Identifying Thresholds, Regime Shifts, and Early Warning Signals Using Long-Term Streamflow Data in the Transboundary Rio Grande–Rio Bravo Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. The Anthropocene of the Rio Grande-Bravo
2.3. Methodology Overview
2.3.1. Streamflow Data Collection
2.3.2. Streamflow Naturalization
2.3.3. Streamflow Standardization
2.3.4. Regime Shift Analysis
3. Results
3.1. Streamflow Naturalization Validation
3.2. Regime Shifts of the Natural and Regulated Systems
3.2.1. Natural System
3.2.2. Regulated System
3.2.3. Sustainable Regime Hypothesis Evaluation
4. Discussion
4.1. Occurrence of Regime Shifts
4.1.1. Abrupt Regime Shifts
4.1.2. Resilience Safeguards: A Buffer to Regime Shifts
4.1.3. Cascading Regime Shifts
4.2. Early Warning Signs for Regime Shifts
4.2.1. Critical Slowing Down
4.2.2. Flickering
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The Natural Flow Regime. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Poff, N.L. Managing for variability to sustain freshwater ecosystems. J. Water Resour. Plan. Manag. 2009, 135, 1–4. [Google Scholar] [CrossRef]
- Grantham, T.E.; Matthews, J.H.; Bledsoe, B.P. Shifting currents: Managing freshwater systems for ecological resilience in a changing climate. Water Secur. 2019, 8, 100049. [Google Scholar] [CrossRef]
- Bunn, S.E.; Arthington, A.H. Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef]
- Poff, N.L.; Kay, J.; Zimmerman, H.; Conservancy, T.N. Ecological Responses to Altered Flow Regimes: A Literature Review to Inform Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Freshw. Biol. 2010, 55, 194–205. [Google Scholar] [CrossRef]
- McCluney, K.E.; Poff, N.L.; Palmer, M.A.; Thorp, J.H.; Poole, G.C.; Williams, B.S.; Williams, M.R.; Baron, J.S. Riverine macrosystems ecology: Sensitivity, resistance, and resilience of whole river basins with human alterations. Front. Ecol. Environ. 2014, 12, 48–58. [Google Scholar] [CrossRef]
- Yarnell, S.M.; Petts, G.E.; Schmidt, J.C.; Whipple, A.A.; Beller, E.E.; Dahm, C.N.; Goodwin, P.; Viers, J.H. Functional Flows in Modified Riverscapes: Hydrographs, Habitats and Opportunities. BioScience 2015, 65, 963–972. [Google Scholar] [CrossRef]
- Groffman, P.M.; Baron, J.S.; Blett, T.; Gold, A.J.; Goodman, I.; Gunderson, L.H.; Levinson, B.M.; Palmer, M.A.; Paerl, H.W.; Peterson, G.D. Ecological thresholds: The key to successful environmental management or an important concept with no practical application? Ecosystems 2006, 9, 1–13. [Google Scholar] [CrossRef]
- Paul, M.J.; Meyer, J.L. Streams in the Urban Landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Karunanithi, A.T.; Cabezas, H.; Frieden, B.R.; Pawlowski, C.W. Detection and assessment of ecosystem regime shifts from Fisher information. Ecol. Soc. 2008, 13, 22. [Google Scholar] [CrossRef]
- Park, J.; Rao, P.S.C. Regime shifts under forcing of non-stationary attractors: Conceptual model and case studies in hydrologic systems. J. Contam. Hydrol. 2014, 169, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Collie, J.S.; Richardson, K.; Steele, J.H. Regime shifts: Can ecological theory illuminate the mechanisms? Prog. Oceanogr. 2004, 60, 281–302. [Google Scholar] [CrossRef]
