Social–Ecological Impact Assessment and Success Factors of a Water Reuse System for Irrigation Purposes in Central Northern Namibia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Namibian Case Study
2.2. Social–Ecological Impact Assessment (SEIA)
2.3. Semistructured Interviews
2.4. Scenario Analysis
3. Results and Discussion
3.1. Ecological Impacts
3.1.1. Intended Impacts
3.1.2. Unintended Impacts
3.2. Social Impacts
3.2.1. Intended Impacts
3.2.2. Unintended Impacts
3.3. Economic Impacts
3.3.1. Intended Impacts
3.3.2. Unintended Impacts
3.4. Success Factors and Hazards for Sustainable Operation
3.4.1. Success Factors
3.4.2. Hazards
3.5. Significance of Management and Operation
3.6. Scenario Analysis
4. Conclusions
- Water reuse systems based on WSPs have great transfer potential due to the large number of WSPs in northern Namibia, but also generally in southern Africa. Most WSPs are facing capacity problems with numerous ecological and social consequences, which is an argument in favour of upgrading WSPs.
- The success of a transfer depends on a number of factors rooted in local conditions. These factors comprise, for instance, the local availability of water, the amount of wastewater collected through a sewage system, potential agricultural areas close to the ponds, demand for fodder, the willingness to pay for it and capacities to manage, operate and maintain the system.
- A major problem that arises with replication is the financing of the initial investment, which cannot be refinanced by the income from fodder production alone. Therefore, external investors or donors must be found, although public funds may also be considered, such as subsidies from responsible ministries.
- Limitations of the study lie in the purely qualitative nature of the results, which means that quantitative aspects were hardly taken into account. Future research could consider approaches such as Baysian belief networks (BBN) to provide both qualitative and quantitative analysis of the research topic.
- From a more general point of view, alternatives for upgrading WSPs, e.g., activated sludge plants, might have to be considered in future research as well. It remains to be seen whether such an option would involve significantly greater transformation efforts, given that WSPs are already available and both investment and operating costs are assumed to be higher.
- With the increasing global water and food crises, the reuse of water from WSPs will become much more widespread since water reuse in agriculture gains importance in all parts of the world. In this way, water reuse based on WSPs also contributes to global food security.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1199–1265. [Google Scholar]
- Himmelsbach, T. Tiefe, semi-fossile Grundwasserleiter im südlichen Afrika: Hydrogeologische Untersuchungen im Norden von Namibia. GMIT–Geowiss. Mitt. 2017, 67, 8–18. [Google Scholar]
- Dabasso, B.H.; Wasonga, O.V.; Irungu, P.; Kaufmann, B. Emerging pastoralist practices for fulfilling market requirements under stratified cattle production systems in Kenya’s drylands. Anim. Prod. Sci. 2021, 61, 12–24. [Google Scholar] [CrossRef]
- Luetkemeier, R.; Stein, L.; Drees, L.; Liehr, S. Blended Drought Index: Integrated Drought Hazard Assessment in the Cuvelai-Basin. Climate 2017, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Asano, T. (Ed.) Wastewater Reclamation and Reuse: Water Quality Management Library; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 1998. [Google Scholar]
