Feasibility Assessment of the Application of Groundwater Remediation Techniques in Rural Areas: A Case Study of Rural Areas in the Soutpansberg Region, Limpopo Province, South Africa
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area Description
2.2. Sampling
2.3. Feasibility Assessment
3. Results and Discussion
3.1. Chemical Composition of Groundwater
3.2. Feasibility of an Adequate Groundwater Remediation Technique
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raheli-Namin, S.; Mortazavi, M.; Mobinifar, M.A. Groundwater quality probability mapping and assessment for domestic and irrigation purposes in Ghara-Su Basin of Golestan Province. Iran. J. Mater. Environ. Sci. 2016, 7, 259–271. [Google Scholar]
- Li, P.; He, S.; Yang, N.; Xiang, G. Groundwater quality assessment for domestic and agricultural purposes in Yan’an City, northwest China: Implications to sustainable groundwater management on the Loess Plateau. Environ. Earth. Sci. 2018, 77, 775. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, H.; He, S.; Zhong, Y. Comprehensive understanding of groundwater quality for domestic and agricultural purposes in terms of health risks in a coal mine area of the Ordos basin, north of the Chinese Loess Plateau. Earth. Sci. 2019, 78, 446. [Google Scholar] [CrossRef]
- He, X.; Li, P.; Ji, Y.; Wang, Y.; Su, Z.; Elumalai, V. Groundwater arsenic and fluoride and associated arsenicosis and fluorosis in China: Occurrence, distribution and management. Expo. Health 2020, 12, 355–368. [Google Scholar] [CrossRef]
- Papazotos, P. Potentially toxic elements in groundwater: A hotspot research topic in environmental science and pollution research. Environ. Sci. Pollut. Res. 2021, 28, 47825–47837. [Google Scholar] [CrossRef] [PubMed]
- Mencio, A.; Mas-Pla, J.; Otero, N.; Regas, O.; Boy-Roura, M.; Puig, R.; Bach, J.; Domenech, C.; Zamorano, M.; Brusi, D.; et al. Nitrate pollution of groundwater; all right…, but nothing else? Sci. Total Environ. 2016, 539, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Tabelin, C.B.; Igarashi, T.; Villacorte-Tabelin, M.; Park, I.; Opiso, E.M.; Ito, M.; Hiroyoshi, N. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Sci. Total Environ. 2018, 645, 1522–1553. [Google Scholar] [CrossRef] [PubMed]
- Cecconet, D.; Sabba, F.; Devecseri, M.; Callegari, A.; Capodaglio, A.G. In situ groundwater remediation with bioelectrochemical systems: A critical review and future perspectives. Environ. Int. 2020, 137, 105550. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.Y.; Park, S.; Kim, H.-K.; Kim, M.-S.; Jo, H.-J.; Kim, J.-I.; Lee, G.-M.; Shin, I.-K.; Kim, T.-S. Hydrochemistry for the assessment of groundwater quality in Korea. J. Agric. Chem. Environ. 2017, 6, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Burri, N.M.; Weatherl, R.; Moeck, C.; Schirmer, M. A review of threats to groundwater quality in the anthropocene. Sci. Total Environ. 2019, 684, 136–154. [Google Scholar] [CrossRef]
- Coomar, P.; Mukherjee, A. Global Geogenic Groundwater Pollution. In Global Groundwater; Elsevier: Amsterdam, The Netherlands, 2021; pp. 187–213. [Google Scholar]
- Mangoua, M.J.; Gone, D.L.; Kouassi, K.A.; N’guettia, K.G.; Douagui, G.A.; Savane, I.; Biemi, J. Hydrogeochmical assessment of groundwater quality in the Baya watershed (Eastern of Cote d’Ivoire). Afr. J. Agric. Res. 2015, 10, 4477–4489. [Google Scholar] [CrossRef] [Green Version]
- Taiwo, A.M.; Towolawi, A.T.; Olanigan, A.A.; Olujimi, O.O.; Arowolo, T.A. Comparative Assessment of Groundwater Quality in Rural and Urban Areas of Nigeria. In Research and Practices in Water Quality; Lee, T.S., Ed.; IntechOpen: London, UK, 2015; pp. 179–191. [Google Scholar]
