DRASTIC Index GIS-Based Vulnerability Map for the Entre-os-Rios Thermal Aquifer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Mineral Water
2.3. Development of a Vulnerability Map
3. Results and Discussion
3.1. Thematic Maps for the DRASTIC Index Parameters
3.2. Vulnerability Map
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carvalho, J. Mineral water exploration and exploitation at the Portuguese Hercynian Massif. Environ. Geol. 1996, 27, 252–258. [Google Scholar] [CrossRef]
- Juncosa, R.; Meijide-Failde, R.; Delgado, J. Therapeutic characteristics of Galician mineral and thermal waters (NW-Spain) ascribed to their local/regional geological setting. Sustain. Water Resour. Manag. 2019, 5, 83–99. [Google Scholar] [CrossRef]
- Afonso, M.J.; Chaminé, H.I. Environmental hydrogeochemistry assessment as a tool for sustainable hydromineral resources management (Entre-os-Rios thermal baths, NW Portugal). Sustain. Water Resour. Manag. 2019, 5, 147–159. [Google Scholar] [CrossRef]
- Ferreira Gomes, L.; Antunes, I.; Albuquerque, M.; Santos Silva, A. New Thermal 823 Mineral Water from Águas (Penamacor, Central Portugal): Hydrogeochemistry and Therapeutic Indications. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Prague, Czech Republic, 3–7 September 2018; Volume 221. [Google Scholar] [CrossRef]
- Albu, X.; Banks, X.; Nash, X. Mineral and Thermal Groundwater Resources; Chapman & Hall: London, UK, 1997. [Google Scholar]
- LaMoreaux, P.E.; Tanner, J.T. Springs and Bottled Waters of the World: Ancient History, Source, Occurrence, Quality and Use; Springer: Berlin, Germany, 2001. [Google Scholar]
- Marques, J.M.; Carreira, P.M.; Neves, O.; Espinha Marques, J.; Teixeira, J. Revision of the hydrogeological conceptual models of two Portuguese thermomineral water systems: Similarities and differcences. Sustain. Water Resour. Manag. 2019, 5, 117–133. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: Englewood Cliffs, NJ, USA, 1979. [Google Scholar]
- Marques, J.M.; Matos, C.; Carreira, P.M. Isotopes and geochemistry to assess shallow/thermal groundwater interaction in a karst/fissured-porous environment (Portugal): A review and reinterpretation. Sustain. Water Resour. Manag. 2017, 5, 1525–1536. [Google Scholar] [CrossRef]
- Cantista, P. O Termalismo em Portugal. An. Hidrol. Med. 2008, 3, 79–107. Available online: http://www.journals4free.com/link.jsp?l=17647061 (accessed on 15 January 2022). (In Portuguese).
- Decree Law n.º 156/98, June 6th. Lays out the Guidelines for Recognizing Natural Mineral Waters, as Well as the Traits and Requirements That Must Be Met When Treating, Labelling, and Marketing Natural Mineral Waters and Spring Waters. Diário da República n.º 131/1998, Série I-A de 1998-06-06, Páginas 2593–2599. Available online: https://dre.pt/dre/detalhe/decreto-lei/156-1998-473321 (accessed on 15 January 2022).