- Sinn, J.; Agrawal, S.; Orschler, L.; Lackner, S. Characterization and evaluation of waste stabilization pond systems in Namibia. H2Open J. 2022, 5, 365–378. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Odiyo, J.O.; Popoola, O.E.; Msagati, T.A.M. Evaluation of contaminants removal by waste stabilization ponds: A case study of Siloam WSPs in Vhembe District, South Africa. Heliyon 2021, 7, e06207. [Google Scholar] [CrossRef]
- K’oreje, K.O.; Okoth, M.; van Langenhove, H.; Demeestere, K. Occurrence and treatment of contaminants of emerging concern in the African aquatic environment: Literature review and a look ahead. J. Environ. Manag. 2020, 254, 109752. [Google Scholar] [CrossRef]
- Mungray, A.K.; Kumar, P. Occurrence of anionic surfactants in treated sewage: Risk assessment to aquatic environment. J. Hazard. Mater. 2008, 160, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Mara, D.D. Waste stabilization ponds: Past, present and future. Desalination Water Treat. 2009, 4, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Craggs, R.; Sukias, J.; Tanner, C.; Davies-Colley, R. Advanced pond system for dairy-farm effluent treatment. N. Zealand J. Agric. Res. 2004, 47, 449–460. [Google Scholar] [CrossRef]
- Gumisiriza, R.; Mshandete, A.; Rubindamayugi, M.; Kansiime, F.; Kivaisi, A. Enhancement of anaerobic digestion of Nile perch fish processing wastewater. Afr. J. Biotechnol. 2008, 8, 362–370. [Google Scholar]
- Veeresh, M.; Veeresh, A.V.; Huddar, B.D.; Hosetti, B.B. Dynamics of industrial waste stabilization pond treatment process. Env. Monit Assess 2010, 169, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Mara, D.; Pearson, H.W. Design Manual for Waste Stabilization Ponds in Mediterranean Countries; Lagoon Techn. Internat: Leeds, UK, 1998; ISBN 0951986929. [Google Scholar]
- Ho, L.T.; van Echelpoel, W.; Goethals, P.L.M. Design of waste stabilization pond systems: A review. Water Res. 2017, 123, 236–248. [Google Scholar] [CrossRef] [PubMed]
- Lado, M.; Ben-Hur, M. Effects of irrigation with different effluents on saturated hydraulic conductivity of arid and semiarid soils. Soil Sci. Soc. Am. J. 2010, 74, 23–32. [Google Scholar] [CrossRef]
- Sinn, J.; Cornel, P.; Lackner, S. Waste stabilization ponds with pre-treatment provide irrigation water—A case study in Namibia. In IWA Water Reuse 2019: 12th IWA International Conference on Water Reclamation and Reuse, Book of Abstracts; DECHEMA–Gesellschaft für Chemische Technik und Biotechnologie e.V: Frankfurt am Main, Germany, 2019; pp. 10–17. [Google Scholar]
- Mohr, M.; Dockhorn, T.; Drewes, J.E.; Karwat, S.; Lackner, S.; Lotz, B.; Nahrstedt, A.; Nocker, A.; Schramm, E.; Zimmermann, M. Assuring water quality along multi-barrier treatment systems for agricultural water reuse. J. Water Reuse Desalination 2020, 10, 332–346. [Google Scholar] [CrossRef]
- Lackner, S.; Sinn, J.; Zimmermann, M.; Max, J.; Rudolph, K.-U.; Gerlach, M.; Nunner, C. Upgrading waste water treatment ponds to produce irrigation water in Namibia. Watersolutions 2017, 2017, 82–85. [Google Scholar]
- Cornel, P.; Engelhart, M. Ertüchtigung von Abwasser-Ponds zur Erzeugung von Bewässerungswasser am Beispiel des Cuvelai-Etosha-Basins in Namibia (EPoNa); Technische Universität Darmstadt: Darmstadt, Germany, 2016. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development: Draft Resolution Referred to the United Nations Summit for the Adoption of the Post-2015 Development Agenda by the General Assembly; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Dendena, B.; Corsi, S. The Environmental and Social Impact Assessment: A further step towards an integrated assessment process. J. Clean. Prod. 2015, 108, 965–977. [Google Scholar] [CrossRef]