- Brhane, G.K. Characterization of hydro chemistry and groundwater quality evaluation for drinking purpose in Adigrat area, Tigray, Northern Ethiopia. Water Sci. 2018, 32, 213–229. [Google Scholar] [CrossRef] [Green Version]
- Mokoena, P.; Kanyerere, T.; van Bever Donker, J. Hydrogeochemical characteristics and evaluation of groundwater quality for domestic and irrigation purposes: A case study of the Heuningnes Catchment, Western Cape Province, South Africa. Appl. Sci. 2020, 2, 1548. [Google Scholar] [CrossRef]
- Odiyo, J.O.; Makungo, R. Fluoride concentrations in groundwater and impact on human health in Siloam Village, Limpopo Province, South Africa. Water SA 2012, 38, 731–736. [Google Scholar] [CrossRef] [Green Version]
- Odiyo, J.O.; Makungo, R.; Muhlarhi, T.G. The impacts of geochemistry and agricultural activities on groundwater quality in the Soutpansberg fractured aquifer. WIT Trans. Ecol. Environ. 2014, 182, 121–132. [Google Scholar]
- Odiyo, J.O.; Makungo, R. Chemical and microbial quality of groundwater in Siloam Village, implications to human health and sources of contamination. Int. J. Environ. Public Health 2018, 15, 317. [Google Scholar] [CrossRef] [Green Version]
- Malaza, N. Hydrogeochemical assessment of groundwater quality in the Soutpansberg Basin around Tshikondeni, Limpopo Province, South Africa. Geochem. Explor. Environ. Anal. 2017, 17, 35–41. [Google Scholar] [CrossRef]
- Lalumbe, L.; Kanyerere, T. Assessment of concentration levels of contaminants in groundwater of the Soutpansberg Region, Limpopo Province, South Africa. Water 2022, 14, 1354. [Google Scholar] [CrossRef]
- Vasileiou, E.; Papazotos, P.; Dimitrakopoulos, D.; Perraki, M. Hydrogeochemical Processes and Natural Background Levels of Chromium in an Ultramafic Environment. The Case Study of Vermio Mountains, Western Macedonia, Greece. Water 2021, 13, 2809. [Google Scholar] [CrossRef]
- WHO. Guidelines or Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Lalumbe, L.; Kanyerere, T. Characterisation of hydro-geochemical processes influencing groundwater quality in rural areas: A case study of Soutpansberg Region, Limpopo Province, South Africa. Water 2022, 14, 1972. [Google Scholar] [CrossRef]
- Wu, C.; Wu, X.; Lu, C.; Sun, Q.; Yan, L.; Qin, T. Hydrogeochemical Characterisation and its Seasonal Changes of Groundwater Based on Self-Organising Maps. Water 2021, 13, 3065. [Google Scholar] [CrossRef]
- Iqbal, J.; Su, C.; Rashid, A.; Yang, N.; Baloch, M.Y.J.; Talpur, S.A.; Ullah, Z.; Rahman, G.; Rahman, N.U.; Earjh, E.; et al. Hydrogeochemical Assessment of Groundwater and Suitability Analysis for Domestic and Agricultural Utility in Southern Punjab, Pakistan. Water 2021, 13, 3589. [Google Scholar] [CrossRef]
- Alassane, A.; Trabelsi, R.; Dovonon, L.F.; Odeloui, D.J.; Boukari, M.; Zouari, K.; Mama, D. Chemical Evolution of the Continental Terminal Shallow Aquifer in the South of Coastal Sedimentary Basin of Benin (West-Africa) Using Multivariate Factor Analysis. J. Water Resour. Prot. 2015, 7, 496–515. [Google Scholar] [CrossRef] [Green Version]
- Abiye, T.; Bybee, G.; Leshomo, J. Fluoride concentrations in the arid Namaqualand and the Waterberg groundwater, South Africa: Understanding the controls of mobilization through hydrogeochemical and environmental isotopic approaches. Groundw. Sustain. Dev. 2018, 6, 112–120. [Google Scholar] [CrossRef]
- Durowoju, O.S.; Butler, M.; Ekosse, G.I.; Odiyo, J.O. Hydrochemical Processes and Isotopic Study of Geothermal Springs within Soutpansberg, Limpopo Province, South Africa. Appl. Sci. 2019, 9, 1688. [Google Scholar] [CrossRef] [Green Version]
