Development and Validation of an ICP-MS Method for the Detection of Platinum in the Lebanese Aquatic Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instrumentation
2.2. Calibration Standards Preparation:
2.3. Method Optimisation and Validation
2.4. Sample Collection and Preparation
3. Results and Discussion
3.1. Method Development and Validation
3.2. Application to Lebanese Surface Water and Wastewater Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geara-Matta, D.; Moilleron, R.; El Samarani, A.; Lorgeoux, C.; Chebbo, G. State of Art About Water Uses and Wastewater Management in Lebanon. Leban. Sci. J. 2010, 11, 139–152. [Google Scholar] [CrossRef]
- Republic of Lebanon Water Sector: Public Expenditure Review (English); World Bank Group: Washington, DC, USA, 2010; Available online: http://documents.worldbank.org/curated/en/965931468265767738/Republic-of-Lebanon-Water-sector-public-expenditure-review (accessed on 13 July 2022)Public Expenditure review (PER).
- World Bank. Lebanon: Country Water Sector Assistance Strategy, 2012–2016. Washington, DC. © World Bank. License: CC BY 3.0 IGO.2012.. Available online: https://openknowledge.worldbank.org/handle/10986/12622 (accessed on 13 July 2022).
- Houri, A.; El Jeblawi, S.W. Water Quality Assessment of Lebanese Coastal Rivers during Dry Season and Pollution Load into the Mediterranean Sea. J. Water Health 2007, 5, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Nehme, N.; Haydar, C.; Koubaissy, B.; Fakih, M.; Awad, S.; Toufaily, J.; Villieras, F.; Hamieh, T. The Distribution of Heavy Metals in the Lower River Basin, Lebanon. Phys. Procedia 2014, 55, 456–463. [Google Scholar] [CrossRef]
- Harakeh, S.; Yassine, H.; El-Fadel, M. Antimicrobial-Resistant Patterns of Escherichia Coli and Salmonella Strains in the Aquatic Lebanese Environments. Environ. Pollut. 2006, 143, 269–277. [Google Scholar] [CrossRef]
- Diab, M.; Hamze, M.; Bonnet, R.; Saras, E.; Madec, J.Y.; Haenni, M. Extended-Spectrum Beta-Lactamase (ESBL)- and Carbapenemase-Producing Enterobacteriaceae in Water Sources in Lebanon. Vet. Microbiol. 2018, 217, 97–103. [Google Scholar] [CrossRef]
- Daou, C.; Salloum, M.; Legube, B.; Kassouf, A.; Ouaini, N. Characterization of Spatial and Temporal Patterns in Surface Water Quality: A Case Study of Four Major Lebanese Rivers. Environ. Monit. Assess. 2018, 190, 485. [Google Scholar] [CrossRef]
- El Houssainy, A.; Abi-Ghanem, C.; Dang, D.H.; Mahfouz, C.; Omanović, D.; Khalaf, G.; Mounier, S.; Garnier, C. Distribution and Diagenesis of Trace Metals in Marine Sediments of a Coastal Mediterranean Area: St Georges Bay (Lebanon). Mar. Pollut. Bull. 2020, 155, 111066. [Google Scholar] [CrossRef]
- Korfali, S.I.; Jurdi, M. Chemical Profile of Lebanon’s Potential Contaminated Coastal Water. J. Environ. Sci. Eng. 2012, A, 351–363. [Google Scholar]
- Rauch, S.; Morrison, G.M. Environmental Relevance of the Platinum-Group Elements. Elements 2008, 4, 259–263. [Google Scholar] [CrossRef]
- Zientek, M.; Loferski, P.; Parks, H.; Schulte, R.; Seal, R.I. Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply. In Platinum-Group Elements; Professional Paper 1802-K; U.S. Geological Survey: Reston, VA, USA, 2017; Volume 1, pp. N1–N92. [Google Scholar] [CrossRef]
- Ysart, G.; Miller, P.; Crews, H.; Robb, P.; Baxter, M.; De L’Argy, C.; Lofthouse, S.; Sargent, C.; Harrison, N. Dietary Exposure Estimates of 30 Elements from the UK. Total Diet Study. Food Addit. Contam. 1999, 16, 391–403. [Google Scholar] [CrossRef]
- U.S. EPA. IRIS Toxicological Review Of Halogenated Platinum Salts And Platinum Compounds (External Review Draft); EPA/635/R-08/018; U.S. Environmental Protection Agency: Washington, DC, USA, 2009.