- Bond, A.J.; Viegas, C.V.; de Souza Reinisch Coelho, C.C.; Selig, P.M. Informal knowledge processes: The underpinning for sustainability outcomes in EIA? J. Clean. Prod. 2010, 18, 6–13. [Google Scholar] [CrossRef]
- Jay, S.; Jones, C.; Slinn, P.; Wood, C. Environmental impact assessment: Retrospect and prospect. Environ. Impact Assess. Rev. 2007, 27, 287–300. [Google Scholar] [CrossRef]
- Ortolano, L.; Shepherd, A. Environmental Impact Assessment: Challenges and Opportunities. Impact Assess. 1995, 13, 3–30. [Google Scholar] [CrossRef]
- Abaza, H.; Bisset, R.; Sadler, B. Environmental Impact Assessment and Strategic Environmental Assessment: Towards an Integrated Approach, 1st ed.; UNEP: Geneva, Switzerland, 2004; ISBN 9789280724295. [Google Scholar]
- DEA. Procedures and Guidelines for Environmental Impact Assessment (EIA) and Environmental Management Plans (EMP); DEA: Windhoek, Namibia, 2008. [Google Scholar]
- European Commission. Impact Assessment Guidelines–Technical Report SEC No. 92; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Grunwald, A. Technikfolgenabschätzung-Eine Einführung, Zweite, Grundlegend überarbeitete und Wesentlich Erweiterte Auflage (Gesellschaft-Technik-Umwelt, 1, Band 1); Sigma: Berlin, Germany, 2010. [Google Scholar]
- European Bank for Reconstruction and Development. Finance of Investment Projects/Environmental and Social Impact Assessments (ESIA) and Public Consultation; European Bank for Reconstruction and Development: London, UK, n.d. [Google Scholar]
- Burdge, R.J. Benefiting from the practice of social impact assessment. Impact Assess. Proj. Apprais. 2003, 21, 225–229. [Google Scholar] [CrossRef]
- Esteves, A.M.; Franks, D.; Vanclay, F. Social impact assessment: The state of the art. Impact Assess. Proj. Apprais. 2012, 30, 34–42. [Google Scholar] [CrossRef]
- Pope, J.; Bond, A.; Morrison-Saunders, A.; Retief, F. Advancing the theory and practice of impact assessment: Setting the research agenda. Environ. Impact Assess. Rev. 2013, 41, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Corsi, S.; Oppio, A.; Dendena, B. ESIA (environmental and social impact assessment): A tool to minimize territorial conflicts. Chem. Eng. Trans. 2015, 43, 2215–2220. [Google Scholar] [CrossRef]
- IFC. IFC Performance Standards on Environmental and Social Sustainability; IFC: Washington, DC, USA, 2012. [Google Scholar]
- Rosa, J.C.; Sánchez, L. Is the ecosystem service concept improving impact assessment? Evidence from recent international practice. Environ. Impact Assess. Rev. 2015, 50, 134–142. [Google Scholar] [CrossRef]
- African Development Bank Group. Sustainable Development of Abu Rawash Wastewater Treatment System. Egypt. Summary of the Environmental and Social Impact Assessment; African Development Bank Group: Abidjan, Côte d’Ivoire, 2017. [Google Scholar]
- Liehr, S. Social-Ecological Impact Assessment (SEIA): Concept and Terms of Reference; CuveWaters Project Report; ISOE–Institute for Social-Ecological Research: Frankfurt am Main, Germany, 2012. [Google Scholar]
- Klintenberg, P.; Wanke, H.; Hipondonka, M. Social-Ecological Impact Assessment of the Rainwater Harvesting, Groundwater Desalination, Sanitation and Water Reuse, and Sub-Surface Water Storage in the Cuvelai Water Basin: Thematic Study on Ecology, Land Use, Hydrogeological Cycle and Eco-Hydrology; CuveWaters; ISOE–Institute for Social-Ecological Research: Frankfurt am Main, Germany, 2012. [Google Scholar]
