Evaluation of Groundwater Flow Changes Associated with Drainage within Multilayer Aquifers in a Semiarid Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Description
3. Results and Discussion
3.1. Spatial and Temporal Variation of Groundwater Level for Different Aquifers
3.2. The Relationship between Groundwater Levels of Various Aquifers
3.3. Influence on Local Groundwater Dynamics under Groundwater Drainage
3.4. Prediction Groundwater Inflow Changes for Groundwater Drainage
3.5. Uncertainty of Numerical Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeng, Y.F.; Wu, Q.; Liu, S.Q.; Zhai, Y.L.; Lian, H.Q.; Zhang, W. Evaluation of a coal seam roof water inrush: Case study in the Wangjialing coal mine, China. Mine Water Environ. 2018, 37, 174–184. [Google Scholar] [CrossRef]
- Husam, M.B.; Christopher, S.L. Applied Groundwater Modelling for Water Resource Management and Protection. Water 2022, 14, 1142. [Google Scholar] [CrossRef]
- Fan, C.; Du, Y.F.; Ni, J.Y.; Zhao, Z.R.; Peng, S.Q. Effect of Shallow-Buried High-Intensity Mining on Soil Water Content in Ningtiaota Minefield. Water 2021, 13, 361. [Google Scholar] [CrossRef]
- Li, P.; Wu, J.; Tian, R. Geochemistry, Hydraulic Connectivity and Quality Appraisal of Multilayered Groundwater in the Hongdunzi Coal Mine, Northwest China. Mine Water Environ. 2018, 37, 222–237. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.K.; Cheng, D.W.; Li, Y.; Wu, P.; Huang, X.Q. Hydrogeological structure modelling based on an integrated approach using multi-source data. J. Hydrol. 2021, 600, 126435. [Google Scholar] [CrossRef]
- Zhang, Q.; López, D.L. Use of time series analysis to evaluate the impacts of underground mining on hydraulic properties in groundwater of Dysart Woods, Ohio. Mine Water Environ. 2019, 38, 566–580. [Google Scholar] [CrossRef]
- Roger, D.G.; Elias, H.T.; Hung, K.C. Regional Groundwater Modeling of the Guarani Aquifer System. Water 2020, 12, 2323. [Google Scholar] [CrossRef]
- Aalianvari, A. Combination of engineering geological data and numerical modeling results to classify the tunnel route based on the groundwater seepage. Geomech. Eng. A 2017, 13, 671–683. [Google Scholar] [CrossRef]
- de la Hera-Portillo, Á.; López Gutiérrez, J.; Mayor, B.; López-Gunn, E.; Henriksen, H.J.; Gejl, R.N.; Zorrilla-Miras, P.; Martínez-Santos, P. An Initial Framework for Understanding the Resilience of Aquifers to Groundwater Pumping. Water 2021, 13, 519. [Google Scholar] [CrossRef]
- Sun, N.Z.; Qi, G.M.; Li, J.; Liu, M.Q.; Sun, C. A New Approach for Predicting Mine Water Inflow from Inundation Coalfiled with Fracture and Faults. J. China Coal Soc. 1989, 2, 1–10. (In Chinese) [Google Scholar] [CrossRef]
- Liang, S.C.; Zhao, X.S.; Li, S.; Feng, L.H.; Liu, X.L.; Qin, X.M. The Application of GMS in Numerical Simulation of Groundwater and Faults Disposing in Gaizi River Source. Adv. Mater. Res. 2012, 518–523, 4047–4056. [Google Scholar] [CrossRef]
- Karimzade, E.; Sharifzadeh, M.; Zarei, H.R.; Shahriar, K.; Seifabab, M.C. Prediction of water inflow into underground excavations in fractured rocks using a 3D discrete fracture network (DFN) model. Arab. J. Geosci. 2017, 10, 206. [Google Scholar] [CrossRef]
