.39 | 1.33 | Modern | 5.07 ± 1.42 |
59-24 | n.d. | −9.9 | 73.20 ± 0.35 | 2.58 | Modern | 4.56 ± 1.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carreira, P.M.; Lobo de Pina, A.; da Mota Gomes, A.; Marques, J.M.; Monteiro Santos, F. Radiocarbon Dating and Stable Isotopes Content in the Assessment of Groundwater Recharge at Santiago Island, Republic of Cape Verde. Water 2022, 14, 2339. https://doi.org/10.3390/w14152339
Carreira PM, Lobo de Pina A, da Mota Gomes A, Marques JM, Monteiro Santos F. Radiocarbon Dating and Stable Isotopes Content in the Assessment of Groundwater Recharge at Santiago Island, Republic of Cape Verde. Water. 2022; 14(15):2339. https://doi.org/10.3390/w14152339
Chicago/Turabian StyleCarreira, Paula M., António Lobo de Pina, Alberto da Mota Gomes, José M. Marques, and Fernando Monteiro Santos. 2022. "Radiocarbon Dating and Stable Isotopes Content in the Assessment of Groundwater Recharge at Santiago Island, Republic of Cape Verde" Water 14, no. 15: 2339. https://doi.org/10.3390/w14152339