- Rocha, J.C.; Peterson, G.; Bodin, Ö.; Levin, S. Cascading regime shifts within and across scales. Science 2018, 362, 1379–1383. [Google Scholar] [CrossRef] [PubMed]
- Davidson, E.A.; de Araújo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Bustamante, M.M.C.; Coe, M.T.; DeFries, R.S.; Keller, M.; Longo, M. The Amazon basin in transition. Nature 2012, 481, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Feng, M.; Sun, T.; Yang, W. Resilience changes in watershed systems: A new perspective to quantify long-term hydrological shifts under perturbations. J. Hydrol. 2016, 539, 281–289. [Google Scholar] [CrossRef]
- Bouska, K.L.; Houser, J.N.; De Jager, N.R.; Drake, D.C.; Collins, S.F.; Gibson-Reinemer, D.K.; Thomsen, M.A. Conceptualizing alternate regimes in a large floodplain-river ecosystem: Water clarity, invasive fish, and floodplain vegetation. J. Environ. Manag. 2020, 264, 110516. [Google Scholar] [CrossRef]
- Paerl, H.W.; Hall, N.S.; Hounshell, A.G.; Luettich, R.A.; Rossignol, K.L.; Osburn, C.L.; Bales, J. Recent increase in catastrophic tropical cyclone flooding in coastal North Carolina, USA: Long-term observations suggest a regime shift. Sci. Rep. 2019, 9, 10620. [Google Scholar] [CrossRef]
- Robinson, C.T. Long-term changes in community assembly, resistance, and resilience following experimental floods. Ecol. Appl. 2012, 22, 1949–1961. [Google Scholar] [CrossRef]
- Robinson, C.T.; Uehlinger, U. Experimental floods cause ecosystem regime shift in a regulated river. Ecol. Appl. 2008, 18, 511–526. [Google Scholar] [CrossRef]
- Dakos, V.; Scheffer, M.; van Nes, E.H.; Brovkin, V.; Petoukhov, V.; Held, H. Slowing down as an early warning signal for abrupt climate change. Proc. Natl. Acad. Sci. USA 2008, 105, 14308–14312. [Google Scholar] [CrossRef]
- Dai, L.; Vorselen, D.; Korolev, K.S.; Gore, J. Generic Indicators for Loss of Resilience Before a Tipping Point Leading to Population Collapse. Science 2012, 336, 1175–1177. [Google Scholar] [CrossRef] [PubMed]
- Dakos, V.; van Nes, E.H.; Scheffer, M. Flickering as an early warning signal. Theor. Ecol. 2013, 6, 309–317. [Google Scholar] [CrossRef]
- Wang, R.; Dearing, J.A.; Langdon, P.G.; Zhang, E.; Yang, X.; Dakos, V.; Scheffer, M. Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 2012, 492, 419–422. [Google Scholar] [CrossRef]
- Dodds, W.K.; Clements, W.H.; Gido, K.; Hilderbrand, R.H.; King, R.S. Thresholds, breakpoints, and nonlinearity in freshwaters as related to management. J. N. Am. Benthol. Soc. 2010, 29, 988–997. [Google Scholar] [CrossRef]
- Baho, D.L.; Allen, C.R.; Garmestani, A.S.; Fried-Petersen, H.B.; Renes, S.E.; Gunderson, L.H.; Angeler, D.G. A quantitative framework for assessing ecological resilience. Ecol. Soc. J. Integr. Sci. Resil. Sustain. 2017, 22, 1. [Google Scholar] [CrossRef]
- Angeler, D.G.; Allen, C.R. Quantifying resilience. J. Appl. Ecol. 2016, 53, 617–624. [Google Scholar] [CrossRef]
- Webb, J.A.; Watts, R.J.; Allan, C.; Conallin, J.C. Adaptive Management of Environmental Flows. Environ. Manag. 2018, 61, 339–346. [Google Scholar] [CrossRef]
- David, G.; Ramchand, O.; Kristoph-Dietrich, K. Irrigation System Modernization: Case Study of the Middle Rio Grande Valley. J. Irrig. Drain. Eng. 2009, 135, 169–176. [Google Scholar] [CrossRef]