- Lepierre, C. Chimie et Physico-Chimie des Eaux (Le Portugal Hydrologique et Climatique), 1st ed.; Monography; Industria Graficas: Lisboa, Portugal, 1930. (In French) [Google Scholar]
- Afonso, M.J.; Ferreira, M.R.; Teixeira, J.; Chaminé, H.I. The sulphurous mineral waters of Entre-os-Rios (NW Portugal): A hydro-geochemical assessment. In Proceedings of the 1st International Congress on Water Healing Spa and Quality of Life/I Congreso Internacional del Auga, Termalismo y Calidad de Vida 2016, Ourense, Spain, 23–24 September 2015; Faílde, J.M., Formella, A., Fraiz, J.Á., Gómez-Gesteira, M., Pérez, F., Vázquez, V.R., Eds.; pp. 169–174. [Google Scholar]
- Acciaiuoli, L.M.C. Le Portugal hydrominéral. In Direction Générale des Mines et des Services Géologiques; DGMSG: Lisbon, Portugal, 1952; Volume 2. [Google Scholar]
- Croutier, A.L. Taking the Waters: Spirit, Art, Sensuality, 1st ed.; Abbeville Press: New York, NY, USA, 1992; Volume 7. [Google Scholar]
- Jackson, R. Waters, and spas in the classical world. Med. History 1990, 34, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Giampaoli, S.; Romano Spica, V. Health and safety in recreational waters. Bull. World Health Organ. 2014, 92, 79. [Google Scholar] [CrossRef]
- Van Tubergen, A.; Van der Linden, S.A. Brief History of Spa Therapy. Ann. Rheum. Dis. 2002, 61, 273–275. [Google Scholar] [CrossRef] [Green Version]
- Routh, H.B.; Bhowmik, K.R.; Parish, L.C.; Witkowski, J.A. Balneology, mineral water, and spas in historical perspective. Clin. Dermatol. 1996, 14, 551–554. [Google Scholar] [CrossRef]
- Valeriani, F.; Margarucci, L.M.; Spica, V.R. Recreational Use of Spa Thermal Waters: Criticisms and Perspectives for Innovative Treatments. Int. J. Environ. Res. Public Health 2018, 15, 2675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frosh, W.A. Taking the waters—Springs, wells, and spas. FASEB J. 2007, 21, 1948–1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, G.J. The spa as a model of an optimal healing environment. J. Altern. Complement. Med. 2004, 10, 85–92. [Google Scholar] [CrossRef]
- Morer, C.; Roques, C.F.; Françon, A.; Forestier, R.; Maraver, F. The role of mineral elements and other chemical compounds used in balneology: Data from double-blind randomized clinical trials. Int. J. Biometeorol. 2017, 61, 2159–2173. [Google Scholar] [CrossRef]
- Araujo, A.R.T.S.; Sarraguça, M.C.; Ribeiro, M.P.; Coutinho, P. Physicochemical fingerprinting of thermal waters of Beira Interior region of Portugal. Environ. Geochem. Health 2017, 39, 483–496. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, S. Evaluation of the Role of Balneotherapy in Rehabilitation Medicine. J. Nippon. Med. Sch. 2018, 85, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Petraccia, L.; Liberati, G.; Masciullo, S.G.; Grassi, M.; Fraioli, A. Water, Mineral Waters and Health. Clin. Nutr. 2006, 25, 377–385. [Google Scholar] [CrossRef]
- Mavridou, A.; Pappa, O.; Papatzitze, O.; Blougoura, A.; Drossos, P. An overview of pool and spa regulations in Mediterranean countries with a focus on the tourist industry. J. Water Health 2014, 12, 359–371. [Google Scholar] [CrossRef]
- WWAP. The United Nations World Water Development Report: Groundwater: Making the Invisible Visible; UNESCO: Paris, France, 2022. [Google Scholar] [CrossRef]
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Singh Sidhu, G.P.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.; Albuquerque, A.; Cavaleiro, V.; Scalize, P. Removal of Cr, Cu and Zn from liquid effluents using the fine component of granitic residual soils. Open Eng. 2018, 8, 417–425. [Google Scholar] [CrossRef]