- Brymer, A.B.; Holbrook, J.D.; Niemeyer, R.; Suazo, A.; Wulfhorst, J.; Vierling, K.; Newingham, B.; Link, T.; Rachlow, J. A social-ecological impact assessment for public lands management: Application of a conceptual and methodological framework. Ecol. Soc. 2016, 21, 9. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.; Morrison-Saunders, A. Understanding the long-term influence of EIA on organisational learning and transformation. Environ. Impact Assess. Rev. 2017, 64, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Lux, A.; Schäfer, M.; Bergmann, M.; Jahn, T.; Marg, O.; Nagy, E.; Ransiek, A.-C.; Theiler, L. Societal effects of transdisciplinary sustainability research—How can they be strengthened during the research process? Environ. Sci. Policy 2019, 101, 183–191. [Google Scholar] [CrossRef]
- Tribaldos, T.; Oberlack, C.; Schneider, F. Impact through participatory research approaches: An archetype analysis. Ecol. Soc. 2020, 25, 15. [Google Scholar] [CrossRef]
- Schäfer, M.; Bergmann, M.; Theiler, L. Systematizing societal effects of transdisciplinary research. Res. Eval. 2021, 30, 484–499. [Google Scholar] [CrossRef]
- Mendelsohn, J.M.; Jarvis, A.; Roberts, C.; Robertson, T. Atlas of Namibia: A Portrait of the Land and Its People; David Philip Publishers: Cape Town, South Africa, 2002. [Google Scholar]
- Woltersdorf, L.; Jokisch, A.; Kluge, T. Benefits of rainwater harvesting for gardening and implications for future policy in Namibia. Water Policy 2014, 16, 124–143. [Google Scholar] [CrossRef]
- Kluge, T.; Liehr, S.; Bischofberger, J.; Deffner, J.; Felmeden, J.; Kramm, J.; Krug von Nidda, A.; Schulz, O.; Stibitz, V.; Woltersdorf, L.; et al. IWRM-Verbundprojekt CuveWaters: Integriertes Wasserressourcen-Management im zentralen Norden Namibias (Cuvelai Basin) und in der SADC-Region. Phase III: Transfer eines Multi-Ressourcen-Mix, Teilprojekt 1: Schlussbericht: Projektlaufzeit: 01.10.2013–31.12.2015; ISOE–Institute for Social-Ecological Research: Frankfurt am Main, Germany, 2016. [Google Scholar]
- Mendelsohn, J.; Jarvis, A.; Robertson, T. A Profile and Atlas of the Cuvelai-Etosha Basin; RAISON & Gondwana Collection: Windhoek, Namibia, 2013; ISBN 9789991678078. [Google Scholar]
- UNESCO. Managing Water under Uncertainty and Risk: The Challenges; UNESCO: Paris, France, 2012. [Google Scholar]
- World Bank Group. GINI Index (World Bank Estimate). Available online: https://data.worldbank.org/indicator/si.pov.gini (accessed on 24 August 2018).
- National Planning Commission. Namibia 2011 Population and Housing Census: Preliminary Results; Namibia Statistics Agency: Windhoek, Namibia, 2012. [Google Scholar]
- Ministry of Agriculture, Water and Forestry. The Augmentation of a Water Supply to the Central Area of Namibia and the: CuvelaiPart II: Cuvelai Area of Namibia; Ministry of Agriculture, Water and Forestry: Windhoek, Namibia, 2016. [Google Scholar]
- Namibia Statistics Agency. Namibia 2011 Population and Housing: Census Indicators; Namibia Statistics Agency: Windhoek, Namibia, 2012. [Google Scholar]
- Zimmermann, M. The coexistence of traditional and large-scale water supply systems in central northern Namibia. J. Namib. Stud. 2010, 7, 55–84. [Google Scholar]
- Kluge, T.; Liehr, S.; Lux, A.; Moser, P.; Niemann, S.; Umlauf, N.; Urban, W. IWRM Concept for the Cuvelai Basin in Northern Namibia. J. Phys. Chem. Earth 2008, 33, 48–55. [Google Scholar] [CrossRef]
- Republic of Namibia. Namibia Vision 2030: Policy Framework for Long-Term National Development; Republic of Namibia: Windhoek, Namibia, 2004. [Google Scholar]
- Röhrig, J.; Werner, W. Policy Framework for Small-Scale Gardening; CuveWaters Papers No. 8; ISOE–Institute for Social-Ecological Research: Frankfurt am Main, Germany, 2011. [Google Scholar]