- Scurlock, D. From the Rio to the Sierra: An Environmental History of the Middle Rio Grande Basin; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 1998. [Google Scholar]
- Wozniak, F.E. Irrigation in the Rio Grande Valley, New Mexico: A Study and Annotated Bibliography of the Development of Irrigation Systems; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 1998. [Google Scholar]
- Sandoval-Solis, S.; McKinney, D.C. Integrated Water Management for Environmental Flows in the Rio Grande. J. Water Resour. Plan. Manag. 2014, 140, 355–364. [Google Scholar] [CrossRef]
- Sandoval-Solis, S.; Paladino, S.; Garza-Diaz, L.E.; Nava, L.F.; Friedman, J.R.; Ortiz-Partida, J.P.; Plassin, S.; Gomez-Quiroga, G.; Koch, J.; Fleming, J.; et al. Environmental flows in the Rio Grande-Rio Bravo basin. Ecol. Soc. 2022, 27, e20. [Google Scholar] [CrossRef]
- Blythe, T.L.; Schmidt, J.C. Estimating the Natural Flow Regime of Rivers With Long-Standing Development: The Northern Branch of the Rio Grande. Water Resour. Res. 2018, 54, 1212–1236. [Google Scholar] [CrossRef]
- Llewellyn, D.; Vaddey, S. West-Wide Climate Risk Assessment:Upper Rio Grande Impact Assessment; US Department of the Interior, Bureau of Reclamation: Albuquerque, NM, USA, 2013; p. 169. [Google Scholar]
- Silva Hidalgo, H. Modelo Matemático Para La Distribución De Agua Superficial En Cuencas Hidrológicas. Ph.D. Thesis, Centro de Investigación en Materiales Avanzados, S.C., Chihuahua, Mexico, 2010. [Google Scholar]
- Gonzalez-Escorcia, Y.A. Determinación del caudal natural en la cuenca transfronteriza del Río Bravo/Grande. Master’s Thesis, Instituto Politecnico Nacional, University of California: Berkeley, CA, USA, 2016. [Google Scholar]
- Loredo-Rasgado, J. Determinación y Análisis de Los Valores de Huella Hídrica en La Región H Idrológico Administrativa VI/Río B ravo. Ph.D. Thesis, Instituto Politécnico Nacional, Mexico, Mexico, 2018. [Google Scholar]
- Orive-Alba, A. Informe Técnico Sobre el Tratado International de Aguas Irrigación en México; Comisión Nacional de Irrigación, Irrigación en México: Mexico City, Mexico, 1945. [Google Scholar]
- Wurbs, R.A.; Asce, M. Methods for Developing Naturalized Monthly Flows at Gaged and Ungaged Sites. J. Hydrol. Eng. 2006, 11, 55–64. [Google Scholar] [CrossRef]
- Fennesseyl, N.; Vogel, R.M.; Members, A. Regional Flow-Duration Curves For Ungauged Sites In Massachusetts. J. Water Resour. Plan. Manag. 1990, 116, 530–549. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Da Silva, M.G.; de Aguiar Netto, A.d.O.; de Jesus Neves, R.J.; Do Vasco, A.N.; Almeida, C.; Faccioli, G.G. Sensitivity analysis and calibration of hydrological modeling of the watershed Northeast Brazil. J. Environ. Prot. 2015, 6, 837. [Google Scholar] [CrossRef]
- Nalbantis, I.; Tsakiris, G. Assessment of hydrological drought revisited. Water Resour. Manag. 2009, 23, 881–897. [Google Scholar] [CrossRef]
- Fisher, R.A. On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 1922, 222, 309–368. [Google Scholar]
- Ahmad, N.; Derrible, S.; Cabezas, H. Using Fisher information to assess stability in the performance of public transportation systems. R. Soc. Open Sci. 2017, 4, 160920. [Google Scholar] [CrossRef]