- ICH. ICH Harmonised Guideline, Guideline for Elemental Impurities Q3D (R1); European Medicines Agency: Amsterdam, The Netherlands, 2019.
- Fortin, C.; Wang, F.; Pitre, D. Critical Review of Platinum Group Elements (Pd, Pt, Rh) in Aquatic Ecosystems; Research Report No R-1269; Science and Technology Branch Environment Canada: Burlington, ON, Canasa, 2011.
- Santana-Viera, S.; Padrón, M.E.T.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Quantification of Cytostatic Platinum Compounds in Wastewater by Inductively Coupled Plasma Mass Spectrometry after Ion Exchange Extraction. Microchem. J. 2020, 157, 104862. [Google Scholar] [CrossRef]
- Lenz, K.; Hann, S.; Koellensperger, G.; Stefanka, Z.; Stingeder, G.; Weissenbacher, N.; Mahnik, S.N.; Fuerhacker, M. Presence of Cancerostatic Platinum Compounds in Hospital Wastewater and Possible Elimination by Adsorption to Activated Sludge. Sci. Total Environ. 2005, 345, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Balcerzak, M. Methods of Elimination of Hafnium Interference in the Determination of Platinum in Environmental Samples by ICP-MS Technique. Chem. Analityczna 2009, 54, 135–149. [Google Scholar]
- Yin, M.; Zhou, Y.; Tsang, D.C.W.; Beiyuan, J.; Song, L.; She, J.; Wang, J.; Zhu, L.; Fang, F.; Wang, L.; et al. Emergent Thallium Exposure from Uranium Mill Tailings. J. Hazard. Mater. 2021, 407, 124402. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhou, Y.; She, J.; Tsang, D.C.W.; Lippold, H.; Wang, J.; Jiang, Y.; Wei, X.; Yuan, W.; Luo, X.; et al. Quantitative Isotopic Fingerprinting of Thallium Associated with Potentially Toxic Elements (PTEs) in Fluvial Sediment Cores with Multiple Anthropogenic Sources. Environ. Pollut. 2020, 266, 115252. [Google Scholar] [CrossRef]
- Machado, R.C.; Amaral, C.D.B.; Schiavo, D.; Nóbrega, J.A.; Nogueira, A.R.A. Complex Samples and Spectral Interferences in ICP-MS: Evaluation of Tandem Mass Spectrometry for Interference-Free Determination of Cadmium, Tin and Platinum Group Elements. Microchem. J. 2017, 130, 271–275. [Google Scholar] [CrossRef]
- Al-Hakkani, M.F. Guideline of Inductively Coupled Plasma Mass Spectrometry “ICP–MS”: Fundamentals, Practices, Determination of the Limits, Quality Control, and Method Validation Parameters. SN Appl. Sci. 2019, 1, 1–15. [Google Scholar] [CrossRef]
- Soyol-Erdene, T.O.; Huh, Y. Dissolved Platinum in Major Rivers of East Asia: Implications for the Oceanic Budget. Geochem. Geophys. Geosystems 2012, 13, 1–13. [Google Scholar] [CrossRef]
- Cobelo-García, A.; López-Sánchez, D.E.; Schäfer, J.; Petit, J.C.J.; Blanc, G.; Turner, A. Behavior and Fluxes of Pt in the Macrotidal Gironde Estuary (SW France). Mar. Chem. 2014, 167, 93–101. [Google Scholar] [CrossRef]
- Obata, H.; Yoshida, T.; Ogawa, H. Determination of Picomolar Levels of Platinum in Estuarine Waters: A Comparison of Cathodic Stripping Voltammetry and Isotope Dilution-Inductively Coupled Plasma Mass Spectrometry. Anal. Chim. Acta 2006, 580, 32–38. [Google Scholar] [CrossRef]
- Mashio, A.S.; Tanimura, T.; Hasegawa, H.; Takeda, S.; Obata, H. Budgets and Sources of Dissolved Platinum in the Inland Seas of Japan. Estuar. Coast. Shelf Sci. 2021, 253, 107293. [Google Scholar] [CrossRef]
- Suzuki, A.; Obata, H.; Okubo, A.; Gamo, T. Precise Determination of Dissolved Platinum in Seawater of the Japan Sea, Sea of Okhotsk and Western North Pacific Ocean. Mar. Chem. 2014, 166, 114–121. [Google Scholar] [CrossRef]