- Belizário, P.; Scalize, P.; Albuquerque, A. Heavy metal removal in a detention basin for road runoff. Open Eng. 2016, 6, 412–417. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.; Scalize, P.; Crunivel, K.; Albuquerque, A. Caracterização de solos residuais para infiltração de efluente de estação de tratamento de esgoto. Rev. Eng. Sanitária E Ambient. 2017, 22, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Borevsky, B.; Yazvin, L.; Margat, L. Importance of groundwater for water supply. In Groundwater Resources of the World and Their Use; IHP-VI, Series on Groundwater; Zektser, I.S., Everett, L.G., Eds.; UNESCO: Paris, France, 2004; pp. 20–24. [Google Scholar]
- Foster, S.S.D.; Chilton, P.J. Groundwater: The processes and global significance of aquifer degradation. Philos. Trans. R Soc. Lond. B 2003, 358, 1957–1972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, L.; Teodoro, A.C.; Gonçalves, J.A.; Guerner Dias, A.J.; Espinha Marques, J. A dynamic map application for the assessment of groundwater vulnerability to pollution. Environ. Earth Sci. 2015, 74, 2315–2327. [Google Scholar] [CrossRef]
- Fang, Z.; Liu, Z.; Zhao, S.; Ma, Y.; Li, X.; Gao, H. Assessment of Groundwater Contamination Risk in Oilfield Drilling Sites Based on Groundwater Vulnerability, Pollution Source Hazard, and Groundwater Value Function in Yitong County. Water 2022, 14, 628. [Google Scholar] [CrossRef]
- Živanović, V.; Atanacković, N.; Stojadinović, S. Vulnerability Assessment as a Basis for Sanitary Zone Delineation of Karst Groundwater Sources—Blederija Spring Case Study. Water 2021, 13, 2775. [Google Scholar] [CrossRef]
- Decree Law n. º 382/99 de 22 de Setembro, Establishes Protection Perimeters for Groundwater Abstraction Intended for Public Supply. Portuguese Law, Diário da República n.º 222, I Série, 1999, Lisboa, Portugal. Available online: https://data.dre.pt/eli/dec-lei/382/1999/09/22/p/dre/pt/html (accessed on 20 January 2022).
- Aller, L.; Lehr, J.H.; Petty, R.; Bennet, T. DRASTIC: A Standardized System to Evaluate Groundwater Pollution Potential Using Hydrogeologic Settings; National Water Well Association: Worthington, OH, USA, 1987. [Google Scholar]
- Foster, S.S.D. Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In Vulnerability of Soil and Groundwater to Pollutants; Proceedings and Information no. 38; Van Duijvenbooden, W., van Waegeningh, H.G., Eds.; TNO Committee on Hydrological Research: The Hague, The Netherlands, 1987; pp. 69–86. [Google Scholar]
- NAP (National Academies Press). Groundwater Vulnerability Assessment-Contamination Potential under Conditions of Uncertainty; NAP: Washington, DC, USA, 1993; p. 189. [Google Scholar] [CrossRef]
- Medici, G.; Engdahl, N.B.; Langman, J.B. A basin-scale groundwater flow model of the columbia plateau regional aquifer system in the palouse (USA): Insights for aquifer vulnerability assessment. Int. J. Environ. Res. 2021, 15, 299–312. [Google Scholar] [CrossRef]
- Ducci, D.; Sellerino, M. Vulnerability mapping of groundwater contamination based on 3D lithostratigraphical models of porous aquifers. Sci. Total Environ. 2013, 447, 315–322. [Google Scholar] [CrossRef]
- Jang, W.S.; Engel, B.; Harbor, J.; Theller, L. Aquifer Vulnerability Assessment for Sustainable Groundwater Management Using DRASTIC. Water 2017, 9, 792. [Google Scholar] [CrossRef] [Green Version]
- Al-Zabet, T. Evaluation of aquifer vulnerability to contamination potential using the DRASTIC method. Environ. Geol. 2002, 43, 203–208. [Google Scholar] [CrossRef]
- Shirazi, S.M.; Imran, H.M.; Shatirah, A. GIS-Based DRASTIC method for groundwater vulnerability assessment: A review. J. Risk Res. 2012, 15, 991–1011. [Google Scholar] [CrossRef]