- Frick-Trzebitzky, F.; Kluge, T.; Stegemann, S.; Zimmermann, M. Capacity Development for Wastewater Management and Water Reuse in In-formal Partnerships in Northern Namibia. Front. Water 2022, 30, 115. [Google Scholar]
- Hummel, D.; Jahn, T.; Keil, F.; Liehr, S.; Stieß, I. Social Ecology as Critical, Transdisciplinary Science—Conceptualizing, Analyzing and Shaping Societal Relations to Nature. Sustainability 2017, 9, 1050. [Google Scholar] [CrossRef] [Green Version]
- Döring, N.; Bortz, J.; Pöschl-Günther, S. Forschungsmethoden und Evaluation in den Sozial-und Humanwissenschaften: Mit 194 Abbildungen und 167 Tabellen, 5., Vollständig überarbeitete, Aktualisierte und Erweiterte Auflage; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-642-41088-8. [Google Scholar]
- Mattissek, A.; Pfaffenbach, C.; Reuber, P. Methoden der Empirischen Humangeographie; Westermann: Braunschweig, Germany, 2013. [Google Scholar]
- Mayring, P. Einführung in die Qualitative Sozialforschung: Eine Anleitung zu qualitativem Denken, 6. Auflage; Beltz: Basel, Switzerland, 2016. [Google Scholar]
- Galvin, R. How many interviews are enough? Do qualitative interviews in building energy consumption research produce reliable knowledge? J. Build. Eng. 2015, 1, 2–12. [Google Scholar] [CrossRef]
- Sattlegger, L. Negotiating attachments to plastic. Soc. Stud. Sci. 2021, 51, 820–845. [Google Scholar] [CrossRef]
- Kerber, H.; Kramm, J. From laissez-faire to action? Exploring perceptions of plastic pollution and impetus for action. Insights from Phu Quoc Island. Mar. Policy 2022, 137, 104924. [Google Scholar] [CrossRef]
- Kosow, H.; Gaßner, R. Methods of Future and Scenario Analysis: Overview, Assessment, and Selection Criteria; German Development Institute/Deutsches Institut für Entwicklungspolitik (DIE): Bonn, Germany, 2008. [Google Scholar]
- Kok, K.; van Vliet, M.; Bärlund, I.; Dubel, A.; Sendzimir, J. Combining participative backcasting and exploratory scenario development: Experiences from the SCENES project. Technol. Forecast. Soc. Chang. 2011, 78, 835–851. [Google Scholar] [CrossRef]
- Quist, J.; Thissen, W.; Vergragt, P.J. The impact and spin-off of participatory backcasting: From vision to niche. Technol. Forecast. Soc. Chang. 2011, 78, 883–897. [Google Scholar] [CrossRef]
- Carlsson-Kanyama, A.; Dreborg, K.H.; Moll, H.C.; Padovan, D. Participative backcasting: A tool for involving stakeholders in local sustainability planning. Futures 2008, 40, 34–46. [Google Scholar] [CrossRef]
- Döll, P.; Hauschild, M.; Fuhr, D. Scenario Development as a Tool for Integrated Analysis and Regional Planning. In Neotropical Ecosystems. Proceedings of the German Brazilian Workshop Hamburg 2000; Lieberei, R., Bianchi, H.-K., Boehm, V., Reisdorff, C., Eds.; GKSS-Forschungszentrum Geesthacht: Geesthacht, Germany, 2000; pp. 817–822. [Google Scholar]
- Delgado-Maciel, J.; Cortés-Robles, G.; Alor-Hernández, G.; García Alcaraz, J.L.; Négny, S. A comparison between the Functional Analysis and the Causal-Loop Diagram to model inventive problems. Procedia CIRP 2018, 70, 259–264. [Google Scholar] [CrossRef]
- Kirkwood, C.W. System Dynamics Methods: A Quick Introduction; Arizona State University: Phoenix, AZ, USA, 1998. [Google Scholar]
- Senaras, A.E. Causal Loop Diagrams and Feedbacks: A Case Study in Flexible Manufacturing System. Yönetim Ekon. Ve Pazarlama Araştırmaları Derg. 2017, 1, 1–12. [Google Scholar]
- Zimmermann, M.; Woltersdorf, L.; Felmeden, J.; Müller, K. Water reuse for agricultural irrigation. In Integrated Water Resources Management in Water-Scarce Regions: Water Harvesting, Groundwater Desalination and Water Reuse in Namibia; Liehr, S., Kramm, J., Jokisch, A., Müller, K., Eds.; IWA Publishing: London, UK, 2018; pp. 42–51. [Google Scholar]