- Suzuki Mashio, A.; Obata, H.; Shimazaki, T.; Fukuda, H.; Ogawa, H. Spatiotemporal Variations of Platinum in Seawater in Otsuchi Bay, Japan after the 2011 Tsunami. Sci. Total Environ. 2020, 708, 134659. [Google Scholar] [CrossRef]
- Mashio, A.S.; Obata, H.; Gamo, T. Dissolved Platinum Concentrations in Coastal Seawater: Boso to Sanriku Areas, Japan. Arch. Environ. Contam. Toxicol. 2017, 73, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Cobelo-García, A.; López-Sánchez, D.E.; Almécija, C.; Santos-Echeandía, J. Behavior of Platinum during Estuarine Mixing (Pontevedra Ria, NW Iberian Peninsula). Mar. Chem. 2013, 150, 11–18. [Google Scholar] [CrossRef]
- Vidmar, J.; Martinčič, A.; Milačič, R.; Ščančar, J. Speciation of Cisplatin in Environmental Water Samples by Hydrophilic Interaction Liquid Chromatography Coupled to Inductively Coupled Plasma Mass Spectrometry. Talanta 2015, 138, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Isidori, M.; Lavorgna, M.; Russo, C.; Kundi, M.; Žegura, B.; Novak, M.; Filipič, M.; Mišïk, M.; Knasmueller, S.; de Alda, M.L.; et al. Chemical and Toxicological Characterisation of Anticancer Drugs in Hospital and Municipal Wastewaters from Slovenia and Spain. Environ. Pollut. 2016, 219, 275–287. [Google Scholar] [CrossRef]
- Lenz, K.; Mahnik, S.N.; Weissenbacher, N.; Mader, R.M.; Krenn, P.; Hann, S.; Koellensperger, G.; Uhl, M.; Knasmüller, S.; Ferk, F.; et al. Monitoring, Removal and Risk Assessment of Cytostatic Drugs in Hospital Wastewater. Water Sci. Technol. 2007, 56, 141–149. [Google Scholar] [CrossRef]
- Goullé, J.P.; Saussereau, E.; Mahieu, L.; Cellier, D.; Spiroux, J.; Guerbet, M. Importance of Anthropogenic Metals in Hospital and Urban Wastewater: Its Significance for the Environment. Bull. Environ. Contam. Toxicol. 2012, 89, 1220–1224. [Google Scholar] [CrossRef]
- Vyas, N.; Turner, A.; Sewell, G. Platinum-Based Anticancer Drugs in Waste Waters of a Major UK Hospital and Predicted Concentrations in Recipient Surface Waters. Sci. Total Environ. 2014, 493, 324–329. [Google Scholar] [CrossRef]
- Zimmermann, S.; Wolff, C.; Sures, B. Toxicity of Platinum, Palladium and Rhodium to Daphnia Magna in Single and Binary Metal Exposure Experiments. Environ. Pollut. 2017, 224, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Parrella, A.; Kundi, M.; Lavorgna, M.; Criscuolo, E.; Russo, C.; Isidori, M. Toxicity of Exposure to Binary Mixtures of Four Anti-Neoplastic Drugs in Daphnia Magna and Ceriodaphnia Dubia. Aquat. Toxicol. 2014, 157, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Grzesiuk, M.; Bednarska, A.; Mielecki, D.; Garbicz, D.; Marcinkowski, M.; Pilžys, T.; Malinowska, A.; Świderska, B.; Grzesiuk, E. Anticancer Agents Found in Environment Affect Daphnia at Population, Individual and Molecular Levels. Aquat. Toxicol. 2019, 215, 105288. [Google Scholar] [CrossRef] [PubMed]
- Parrella, A.; Lavorgna, M.; Criscuolo, E.; Russo, C.; Isidori, M. Eco-Genotoxicity of Six Anticancer Drugs Using Comet Assay in Daphnids. J. Hazard. Mater. 2015, 286, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, T.G.; Morais, M.B.; Rocha, T.; Abessa, D.M.S.; Aureliano, M.; Bebianno, M.J. Ecotoxicological Assessment of the Anticancer Drug Cisplatin in the Polychaete Nereis Diversicolor. Sci. Total Environ. 2017, 575, 162–172. [Google Scholar] [CrossRef]
- ICH Harmonised Triopartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2(R1). Available online: https://database.ich.org/sites/default/files/Q2%28R1%29Guideline.pdf (accessed on 13 July 2022).