- Dixon, B. Groundwater vulnerability mapping: A GIS and fuzzy rule based integrated tool. Appl. Geogr. 2005, 25, 327–347. [Google Scholar] [CrossRef]
- Machiwal, D.; Jha, M.K.; Singh, V.P.; Mohan, C. Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. Earth Sci. Rev. 2018, 185, 901–927. [Google Scholar] [CrossRef]
- Rossetto, R.; Sabbatini, T.; Silvestri, N. Assessing Specific Vulnerability of Shallow Aquifers to Pesticide Using GIS Tools. Data Needs and Reliability of Index-Overlay Methods: An Application to the San Giuliano Terme Agricultural Area (Pisa, Italy). Agronomy 2020, 10, 985. [Google Scholar] [CrossRef]
- Paralta, E.; Frances, A.; Ribeiro, L. Avaliação da vulnerabilidade do sistema aquífero dos Grabos de Beja e análise crítica das redes de monitorização no contexto da directiva da água. In Proceedings of the VII Simpósio de Hidráulica e Recursos Hídricos dos Paises de Lingua Poprtuguesa 2005 (7º SILUSBA), Évora, Portugal, 30 May–2 June 2005. (In Portuguese). [Google Scholar]
- Wang, J.; He, J.; Chen, H. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model, and groundwater value, Beijing Plain, China. Sci. Total Environ. 2012, 432, 216–226. [Google Scholar] [CrossRef]
- Jenifer, M.; Jha, M. A Novel GIS-Based Modeling Approach for Evaluating Aquifer Susceptibility to Anthropogenic Contamination. Sustainability 2022, 14, 4538. [Google Scholar] [CrossRef]
- Baalousha, H.; Tawabini, B.; Seers, T. Fuzzy or Non-Fuzzy? A Comparison between Fuzzy Logic-Based Vulnerability Mapping and DRASTIC Approach Using a Numerical Model. A Case Study from Qatar. Water 2021, 13, 1288. [Google Scholar] [CrossRef]
- Teixeira, J.; Chaminé, H.I.; Carvalho, J.M.; Pérez-Alberti, A.; Rocha, F. Hydrogeomorphological mapping as a tool in groundwater exploration. J. Maps 2013, 9, 263–273. [Google Scholar] [CrossRef]
- Pedrero, F.; Albuquerque, A.; Marecos do Monte, H.; Cavaleiro, V.; Alarcón, J. Application of GIS-based multi-criteria analysis for site selection of aquifer recharge with reclaimed water. Resour. Conserv. Recycl. 2011, 56, 105–116. [Google Scholar] [CrossRef]
- Ribeiro, P.; Albuquerque, A.; Quinta-Nova, L.; Cavaleiro, V. Recycling of pulp mill sludge to improve soil fertility using GIS tools. Resour. Conserv. Recycl. 2010, 54, 1303–1311. [Google Scholar] [CrossRef] [Green Version]
- Albuquerque, A.; Scalize, P.; Ferreira, N.; Silva, F. Multi-criteria analysis for site selection for the reuse of reclaimed water and biosolids. Ambiente & Água—An Interdisciplinary. J. Appl. Sci. 2015, 10, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, J.; Chaminé, H.; Espinha Marques, J.; Carvalho, J.; Pereira, A.; Carvalho, M.; Fonseca, P.; Pérez-Alberti, A.; Rocha, F. A comprehensive analysis of groundwater resources using GIS and multicriteria tools (Caldas da Cavaca, Central Portugal): Environmental issues. Environ. Earth Sci. 2015, 73, 2699–2715. [Google Scholar] [CrossRef]
- Teixeira, J.; Chaminé, H.I.; Espinha Marques, J.; Gomes, A.; Carvalho, J.M.; Pérez-Alberti, A.; Rocha, F. Integrated Approach of Hydrogeomorphology and GIS Mapping to the Evaluation of Groundwater Resources: An Example from the Hydromineral System of Caldas da Cavaca, NW Portugal; Paliwal, B.S., Ed.; Global Groundwater Resources and Management, Scientific Publishers: Jodhpur, India, 2010; pp. 227–249. Available online: http://hdl.handle.net/10216/22208 (accessed on 25 January 2022).
- Chaminé, H.; Carvalho, J.; Teixeira, J.; Freitas, L. Role of hydrogeological mapping in groundwater practice: Back to basics. Eur. Geol. J. 2015, 40, 34–42. Available online: https://hdl.handle.net/10216/81056 (accessed on 25 January 2022).