- Molekoa, M.D.; Avtar, R.; Kumar, P.; Minh, H.V.T.; Kurniawam, T.A. Hydrogeochemical Assessment of Groundwater Quality of Mokopane Area, Limpopo, South Africa Using Statistical Approach. Water 2019, 11, 1891. [Google Scholar] [CrossRef] [Green Version]
- Verlicchi, P.; Grillini, V. Surface Water and Groundwater Quality in South Africa and Mozambique—Analysis of the Most Critical Pollutants for Drinking Purposes and Challenges in Water Treatment Selection. Water 2020, 12, 305. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.; Paul, B. The global menace of arsenic and its conventional remediation—A critical review. Chemosphere 2016, 158, 37–49. [Google Scholar] [CrossRef]
- Callegari, A.; Ferronato, N.; Rada, E.C.; Capodaglio, A.G.; Torretta, V. Assessment of arsenic removal efficiency by an iron oxide-coated sand filter process. Environ. Sci. Pollut. Res. 2018, 25, 26135–26143. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Li, L.; Lu, Y.; Cheng, Y.; Wang, Y.; Ning, Q.; Wang, B.; Zhang, L.; Zeng, G. Integration of nanoscale zero-valent iron and functional anaerobic bacteria for groundwater remediation: A review. Environ. Int. 2019, 124, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Majone, M.; Verdini, R.; Aulenta, F.; Rossetti, S.; Tandoi, V.; Kalogerakis, N.; Agathos, S.; Puig, S.; Zanaroli, G.; Fava, F. In situ groundwater and sediment bioremediation: Barriers and perspectives at European contaminated sites. New Biotechnol. 2015, 32, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Kuppusamy, S.; Palanisami, T.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. In-situ remediation approaches for the management of contaminated sites: A comprehensive overview. Rev. Environ. Contam. Toxicol. 2016, 236, 1–115. [Google Scholar] [PubMed]
- EPA. Superfund Remedy Report, 15th ed.; US Environmental Protection Agency: Washington, DC, USA, 2017.
- Favara, P.; Gamlin, J. Utilization of waste materials, non-refined materials, and renewable energy in in situ remediation and their sustainability benefits. J. Environ. Manag. 2017, 204, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Ayyasamy, P.M.; Kuppusamy, S.; Lakshmanaperumalsamy, P.; Lee, S.; Choi, N.; Kim, D. Two-stage removal of nitrate from groundwater using biological and chemical treatments. J. Biosci. Bioeng. 2007, 104, 129–134. [Google Scholar] [CrossRef]
- Epsztein, R.; Nir, O.; Lahav, O.; Green, M. Selective nitrate removal from groundwater using a hybrid nanofiltration-reverse osmosis filtration scheme. Chem. Eng. J. 2015, 279, 372–378. [Google Scholar] [CrossRef]
- Amarine, M.; Lekhlif, B.; Mliji, M.; Echaabi, J. Nitrate removal from groundwater in Casablanca region (Morocco) by electrocoagulation. Ground. Sus. Dev. 2020, 11, 100452. [Google Scholar] [CrossRef]
- Israel, S.; Engelbrecht, P.; Tredoux, G.; Fey, M.V. In situ batch denitrification of nitrate-rich groundwater using sawdust as a Carbon source—Marydale, South Africa. Water Air Soil Pollut. 2009, 204, 177–194. [Google Scholar] [CrossRef]
- Sivasankar, V.; Rajkumar, S.; Murugesh, S.; Darchen, A. Tamarind (Tamarindus indica) fruit shell carbon: A calcium-rich promising adsorbent for fluoride removal from groundwater. J. Hazard. Mater. 2012, 225–226, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; German, M.; Chaudhari, S.; Sengupta, A. Fluoride removal from groundwater using Zirconium Impregnated Anion Exchange Resin. J. Environ. Manag. 2020, 263, 11045. [Google Scholar] [CrossRef] [PubMed]