- Liehr, S.; Kramm, J.; Jokisch, A.; Müller, K. (Eds.) Integrated Water Resources Management in Water-Scarce Regions: Water Harvesting, Groundwater Desalination and Water Reuse in Namibia. IWA Publishing: London, UK, 2018. [Google Scholar]
- Ghassemi, F.; Jakeman, A.J.; Nix, H.A. Salinisation of Land and Water Resources: Human Causes, Extent, Management and Case Studies; University of New South Wales Press: Sydney, Australia, 1995; ISBN 0-86840-198-6. [Google Scholar]
- Janeiro, C.N.; Arsénio, A.M.; Brito, R.; van Lier, J.B. Use of (partially) treated municipal wastewater in irrigated agriculture; potentials and constraints for sub-Saharan Africa. J. Phys. Chem. Earth 2020, 118–119, 102906. [Google Scholar] [CrossRef]
- Zimmermann, M.; Boysen, B.; Ebrahimi, E.; Fischer, M.; Henzen, E.; Hilsdorf, J.; Kleber, J.; Lackner, S.; Parsa, A.; Rudolph, K.-U.; et al. Replication Guideline for Water Reuse in Agricultural Irrigation: Upgrading Wastewater Pond Systems to Generate Irrigation Water for Animal Fodder Production Using the Example of Outapi, Namibia; ISOE-Materialien Soziale Ökologie No. 63; ISOE–Institute for Social-Ecological Research: Frankfurt am Main, Germany, 2021. [Google Scholar]
- Zimmermann, M.; Deffner, J.; Müller, K.; Kramm, J.; Papangelou, A.; Cornel, P. Sanitation and Water Reuse—Implementation Concept; ISOE–Institute for Social-Ecological Research: Frankfurt am Main, Germany, 2015. [Google Scholar]
- Zacharia, A.; Ahmada, W.; Outwater, A.H.; Ngasala, B.; van Deun, R. Evaluation of Occurrence, Concentration, and Removal of Pathogenic Parasites and Fecal Coliforms in Three Waste Stabilization Pond Systems in Tanzania. Sci. World J. 2019, 2019, 3415617. [Google Scholar] [CrossRef] [PubMed]
Success Factors | Hazards |
---|---|
Business model, good management | Vandalism (stealing, fence, burning fields, grazing fields) |
Awareness, sense of responsibility | Clogging of irrigation pipes |
Qualified personnel | Lack of demand for water and fodder |
Training of workers | Water usage competition / conflicts in general |
Maintenance | Lack of awareness |
Low-tech approach | Poor maintenance, no monitoring |
Wastewater treatment plant partnership | Missing spare parts |
Communication between stakeholders | Decreasing water quality affecting farmers cultivation |
Public participation | Lack of specific education (curricula) |
Overcoming prejudices | Incorrect irrigation practices |
Ensuring product safety | Extreme population growth in the town |
Functioning supply chains | Flooding of cultivation site, erosion |
Equal distribution in income | Switching off pretreatment |
Employers migration, brain drain | |
Deterioration in political relations with Angola |
Operators | Society | Economy | |||||||
---|---|---|---|---|---|---|---|---|---|
OTC | Employees | Farmer | Fisher | Pastoralists | Seller | Consumers | Residents | Municipalities | |
relief of ponds/minimising overflowing/sewage disposal | income | income (tenant) | decreased health risks | fodder assurance | income | food security | improved hygiene | wastewater treatment plant partnership | increased efficiency |
prestige/recommendations | welfare/livelihood | higher yields | bigger and healthier fish | avoiding emergency slaughtering | welfare/livelihood | decreased health risks | triggering interest | strengthening cooperation | promoting regional fodder production |
financing of treatment plant | welfare/livelihood | higher yields | reputation, capital reserve | awareness | reducing costs | trade | |||