- Fath, B.D.; Cabezas, H.; Pawlowski, C.W. Regime changes in ecological systems: An information theory approach. J. Theor. Biol. 2003, 222, 517–530. [Google Scholar] [CrossRef]
- Vance, L.; Eason, T.; Cabezas, H.; Gorman, M.E. Toward a leading indicator of catastrophic shifts in complex systems: Assessing changing conditions in nation states. Heliyon 2017, 3, e00465. [Google Scholar] [CrossRef]
- Eason, T.; Cabezas, H. Evaluating the sustainability of a regional system using Fisher information in the San Luis Basin, Colorado. J. Environ. Manag. 2012, 94, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Eason, T.; Garmestani, A.S.; Cabezas, H. Managing for resilience: Early detection of regime shifts in complex systems. Clean Technol. Environ. Policy 2014, 16, 773–783. [Google Scholar] [CrossRef]
- Gonzalez-Mejia, A.; Vance, L.; Eason, T.; Cabezas, H. Recent developments in the application of Fisher information to sustainable environmental management. In Assessing and Measuring Environmental Impact and Sustainability; Butterworth-Heinemann: Oxford, UK, 2015; pp. 25–72. ISBN 978-0-12-799968-5. [Google Scholar]
- Eason, T.; Garmestani, A.; Angeler, D.G. Spatiotemporal variability in Swedish lake ecosystems. PLoS ONE 2022, 17, e0265571. [Google Scholar] [CrossRef]
- Skarbek, M. Fisher Information Methods for Detecting Shifting Regimes in Water Supply Systems. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 2019. [Google Scholar]
- Khan, M.; Dahal, V.; Jeong, H.; Markus, M.; Bhattarai, R. Relative Contribution of Climate Change and Anthropogenic Activities to Streamflow Alterations in Illinois. Water 2021, 13, 3226. [Google Scholar] [CrossRef]
- Ahmad, N.; Derrible, S.; Eason, T.; Cabezas, H. Using Fisher information to track stability in multivariate systems. R. Soc. Open Sci. 2016, 3, 160582. [Google Scholar] [CrossRef] [PubMed]
- Cabezas, H.; Fath, B.D. Towards a theory of sustainable systems. Fluid Phase Equilibria 2002, 194, 3–14. [Google Scholar] [CrossRef]
- Gonzalez-Mejía, A.M.; Eason, T.N.; Cabezas, H.; Suidan, M.T. Assessing sustainability in real urban systems: The greater Cincinnati metropolitan area in Ohio, Kentucky, and Indiana. Environ. Sci. Technol. 2012, 46, 9620–9629. [Google Scholar] [CrossRef]
- Held, H.; Kleinen, T. Detection of climate system bifurcations by degenerate fingerprinting. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Belmar, O.; Bruno, D.; Martinez-Capel, F.; Barquín, J.; Velasco, J. Effects of flow regime alteration on fluvial habitats and riparian quality in a semiarid Mediterranean basin. Ecol. Indic. 2013, 30, 52–64. [Google Scholar] [CrossRef]
- Berdugo, M.; Vidiella, B.; Solé, R.V.; Maestre, F.T. Ecological mechanisms underlying aridity thresholds in global drylands. Funct. Ecol. 2022, 36, 4–23. [Google Scholar] [CrossRef]
- Coutinho, R.M.; Kraenkel, R.A.; Prado, P.I. Catastrophic Regime Shift in Water Reservoirs and São Paulo Water Supply Crisis. PLoS ONE 2015, 10, e0138278. [Google Scholar] [CrossRef] [PubMed]
- Emery, P.A. Water resources of the San Luis Valley, Colorado; U.S. Geological Survey: Pueblo, CO, USA, 1971; pp. 129–136. [Google Scholar]
- Nava, L.F.; Brown, C.; Demeter, K.; Lasserre, F.; Milanés-Murcia, M.; Mumme, S.; Sandoval-Solis, S. Existing opportunities to adapt the Rio Grande/Bravo basin water resources allocation framework. Water 2016, 8, 291. [Google Scholar] [CrossRef]