- Madilonga, R.T.; Edokpayi, J.N.; Volenzo, E.T.; Durowoju, O.S.; Odiyo, J.O. Water Quality Assessment and Evaluation of Human Health Risk in Mutangwi River, Limpopo Province, South Africa. Int. J. Environ. Res. Public Health 2021, 18, 6765. [Google Scholar] [CrossRef]
- Le Maitre, D.C.; Seyler, H.; Holland, M.; Smith-Adao, L.; Nel, J.A.; Maherry, A.; Witthuser, K. Identification, Delineation and Importance of the Strategic Water Source Areas of South Africa, Lesotho and Swaziland for Surface and Groundwater; Report No. TT 743/1/18; Water Research Commission: Pretoria, South Africa, 2018; pp. 125–126. [Google Scholar]
- Brandl, G. The geology of the Tzaneen area. Explanation sheet. Geol. Surv. S. Afr. 1987, 2330, 55. [Google Scholar]
- Brandl, G. Soutpansberg Group: Catalogue of South African Lithostratigraphic units. SA Committee for stratigraphy. Counc. Geosci. 1999, 6, 39–41. [Google Scholar]
- Barker, O.B. A proposed geotectonic model for the Soutpansberg Group within the Limpopo Mobile Belt, South Africa. Spec. Publ. Geol. Soc. S. Afr. 1983, 8, 181–190. [Google Scholar]
- Cheney, E.S.; Barton, J.M.; Brandl, G. Extent and age of the Soutpansberg sequences of southern Africa. S. Afr. J. Geol. 1990, 93, 664–675. [Google Scholar]
- Barton, J.M., Jr.; Pretorius, W. Soutpansberg Age (1.85 Ga) Magmatism and Metallogenesis in Southern Africa: A Result of Regional Rifting. In Abstract: International Symposium on Plumes, Plates and Mineralization; University of Pretoria: Pretoria, South Africa, 1997. [Google Scholar]
- Weaver, J.M.C.; Cave, L.; Talma, A.S. Groundwater Sampling, 2nd ed.; WRC Report No. TT303/07; Water Research Commission: Pretoria, South Africa, 2007. [Google Scholar]
- Weight, W.D. Hydrogeology Field Manual, 2nd ed.; McGraw-Hill Companies Inc.: New York, NY, USA, 2008. [Google Scholar]
- Kokkat, A.; Jegathambal, P.; James, E.J. Spatial and temporal variation in groundwater quality and impact on sea water in the Cauvery delta, South India. Int. J. Earth Sci. 2016, 9, 383–392. [Google Scholar]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1979. [Google Scholar]
- SABS. South African National Standard 241: Drinking Water, Part 1: Micro-Biological, Physical, Aesthetic and Chemical Determinands; SABS (South African Bureau of Standards): Pretoria, South Africa, 2015. [Google Scholar]
- Shah, A.H.; Shahid, M.; Khalid, S.; Shabbir, Z.; Bakhat, H.F.; Murtaza, B.; Farooq, A.; Akram, M.; Shah, G.M.; Nasim, W.; et al. Assessment of arsenic exposure by drinking well water and associated carcinogenic risk in peri-urban areas of Vehari, Pakistan. Environ. Geochem. Health 2020, 42, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Natasha, N.; Shahid, M.; Imran, M.; Khalid, S.; Murtaza, B.; Niazi, K.N.; Zhang, Y.; Hussain, I. Arsenic Environmental Contamination Status in South Asia. In Arsenic in Drinking Water and Food (13–39); Srivastava, S., Ed.; Springer: Singapore, 2020. [Google Scholar]
- Abbas, Z.; Imran, M.; Natasha, N.; Murtaza, B.; Amjad, M.; Shah, N.S.; Khan, Z.U.H.; Ahmad, I.; Ahmad, S. Distribution and health risk assessment of trace elements in ground/surface water of Kot Addu, Punjab, Pakistan: A multivariate analysis. Environ. Monit. Assess. 2021, 193, 351. [Google Scholar] [CrossRef]
- Ahmad, S.; Imran, M.; Murtaza, B.; Natasha, N.; Arshad, M.; Nawaz, R.; Waheed, A.; Hammad, H.F.; Naeem, M.A.; Shahid, M.; et al. Hydrogeochemical and health risk investigation of potentially toxic elements in groundwater along River Sutlej floodplain in Punjab, Pakistan. Environ. Geochem. Health 2021, 43, 5195–5209. [Google Scholar] [CrossRef]