revenues | independent to climate variability | reducing high costs for fodder | dignity | decreased health risks downstream | reducing import dependency | ||||
maintenance | reducing use of artificial fertiliser | avoiding long trips | improved town atmosphere | establishing new industries | |||||
reduction in repair effort | welfare/livelihood | power generation | |||||||
increased efficiency | higher yields, better meat quality | increased buying power | |||||||
Ecosystem | Ecosystem Services | ||||||||
Soil | Groundwater | Pastures | Biodiversity | Oshanas | Atmosphere | Provisioning | Regulating | Supporting | Cultural |
less degradation | recharge | conserving pastureland | increasing biodiversity (agroforestry) | minimising overflowing/ less contamination | less emissions from ponds | water | climate regulation | soil formation | maintaining traditions |
increasing moisture | dilution | less desertification | relief of resources | improved water quality | less smell | sludge/fertiliser | purification of water | nutrient cycling | recreational |
humus enrichment, additional nutrients | fodder | reducing pathogens/diseases | science | ||||||
reducing use of artificial fertilizer | food | ||||||||
power generation |
Operators | Society | Economy | |||||||
---|---|---|---|---|---|---|---|---|---|
OTC | Employees | Tenant farmer | Fisher | Pastoralists | Seller | Consumers | Residents | Municipalities | |
burden | brain drain | contamination | less water in Oshanas, no fishing in ponds | less grass areas due to agriculture | competition for existing seller | health risk | women do not benefit | migration of inhabitants | lack of demand for fodder |
information inequity | dependency | contamination in case of overflow | no water trough at the ponds | increased meat consumption | opening of the social gap | ||||
lack of demand for water | lack of demand for fodder | lack of acceptance | displacement due to new farming site | ||||||
higher costs for maintaining | pipe clogging | cultural losses | |||||||
less revenues | damaging of pipes | lower quality of meat | |||||||
lower yields | |||||||||
Ecosystem | Ecosystem services | ||||||||
Soil | Groundwater | Pastures | Biodiversity | Oshanas | Atmosphere | Provisioning | Regulating | Supporting | Cultural |
pollution (heavy metals) | pollution | more livestock, overgrazing | loss | risk of overflowing in heavy rain | more methane due to livestock | health risks | commercialising pastoralism | ||
salinisation | groundwater rise, dissolving salts | less grass areas | displacement of wild animals | increased risk of overflowing | loss of tradition | ||||
damage of soil quality |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimmermann, M.; Neu, F. Social–Ecological Impact Assessment and Success Factors of a Water Reuse System for Irrigation Purposes in Central Northern Namibia. Water 2022, 14, 2381. https://doi.org/10.3390/w14152381
Zimmermann M, Neu F. Social–Ecological Impact Assessment and Success Factors of a Water Reuse System for Irrigation Purposes in Central Northern Namibia. Water. 2022; 14(15):2381. https://doi.org/10.3390/w14152381
Chicago/Turabian StyleZimmermann, Martin, and Felix Neu. 2022. "Social–Ecological Impact Assessment and Success Factors of a Water Reuse System for Irrigation Purposes in Central Northern Namibia" Water 14, no. 15: 2381. https://doi.org/10.3390/w14152381
APA StyleZimmermann, M., & Neu, F. (2022). Social–Ecological Impact Assessment and Success Factors of a Water Reuse System for Irrigation Purposes in Central Northern Namibia. Water, 14(15), 2381. https://doi.org/10.3390/w14152381