- Mu, W.; Wu, X.; Deng, R.C.; Hao, Q.; Qian, C. Mechanism of Water Inrush Through Fault Zones Using a Coupled Fluid–solid Numerical Model: A Case Study in the Beiyangzhuang Coal Mine, Northern China. Mine Water Environ. 2020, 39, 380–396. [Google Scholar] [CrossRef]
- Song, W.; Liang, Z. Theoretical and numerical investigations on mining-induced fault activation and groundwater outburst of coal seam floor. Bull. Eng. Geol. Environ. 2021, 80, 5757–5768. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, J.; Liang, X.; Wang, S.; Ma, Z.Y. Ecological risk assessment of soil and water loss by thermal enhanced methane recovery: Numerical study using two-phase flow simulation. J. Clean. Prod. 2022, 334, 130183. [Google Scholar] [CrossRef]
- Liu, G.W.; Ma, F.S.; Liu, G.; Guo, J.; Duan, X.L.; Gu, H.Y. Quantification of Water Sources in a Coastal Gold Mine through an End-Member Mixing Analysis Combining Multivariate Statistical Methods. Water 2020, 12, 580. [Google Scholar] [CrossRef]
- Anatoliy, F.; María del Refugio, B.-L.; Iryna, T.; Lydia, B.L.; Diego, A.P.; Javier, A.; Velázquez-Muñoz, F.Á. Thermal Regime and Water Balance of Two Tropical High-Mountain Lakes in the Nevado de Toluca Volcano, Mexico. Water 2022, 14, 1104. [Google Scholar] [CrossRef]
- Byrne, C.F.; Stormont, J.C.; Stone, M.C. Soil water balance dynamics on reclaimed mine land in the southwestern United States. J. Arid. Environ. 2017, 136, 28–37. [Google Scholar] [CrossRef]
- Elmarami, H.; Meyer, H.; Massmann, G. Combined approach of isotope mass balance and hydrological water balance methods to constrain the sources of lake water as exemplified on the small dimictic lake Silbersee, northern Germany. Isot. Environ. Health Stud. 2017, 53, 184–197. [Google Scholar] [CrossRef]
- Adeline, U.; Xi, C.; Tie, L.; Li, Z.Y.; Solange, U.; Richard, M.J.; Edovia, D.U.; Romaine, I.; Aline, U. Future Climate Change Impact on the Nyabugogo Catchment Water Balance in Rwanda. Water 2021, 13, 3636. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.Y.; Liu, X.M.; Zhen, X.G.; Guo, J.W.; Chen, G.S.; Zhang, B. Prevention of Groundwater Disasters in Coal Seam Floors Based on TEM of Cambrian Limestone. Mine Water Environ. 2018, 37, 300–311. [Google Scholar] [CrossRef]
- Qiao, W.; Li, W.P.; Zhang, S.C.; Niu, Y.F. Effects of coal mining on the evolution of groundwater hydrogeochemistry. Hydrogeol. J. 2019, 27, 2245–2262. [Google Scholar] [CrossRef]
- Duan, X.L.; Ma, F.S.; Guo, J.; Zhao, H.J.; Gu, H.Y.; Liu, S.Q.; Sun, Q.H. Source Identification and Quantification of Seepage Water in a Coastal Mine, in China. Water 2019, 11, 1862. [Google Scholar] [CrossRef]
- Pilla, G.; Sacchi, E.; Zuppi, G.; Braga, G.; Ciancetti, G. Hydrochemistry and isotope geochemistry as tools for groundwater hydrodynamic investigation in multilayer aquifers: A case study from Lomellina, Po plain, South-Western Lombardy, Italy. Hydrogeol. J. 2007, 14, 795–808. [Google Scholar] [CrossRef]
- Powell, K.L.; Taylor, R.G.; Cronin, A.A.; Barrett, M.H.; Pedley, S.; Sellwood, J.; Trowsdale, S.A.; Lerner, D.N. Microbial contamination of two urban sandstone aquifers in the UK. Water Res. 2003, 37, 339–352. [Google Scholar] [CrossRef]