- Mejuto, M.; Castaño, S.; Vela, A. Utilidad de las Ténicas de Observación de la Tierra a lá Elaboración de Mapas de Vulnerabilidad y Riesgo de Contaminación de Aguas Subtrerráneas. In Proceedings of the VIII Congresso Nacional de Teledetección 1999, Albacete, Espanha, 22–24 September 1999. (In Spanish). [Google Scholar]
- Xavier, J.; Gagliardi, S.; Vidal, H.; Montano, M.; Lucena, L.R.F. Evaluación de la vulnerabilidad a la contaminación del acuífero Mercedes en el área metropolitana de la Ciudad de Paysandú—Comparación de los Métodos GOD y DRASTIC. Rev. Lat. -Am. Hidrogeol. 2004, 4, 5–46. Available online: http://ceregas.org/files/Repositorio%20documentos%20agua%20subterranea/Documentos%20del%20excel/55.pdf (accessed on 30 January 2022). (In Spanish).
- Carvalho, P.; Cavaleiro, V. Área de Protecção do Recurso Hidromineral das Termas de Entre-os-Rios. In Proceedings of the XI Congresso Brasileiro de Águas Subterrâneas, Fortaleza, Brazil, 15 September 2000; Available online: https://aguassubterraneas.abas.org/asubterraneas/article/view/24343 (accessed on 25 January 2022). (In Portuguese).
- Portaria n.º 203/2003 de 7 de Março. Establishes the Perimeter of Protection of Natural Mineral Water Corresponding to the Registration Number HM-23 and the Denomination of Entre-os-Rios (Quinta da Torre). Diário da República n.º 56, Série I-B 2003, Lisboa, Portugal. Available online: https://data.dre.pt/eli/port/203/2003/03/07/p/dre/pt/html (accessed on 5 February 2022).
- Dias, G.; Noronha, F.; Ferreira, N. Introduction. In Variscan Plutonism in the Central Iberian Zone, Northern Portugal, Eurogranites, Field Meeting; Dias, G., Noronha, E., Ferreira, N., Eds.; Universidade do Minho, Escola de Ciências, Faculdade de Ciencias da Universidade do Porto, Instituto Geológico e Mineiro: Porto, Portugal, 2000; pp. 7–26. [Google Scholar]
- Pereira, E.; Ribeiro, A.; Carvalho, G.; Noronha, F.; Ferreira, N.; Monteiro, J. Portugal’s Geological Map, Scale 1/200000; Paper 1; Serviços Geológicos de Portugal: Lisboa, Portugal, 1989. (In Portuguese) [Google Scholar]
- Teixeira, J. Hidrogeomorfologia e Sustentabilidade de Recursos Hídricos Subterrâneos. Ph.D. Thesis, University of Aveiro, Aveiro, Portugal, 2011. Available online: http://hdl.handle.net/10773/8308 (accessed on 5 February 2022). (In Portuguese).
- Medeiros, A.; Pereira, E.; Moreira, A. Portugal’s Geological Map, scale 1/50.000; Paper 9-D (Penafiel); Serviços Geológicos de Portugal: Lisboa, Portugal, 1981. (In Portuguese) [Google Scholar]
- LAIST. Relatório de Análise Físico-Química Completa—Fundação Inatel, Furo dos Barbeitos, Situado em Quinta da Torre, Entre-os-Rios; Laboratório de Análises, Instituto Superior Técnico de Lisboa: Lisboa, Portugal, 2018. (In Portuguese) [Google Scholar]
- LNEC. Análise e Parecer Sobre a Situação Originada Pelo Derrame de Hidrocarbonetos em Entre-os-Rios; Technical Report; Laboratório Nacional de Engenharia Civil: Lisboa, Portugal, 2008. (In Portuguese) [Google Scholar]
- Bonham-Carter, G.F. Geographic Information Systems for Geoscientists: Modelling with GIS; Pergamon: Oxford, UK, 1994. [Google Scholar]
- Sinan, M.; Razack, M. An Extension to the DRASTIC Model for Assessing Groundwater Vulnerability to Pollution: Application to the Haouz Aquifer of Marrakech (Morocco). Environ. Geol. 2008, 57, 349–363. [Google Scholar] [CrossRef]
- DGT. Carta de Uso e Ocupação do Solo Para 2018. 2019. Available online: http://mapas.dgterritorio.pt/wms-inspire/cos2018v1?service=WMS&REQUEST=GetCapabilities&VERSION=1.3.0 (accessed on 8 February 2022). (In Portuguese).