- Harley, G.L.; Maxwell, J.T. Current declines of Pecos River (New Mexico, USA) streamflow in a 700-year context. Holocene 2018, 28, 767–777. [Google Scholar] [CrossRef]
- U.S. Bureau of Reclamation. Pecos River Basin Study-New Mexico. Evaluation of Future Water Supply and Demand for Irrigated Agriculture in the Pecos Basin in New Mexico; U.S. Bureau of Reclamation: Glendale, AZ, USA, 2021. [Google Scholar]
- Rinaldo, A.; Gatto, M.; Rodriguez-Iturbe, I. River networks as ecological corridors: A coherent ecohydrological perspective. Adv. Water Resour. 2018, 112, 27–58. [Google Scholar] [CrossRef]
- Jiménez González, G. El Valle de Delicias en la Cuenca del Río Conchos. Bol. Arch. Histórico Agua 2008, 13, 27–35. [Google Scholar]
- Sundstrom, S.M.; Eason, T.; Nelson, R.J.; Angeler, D.G.; Barichievy, C.; Garmestani, A.S.; Graham, N.A.J.; Granholm, D.; Gunderson, L.; Knutson, M. Detecting spatial regimes in ecosystems. Ecol. Lett. 2017, 20, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.P.; Carpenter, S.; Rockström, J.; Scheffer, M.; Walker, B. Multiscale regime shifts and planetary boundaries. Trends Ecol. Evol. 2013, 28, 389–395. [Google Scholar] [CrossRef]
- Dean, D.J.; Schmidt, J.C. Geomorphology The role of feedback mechanisms in historic channel changes of the lower Rio Grande in the Big Bend region. Geomorphology 2011, 126, 333–349. [Google Scholar] [CrossRef]
- Nazarimehr, F.; Jafari, S.; Perc, M.; Sprott, J.C. Critical slowing down indicators. Europhys. Lett. 2020, 132, 18001. [Google Scholar] [CrossRef]
- Návar-Cháidez, J.d.J. Water Scarcity and Degradation in the Rio San Juan Watershed of Northeastern Mexico. Front. Norte 2011, 23, 125–150. [Google Scholar]
- Sisto, N.P.; Ramírez, A.I.; Aguilar-Barajas, I.; Magaña-Rueda, V. Climate threats, water supply vulnerability and the risk of a water crisis in the Monterrey Metropolitan Area (Northeastern Mexico). Phys. Chem. Earth 2016, 91, 2–9. [Google Scholar] [CrossRef]
- Scheffer, M.; Bascompte, J.; Brock, W.A.; Brovkin, V.; Carpenter, S.R.; Dakos, V.; Held, H.; van Nes, E.H.; Rietkerk, M.; Sugihara, G. Early-warning signals for critical transitions. Nature 2009, 461, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Gaucin, D.; Ortega-Gaucin, D. Caracterización de las sequías hidrológicas en la cuenca del río Bravo, México. Terra Latinoam. 2013, 31, 167–180. [Google Scholar]
- Nepal, S.; Flügel, W.-A.; Shrestha, A.B. Upstream-downstream linkages of hydrological processes in the Himalayan region. Ecol. Process. 2014, 3, 19. [Google Scholar] [CrossRef]
- Niazkar—2016—Computer Applications in Engineering Education Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1002/cae.21731 (accessed on 10 August 2022).
- Garza-Diaz, L.E. Phyton Code: QPPQ Streamflow Estimation. GitHub Repository 2022. Available online: https://github.com/laugarza/QPPQ.git (accessed on 10 August 2022).
- Garza-Diaz, L.E. Python Code: Streamflow Drought Index for Natural and Regulated Flow. GitHub Repository 2022. Available online: https://github.com/laugarza/SDI (accessed on 10 August 2022).
- Raybaut, P. Spyder 5 Documentation. Available online: https://docs.spyder-ide.org/current/index.html (accessed on 10 August 2022).