- Rehman, H.U.; Ahmed, S.; Rahman, M.U.; Mehmood, M.S. Arsenic contamination, induced symptoms, and health risk assessment in groundwater of Lahore, Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 49796–49807. [Google Scholar] [CrossRef] [PubMed]
- Mulaudzi, M.; Munyai, L.F.; Mutoti, M.I. Groundwater quality evaluation for domestic and irrigation purposes for the Nwanedi agricultural community, Limpopo Province, South Africa. Heliyon 2022, 8, 09202. [Google Scholar]
- Chowdhury, P.; Mukhopadhyay, B.P.; Nayak, S.; Bera, A. Hydro-chemical characterization of groundwater and evaluation of health risk assessment for fluoride contamination areas in the eastern blocks of Purulia district, India. Environ. Dev. Sust. 2021, 10668, 1911. [Google Scholar] [CrossRef]
Site ID | pH | T | EC | TDS | Ca2+ | Mg2+ | Na+ | K+ | Cl− | HCO3− | NO3− | SiO2 | F− | SO42− |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZQMPMA1 | 7.9 | 27 | 279 | 1810 | 86 | 61 | 424 | 2 | 664 | 452 | 0 | 30 | 0.5 | 22 |
ZQMSOU1 | 8.2 | 39 | 36 | 262 | 12 | 10 | 45 | 2 | 33 | 119 | 1 | 22 | 2.5 | 10 |
ZQMTPS2 | 9.3 | 45 | 34 | 231 | 2 | 1 | 66 | 2 | 39 | 84 | 0 | 34 | 0.7 | 19 |
ZQMLRT1 | 8.3 | 22 | 88 | 697 | 43 | 47 | 76 | 4 | 76 | 335 | 7 | 21 | 0.4 | 14 |
ZQMNKW2 | 7.7 | 24 | 20 | 125 | 8 | 7 | 16 | 1 | 25 | 50 | 1 | 17 | 0.1 | 4 |
ZQMDMI1 | 8.4 | 22 | 89 | 633 | 53 | 40 | 68 | 3 | 146 | 227 | 5 | 11 | 0.4 | 25 |
ZQMHVE1 | 8.2 | 26 | 48 | 328 | 15 | 9 | 64 | 2 | 55 | 122 | 2 | 19 | 0.8 | 26 |
ZQMMBI1 | 8.3 | 26 | 202 | 1418 | 64 | 118 | 175 | 8 | 334 | 455 | 22 | 30 | 0.3 | 65 |
ZQMMWI1 | 8.5 | 24 | 70 | 494 | 41 | 29 | 59 | 3 | 109 | 183 | 2 | 10 | 0.7 | 20 |
ZQMGGG1 | 8.1 | 24 | 123 | 905 | 50 | 77 | 97 | 4 | 192 | 322 | 15 | 26 | 0.4 | 24 |
ZQMWRT1 | 8.4 | 23 | 22 | 155 | 12 | 11 | 12 | 1 | 20 | 74 | 1 | 11 | 0.1 | 5 |
ZQMTSU1 | 8.2 | 25 | 25 | 180 | 16 | 12 | 13 | 1 | 15 | 87 | 3 | 25 | 0.3 | 2 |
ZQMTVU1 | 7.8 | 26 | 28 | 179 | 13 | 10 | 22 | 1 | 29 | 28 | 15 | 7 | 0.2 | 2 |
ZQMLVI1 | 8.3 | 25 | 50 | 360 | 30 | 25 | 32 | 1 | 62 | 156 | 2 | 18 | 0.3 | 12 |
Min | 6.7 | 13 | 5 | 33 | 1 | 1 | 3 | 0 | 5 | 5 | 0 | 2 | 0 | 1 |
Max | 9.6 | 47 | 287 | 1869 | 99 | 154 | 460 | 10 | 755 | 612 | 37 | 58 | 3 | 71 |
Mean | 8.4 | 31 | 59 | 372 | 22 | 23 | 65 | 2 | 75 | 170 | 4 | 23 | 1 | 14 |
Median | 8.3 | 28 | 36 | 248 | 13 | 10 | 59 | 2 | 34 | 109 | 1 | 22.0 | 0 | 11 |
Detection limit | 2 | 0 | 1 | 1 | 1 | 1 | 2 | 0.1 | 3 | 4 | 0.01 | 0.4 | 0.1 | 0.8 |
Remediation Type | Individual Household | Community Scheme | ||
---|---|---|---|---|
Advantages | Disadvantages | Advantages | Disadvantages | |
Groundwater Quality management |
|
|
|
|
Risk |
|
|
|
|
Cost |
|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lalumbe, L.; Oberholster, P.J.; Kanyerere, T. Feasibility Assessment of the Application of Groundwater Remediation Techniques in Rural Areas: A Case Study of Rural Areas in the Soutpansberg Region, Limpopo Province, South Africa. Water 2022, 14, 2365. https://doi.org/10.3390/w14152365
Lalumbe L, Oberholster PJ, Kanyerere T. Feasibility Assessment of the Application of Groundwater Remediation Techniques in Rural Areas: A Case Study of Rural Areas in the Soutpansberg Region, Limpopo Province, South Africa. Water. 2022; 14(15):2365. https://doi.org/10.3390/w14152365
Chicago/Turabian StyleLalumbe, Lindelani, Paul Johan Oberholster, and Thokozani Kanyerere. 2022. "Feasibility Assessment of the Application of Groundwater Remediation Techniques in Rural Areas: A Case Study of Rural Areas in the Soutpansberg Region, Limpopo Province, South Africa" Water 14, no. 15: 2365. https://doi.org/10.3390/w14152365