- Suoranta, T.; Bokhari, S.N.H.; Meisel, T.; Niemelä, M.; Perämäki, P. Elimination of Interferences in the Determination of Palladium, Platinum and Rhodium Mass Fractions in Moss Samples Using ICP-MS/MS. Geostand. Geoanalytical Res. 2016, 40, 559–569. [Google Scholar] [CrossRef]
- Zhang, T.; Cai, S.; Forrest, W.C.; Mohr, E.; Yang, Q.; Forrest, M.L. Development and Validation of an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Method for Quantitative Analysis of Platinum in Plasma, Urine, and Tissues. Appl. Spectrosc. 2016, 70, 1529–1536. [Google Scholar] [CrossRef]
- Yamanaka, K.; Wilbur, S. Investigations into the Use of Helium Collision Mode and Aerosol Dilution for Ultra-Trace Analysis of Metals in Mineral Reference Materials; Agilent Technologies: Santa Clara, CA, USA, 2013; Available online: https://www.agilent.com/cs/library/whitepaper/public/5991-2811EN.pdf (accessed on 13 July 2022).
- World Health Organization. Air Quality Guidelines for Europe, Copenhagen: World Health Organization, Regional Office for Europe; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Hannon, M.J. Metal-Based Anticancer Drugs: From a Past Anchored in Platinum Chemistry to a Post-Genomic Future of Diverse Chemistry and Biology. Pure Appl. Chem. 2007, 79, 2243–2261. [Google Scholar] [CrossRef]
- Kümmerer, K.; Helmers, E.; Hubner, P.; Mascart, G.; Milandri, M.; Reinthaler, F.; Zwakenberg, M. European Hospitals as a Source for Platinum in the Environment in Comparison with Other Sources. Sci. Total Environ. 1999, 225, 155–165. [Google Scholar] [CrossRef]
Sample Source | Dissolved Pt (ng L−1) | Ref. |
---|---|---|
East Asia—Rivers | 0.035–0.123 | [24] |
France—Gironde estuary | 0.068–0.164 | [25] |
Japan—Estuary | 0.936–6.867 | [26] |
Japan—Seawater | 0.080–1.990 | [27] |
Japan—Seawater | 0.037–0.049 | [28] |
Japan—Seawater | 0.078–0.388 | [29] |
Japan—Seawater | 0.039–0.293 | [30] |
Spain—Estuary | 0.004–0.121 | [31] |
Spain—Wastewater influent | 3.95–38.68 | [17] |
Spain—Wastewater effluent | 56.08–75.79 | |
Spain—Hospital wastewater | 81.94–13,913 | |
Spain—Hospital wastewater | 144 | [32] |
Spain—Wastewater treatment plant influent | 7.9 | |
Spain—Wastewater treatment plant effluent | 5.9 | |
Slovenia—Hospital wastewater | 352 | [32] |
Slovenia—Wastewater treatment plant influent | 23.3 | |
Slovenia—Wastewater treatment plant effluent | 12.8 | |
Slovenia—Hospital wastewater | 226–352 | [33] |
Slovenia—Wastewater treatment plant influent | 23–27 | |
Austria—Hospital wastewater | 4700–145,000 | [18] |
Austria—Hospital wastewater influent from in-patient ward | 3240–266,000 | [34] |
Austria—Hospital wastewater effluent | 1770–144,000 | |
France—Hospital wastewater | 80–610 | [35] |
France—Wastewater influent | 10–20 | |
France—Wastewater effluent | 10 | |
UK—Hospital wastewater | 20–140,000 | [36] |
UK—Main drain | 30–100,000 |
Parameter | Type/Value |
---|---|
Nebuliser | MicroMist glass concentric |
Spray chamber | Scott |
Nebulizer gas flow | 1.02 L min−1 |
Auxiliary gas flow | 0.9 L min−1 |
Plasma gas flow | 15 L min−1 |
Omega lens voltage | 11.6 V |
ICP RF power | 1550 W |
Isotopes measured | 195Pt, 185Re |
Gas mode | No gas, He: 4 mL min−1 |
Scan mode | Peak hopping |
Dwell time per isotope | 0.1 s |
Replicates | 5 |
Sweeps | 100 sweeps/replicate |
Parameter | No Gas Mode | Helium Mode | |
---|---|---|---|
Plasma | Plasma mode | Low matrix | |