- Chen, Y.; Selvadurai, A.; Liang, W. Computational Modelling of Groundwater Inflow During a Longwall Coal Mining Advance: A Case Study from the Shanxi Province, China. Rock Mech. Rock Eng. 2018, 52, 917–934. [Google Scholar] [CrossRef]
- Cai, J.B.; Wang, P.; Shen, H.; Su, Y.; Huang, Y. Water Level Prediction of Emergency Groundwater Source and Its Impact on the Surrounding Environment in Nantong City, China. Water 2020, 12, 3529. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, Y.Z.; Pan, G.Y.; Qin, Y.T.; Chen, G.S. Determining and plugging the groundwater recharge channel with comprehensive approach in Siwan coal mine, North China coal basin. Arab. J. Geosci. 2014, 8, 6759–6770. [Google Scholar] [CrossRef]
- Sun, K.; Fan, L.M.; Xia, Y.C.; Chen, J.; Gao, S.; Wu, B.; Peng, J.; Ji, J. Impact of coal mining on groundwater of Luohe Formation in Binchang mining area. Int. J. Coal Sci. Technol. 2021, 8, 88–102. [Google Scholar] [CrossRef]
- Zhang, Z. Estimation and Analysis of Mine Water Inflow in Hetaoyu Coalmine, Gansu. Coal Geol. China 2015, 27, 32–36, 56. (In Chinese) [Google Scholar] [CrossRef]
Lithology | Saturated Hydraulic Conductivity | Porosity | Specific Yield | Storage Coefficient |
---|---|---|---|---|
m/d | m−1 | |||
Loess | 0.036 | 0.49 | 0.18 | 0.02 |
Silty mudstone | 0.001728 | 0.21 | 0.12 | 0.000003 |
Siltstone | 0.00000864 | 0.05 | 0.21 | 0.000003 |
Fine sandstone | 0.0001728 | 0.1 | 0.23 | 0.000003 |
Mudstone | 0.001728 | 0.21 | 0.12 | 0.000003 |
Coarse sandstone | 0.0008728 | 0.3 | 0.27 | 0.000003 |
Medium sandstone | 0.0015728 | 0.2 | 0.25 | 0.000003 |
Medium conglomerate | 0 | 0.1 | 0.13 | 0.000003 |
Clay | 0.000864 | 0.45 | 0.03 | 0.001 |
Coal Seam | Distance from Quaternary Bottom Plate (m) | Normal Distance from the Bottom of the Lower Cretaceous Conglomerate (m) | Dip Angle of Coal Seam (°) | Coal Seam Thickness (m) | Height of Water Conducted Fracture Zone (m) |
---|---|---|---|---|---|
coal-2 layer | 690.93 | 79.04 | 6 | 5.05 | 64.34 |
783.54 | 104.74 | 5 | 2.7 | 50.12 | |
764.85 | 88.79 | 6 | 2.21 | 28.35 | |
coal-5 layer | 734.98 | 90.18 | 6 | 8.86 | 86.78 |
840.86 | 134.74 | 9 | 5.28 | 82.13 | |
799.47 | 123.41 | 6 | 2.4 | 35.17 | |
coal-8 layer | 748.49 | 121.89 | 7 | 23.56 | 186.94 |
657.34 | 104.43 | 6 | 23.47 | 185.47 | |
832.02 | 155.96 | 6 | 13 | 182.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Wang, X.; Liang, G.; Zhang, H. Evaluation of Groundwater Flow Changes Associated with Drainage within Multilayer Aquifers in a Semiarid Area. Water 2022, 14, 2679. https://doi.org/10.3390/w14172679
Chen L, Wang X, Liang G, Zhang H. Evaluation of Groundwater Flow Changes Associated with Drainage within Multilayer Aquifers in a Semiarid Area. Water. 2022; 14(17):2679. https://doi.org/10.3390/w14172679
Chicago/Turabian StyleChen, Li, Xiaojun Wang, Gelong Liang, and Haicheng Zhang. 2022. "Evaluation of Groundwater Flow Changes Associated with Drainage within Multilayer Aquifers in a Semiarid Area" Water 14, no. 17: 2679. https://doi.org/10.3390/w14172679