- Singhal, B.; Gupta, R. Applied Hydrogeology of Fractured Rocks, 3rd ed.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar] [CrossRef]
- LNEG. Portugal’s Geological Map, Scale 1:50 000. 1981. Available online: https://geoportal.lneg.pt/pt/dados_abertos/cartografia_geologica/cgp50k/ (accessed on 8 February 2022). (In Portuguese).
- LNEC. Cartografia da Vulnerabilidade à Poluição das Águas Subterrâneas do Concelho de Montemor-o-Novo Utilizando o Método DRASTIC. Proc. In 607/1/14252; LNEC—Laboratório Nacional de Engenharia Civil, Departamento de Hidráulica, Grupo de Investigação de Águas Subterrâneas: Lisboa, Portugal, 2002; 53p. (In Portuguese) [Google Scholar]
General DRASTIC Index | Qualitative Vulnerability |
---|---|
23–79 | Insignificant |
80–99 | Extremely low |
100–119 | Very low |
120–139 | Low |
140–159 | Average |
160–179 | High |
180–199 | Very high |
200–226 | Extremely high |
Parameters | Classes | Index (i) | Weight (p) |
---|---|---|---|
D | <1.50 | 10 | 5 |
1.50–4.60 | 9 | ||
4.60–9.10 | 7 | ||
9.10–15.20 | 5 | ||
R | 0–51 | 1 | 4 |
A | Metamorphic/igneous rock | 2–5 (3) | 3 |
Altered metamorphic/igneous rocks | 3–5 (4) | ||
Sand and ballast | 4–9 (8) | ||
S | Thin or absent | 10 | 2 |
Sand | 9 | ||
Loam | 5 | ||
Clay loam | 3 | ||
Non-aggregated and non-expandable clay | 1 | ||
T | <2 | 10 | 1 |
2–6 | 9 | ||
6–12 | 5 | ||
12–18 | 3 | ||
>18 | 1 | ||
I | Metamorphic/igneous rock | 2–8 (4) | 5 |
Sand and ballast with significant silt and clay percentage | 4–8 (6) | ||
C | <4.10 | 1 | 3 |
4.10–12.20 | 2 |
Parameters | Characteristics | (i) | (p) | Range |
---|---|---|---|---|
D | 3.9 m (average) | 5–10 | 5 | 25–50 |
R | Deep recharge | 0–1 | 4 | 0–4 |
A | Permeability | 2–7 | 3 | 6–21 |
S | Change areas (<2 m) | 1–6 | 2 | 2–12 |
T | Slope map | 1–10 | 1 | 1–10 |
I | Unsaturated zone lithology | 2–6 | 5 | 10–30 |
C | Capacity to transmit water | 1–2 | 3 | 3–6 |
DRASTIC index (DI) | 47–127 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, V.; Albuquerque, A.; Almeida, P.G.; Cavaleiro, V. DRASTIC Index GIS-Based Vulnerability Map for the Entre-os-Rios Thermal Aquifer. Water 2022, 14, 2448. https://doi.org/10.3390/w14162448
Gonçalves V, Albuquerque A, Almeida PG, Cavaleiro V. DRASTIC Index GIS-Based Vulnerability Map for the Entre-os-Rios Thermal Aquifer. Water. 2022; 14(16):2448. https://doi.org/10.3390/w14162448
Chicago/Turabian StyleGonçalves, Vanessa, Antonio Albuquerque, Pedro G. Almeida, and Victor Cavaleiro. 2022. "DRASTIC Index GIS-Based Vulnerability Map for the Entre-os-Rios Thermal Aquifer" Water 14, no. 16: 2448. https://doi.org/10.3390/w14162448