- Van Rossum, G. Python Tutorial; Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1995; p. 620. [Google Scholar]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 56–61. [Google Scholar]
- Hussain, M.M.; Mahmud, I. PyMannKendall: A Python Package for Non Parametric Mann Kendall Family of Trend Tests. J. Open Source Softw. 2019, 4, 1556. [Google Scholar] [CrossRef]
- Garza-Diaz, L.E.; Sandoval Solis, S. Natural and Regulated Monthly Streamflow Data for the Rio Grande/Rio Bravo Basin, HydroShare 2022. Available online: http://www.hydroshare.org/resource/89728c8779c644d7a6ce110406516849 (accessed on 10 August 2022).
Goodness of Fit Criteria | Orive-Alba | Loredo-Rasgado | Blythe and Schmidt |
---|---|---|---|
1900–1943 | 1900–1944 | 1900–2010 | |
Pearson’s Correlation | 0.990 | 0.995 | 0.996 |
Coefficient of Determination (R2) | 0.995 | 0.998 | 0.998 |
Index of Agreement (Willmott-d) | 0.995 | 0.995 | 0.995 |
Coefficient of Efficiency (Nash-NSE) | 0.979 | 0.979 | 0.979 |
Percent bias (PBIAS) | 3.589 | 7.131 | 1.881 |
Sustainable Regime Null Hypothesis | Control Gauge Station | Naturalized Streamflow System | Regulated Streamflow System |
---|---|---|---|
A system is considered in an orderly dynamic regime when a nonzero FI remains nearly constant over time (i.e., d⟨FI⟩/dt ≈ 0). | Rio Conchos Pecos River Rio Salado Rio San Juan San Marcial El Paso Above Amistad Anzalduas | Accept | Accept |
A steady decrease 1 in FI indicates that the system is losing its order, functionality, stability, and the patterns are breaking down. This declining trend may provide warning of an imminent regime shift. | Rio Conchos Pecos River Rio Salado Rio San Juan San Marcial El Paso Above Amistad Anzalduas | Accept Reject Accept Accept No trend No trend Accept Accept | Reject |
A steady increase 1 in FI indicates that the system is becoming more stable and organized. | Rio Conchos Pecos River Rio Salado Rio San Juan San Marcial El Paso Above Amistad Anzalduas | Reject Accept Reject Reject No trend No trend Reject Reject | Accept |
A sharp decrease or increase in FI indicates a regime shift | Rio Conchos Pecos River Rio Salado Rio San Juan San Marcial El Paso Above Amistad Anzalduas | Reject | Accept Accept Reject Accept Accept Accept Accept Reject |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garza-Díaz, L.E.; Sandoval-Solis, S. Identifying Thresholds, Regime Shifts, and Early Warning Signals Using Long-Term Streamflow Data in the Transboundary Rio Grande–Rio Bravo Basin. Water 2022, 14, 2555. https://doi.org/10.3390/w14162555
Garza-Díaz LE, Sandoval-Solis S. Identifying Thresholds, Regime Shifts, and Early Warning Signals Using Long-Term Streamflow Data in the Transboundary Rio Grande–Rio Bravo Basin. Water. 2022; 14(16):2555. https://doi.org/10.3390/w14162555
Chicago/Turabian StyleGarza-Díaz, Laura E., and Samuel Sandoval-Solis. 2022. "Identifying Thresholds, Regime Shifts, and Early Warning Signals Using Long-Term Streamflow Data in the Transboundary Rio Grande–Rio Bravo Basin" Water 14, no. 16: 2555. https://doi.org/10.3390/w14162555
APA StyleGarza-Díaz, L. E., & Sandoval-Solis, S. (2022). Identifying Thresholds, Regime Shifts, and Early Warning Signals Using Long-Term Streamflow Data in the Transboundary Rio Grande–Rio Bravo Basin. Water, 14(16), 2555. https://doi.org/10.3390/w14162555