Lenses | Extract 1 | 0 V | |
Extract 2 | −200 V | ||
Omega bias | −90 V | ||
Omega lens | 10.8 V | ||
Cell entrance | −30 V | −40 V | |
Cell exit | −50 V | −60 V | |
Deflect | 14.4 V | 1.2 V | |
Plate bias | −40 V | −55 V | |
Cell | He flow | 0 mL min−1 | 4 mL min−1 |
OctP bias | −8 V | −18 V | |
OctR RF | 180 V | ||
Energy discrimination | 5 V | 3 V |
Parameters | Value |
---|---|
Range (ng L−1) | 10–10,000 |
Regression coefficient (R2) | 1 |
Regression equation | y = 0.5022x + 0.001 |
Accuracy (%)(±SD) | 99.13 (± 4.35) |
Interday precision (%)(±SD) | 0.54 (± 0.24) |
Intraday precision (%)(±SD) | 2.08 (± 0.91) |
LOD (ng L−1) | 0.56 |
LOQ (ng L−1) | 2.35 |
% Recovery in spiked river and wastewater samples (n = 6)(±SD) | 106.39 (±6.92) |
Sample Location | Geographic Coordinates | Total Dissolved Platinum Concentration (ng L−1) (±SD) |
---|---|---|
Antelias River | Lat 33.914801 Long 35.594127 | 38.42 ± 2.88 |
Al Kalb River | Lat 33.95461 Long 35.60112 | 37.88 ± 4.21 |
Zahrani River | Lat 33.49531 Long 35.334795 | 37.36 ± 3.15 |
Hasbani River | Lat 33.40703 Long 35.66732 | 32.61 ± 3.11 |
Litani River | Lat 33.338889 Long 35.245278 | 34.45 ± 0.94 |
Wazzani River | Lat 33.274254 Long 35.618137 | 34.59 ± 2.32 |
Awali River | Lat 33.5888 Long 35.386 | 39.93 ± 3.88 |
Damour River | Lat 33.705833 Long 35.439444 | 31.63 ± 2.04 |
Orontes River | Lat 36.045278 Long 35.963611 | 31.04 ± 4.79 |
Al Bared River | Lat 34.51241 Long 35.95452 | 33.34 ± 2.15 |
Ibrahim River | Lat 34.062222 Long 35.642222 | 28.74 ± 2.21 |
Al Jawz River | Lat 34.273804 Long 35.690072 | 30.62 ± 2.70 |
Ostouene River | Lat 34.58189 Long 36.10626 | 36.38 ± 2.88 |
Abou Ali River | Lat 34.4579 Long 35.8415 | 39.41 ± 2.14 |
WWTP Joub Jannine Influent | Lat 33.637569 Long 35.776514 | 24.91 ± 1.77 |
WWTP Joub Jannine Effluent | Lat 33.637569 Long 35.776514 | 27.21 ± 2.20 |
WWTP Al Ghadir Influent | Lat 33.81311 Long 35.48340 | 25.35 ± 2.29 |
WWTP Al Ghadir Effluent | Lat 33.81311 Long 35.48340 | 31.79 ± 5.97 |
WWTP Saida Influent | Lat 33.64271 Long 35.39983 | 24.76 ± 1.36 |
WWTP Saida Effluent | Lat 33.64271 Long 35.39983 | 22.44 ± 2.19 |
Ramlet al. Baida Outfall | Lat 33.895944 Long 35.467917 | 24.57 ± 2.88 |
Jiyeh Outfall | Lat 33.661225 Long 35.417343 | 53.32 ± 1.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nassour, C.; Zacharauskas, Z.; Nabhani-Gebara, S.; Barton, S.J.; Barker, J. Development and Validation of an ICP-MS Method for the Detection of Platinum in the Lebanese Aquatic Environment. Water 2022, 14, 2631. https://doi.org/10.3390/w14172631
Nassour C, Zacharauskas Z, Nabhani-Gebara S, Barton SJ, Barker J. Development and Validation of an ICP-MS Method for the Detection of Platinum in the Lebanese Aquatic Environment. Water. 2022; 14(17):2631. https://doi.org/10.3390/w14172631
Chicago/Turabian StyleNassour, Carla, Zilvinas Zacharauskas, Shereen Nabhani-Gebara, Stephen Jonathan Barton, and James Barker. 2022. "Development and Validation of an ICP-MS Method for the Detection of Platinum in the Lebanese Aquatic Environment" Water 14, no. 17: 2631. https://doi.org/10.3390/w14172631
APA StyleNassour, C., Zacharauskas, Z., Nabhani-Gebara, S., Barton, S. J., & Barker, J. (2022). Development and Validation of an ICP-MS Method for the Detection of Platinum in the Lebanese Aquatic Environment. Water, 14(17), 2631. https://doi.org/10.3390/w14172631