Temporal Variation of Suspended Sediment and Solute Fluxes in a Permafrost-Underlain Headwater Catchment on the Tibetan Plateau
Abstract
:1. Introduction
2. Methods and Materials
2.1. Site Description
2.2. Observation of Precipitation and Streamflow
2.3. Water Samples
2.4. Sample Analysis and Testing
2.5. Data Analysis
3. Results
3.1. Overall Hydrochemical Characteristics of Different Water Types
3.2. Temporal Variations of Streamflow Discharge, Suspended Sediment, and Solutes
3.3. Results of the PLS-PM
4. Discussion
4.1. Catchment Suspended Sediment and Solute Fluxes
4.2. Processes Responsible for the Generation and Transport of Catchment Runoff, Suspended Sediment, and Solute
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bouchez, J.; Gaillardet, J. How accurate are rivers as gauges of chemical denudation of the Earth surface? Geology 2014, 42, 171–174. [Google Scholar] [CrossRef]
- Mager, S.; Diack, E.; Horton, S. Catchment-scale weathering fluxes in the Southern Alps, New Zealand. Geomorphology 2018, 316, 24–34. [Google Scholar] [CrossRef]
- Zhang, F.; Xiao, X.; Wang, L.; Zeng, C.; Yu, Z.; Wang, G.; Shi, X. Chemical weathering and CO2 consumption in the glaciated Karuxung River catchment, Tibetan Plateau. Hydrol. Process. 2021, 35, e14330. [Google Scholar] [CrossRef]
- Das, P.; Sarma, K.P.; Jha, P.K.; Ranjan, R.; Herbert, R.; Kumar, M. Understanding the Cyclicity of Chemical Weathering and Associated CO2 Consumption in the Brahmaputra River Basin (India): The Role of Major Rivers in Climate Change Mitigation Perspective. Aquat. Geochem. 2016, 22, 225–251. [Google Scholar] [CrossRef]
- Donnini, M.; Frondini, F.; Probst, J.-L.; Probst, A.; Cardellini, C.; Marchesini, I.; Guzzetti, F. Chemical weathering and consumption of atmospheric carbon dioxide in the Alpine region. Glob. Planet. Chang. 2016, 136, 65–81. [Google Scholar] [CrossRef]
- Yu, Z.; Wu, G.; Keys, L.; Li, F.; Yan, N.; Qu, D.; Liu, X. Seasonal variation of chemical weathering and its controlling factors in two alpine catchments, Nam Co basin, central Tibetan Plateau. J. Hydrol. 2019, 576, 381–395. [Google Scholar] [CrossRef]
- Wu, W. Hydrochemistry of inland rivers in the north Tibetan Plateau: Constraints and weathering rate estimation. Sci. Total Environ. 2016, 541, 468–482. [Google Scholar] [CrossRef] [PubMed]
- Kellerer-Pirklbauer, A. Potential weathering by freeze-thaw action in alpine rocks in the European Alps during a nine year monitoring period. Geomorphology 2017, 296, 113–131. [Google Scholar] [CrossRef]
- Wu, H.; Wu, J.; Li, J.; Fu, C. Spatial variations of hydrochemistry and stable isotopes in mountainous river water from the Central Asian headwaters of the Tajikistan Pamirs. Catena 2020, 193, 104639. [Google Scholar] [CrossRef]
- Derakhshan-Babaei, F.; Nosrati, K.; Tikhomirov, D.; Christl, M.; Sadough, H.; Egli, M. Relating the spatial variability of chemical weathering and erosion to geological and topographical zones. Geomorphology 2020, 363, 107235. [Google Scholar] [CrossRef]
- Zhang, T.; Barry, R.G.; Knowles, K.; Heginbottom, J.A.; Brown, J. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geogr. 1999, 23, 132–154. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Cheng, G. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau. Cryosphere 2018, 12, 595–608. [Google Scholar] [CrossRef]
- Yao, T.; Wu, F.; Ding, L.; Sun, J.; Zhu, L.; Piao, S.; Deng, T.; Ni, X.; Zheng, H.; Ouyang, H. Multispherical interactions and their effects on the Tibetan Plateau’s earth system: A review of the recent researches. Natl. Sci. Rev. 2015, 2, 468–488. [Google Scholar] [CrossRef]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, W.K.-M.; Lettenmaier, D.; Mosbrugger, V.; et al. Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Wang, S.; Ren, Z.; Che, Y.; Qiang, F.; Qu, D. Decrease in snowfall/rainfall ratio in the Tibetan Plateau from 1961 to 2013. J. Geogr. Sci. 2016, 26, 1277–1288. [Google Scholar] [CrossRef]
- Deng, H.; Pepin, N.C.; Chen, Y. Changes of snowfall under warming in the Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 7323–7341. [Google Scholar] [CrossRef]
- Lewis, T.; Lafrenière, M.J.; Lamoureux, S.F. Hydrochemical and sedimentary responses of paired High Arctic watersheds to unusual climate and permafrost disturbance, Cape Bounty, Melville Island, Canada. Hydrol. Process. 2012, 26, 2003–2018. [Google Scholar] [CrossRef]
- Kokelj, S.V.; Tunnicliffe, J.; Lacelle, D.; Lantz, T.C.; Chin, K.S.; Fraser, R. Increased precipitation drives mega slump development and destabilization of ice-rich permafrost terrain, northwestern Canada. Glob. Planet. Chang. 2015, 129, 56–68. [Google Scholar] [CrossRef]
- Toohey, R.C.; Herman-Mercer, N.M.; Schuster, P.F.; Mutter, E.A.; Koch, J.C. Multidecadal increases in the Yukon River Basin of chemical fluxes as indicators of changing flowpaths, groundwater, and permafrost. Geophys. Res. Lett. 2016, 43, 12–120, 130. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, F.; Wang, L.; Jagirani, M.D.; Zeng, C.; Xiao, X.; Wang, G. Experimental study on the effects of multiple factors on spring meltwater erosion on an alpine meadow slope. Int. Soil Water Conserv. Res. 2020, 8, 116–123. [Google Scholar] [CrossRef]
- Lafrenière, M.J.; Lamoureux, S.F. Effects of changing permafrost conditions on hydrological processes and fluvial fluxes. Earth-Sci. Rev. 2019, 191, 212–223. [Google Scholar] [CrossRef]
- Oztas, T.; Fayetorbay, F. Effect of freezing and thawing processs on soil aggregate stability. Catena 2003, 52, 1–8. [Google Scholar] [CrossRef]
- Ferrick, M.G.; Gatto, L.W. Quantifying the effect of a freeze-thaw cycle on soil erosion: Laboratory experiments. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2005, 30, 1305–1326. [Google Scholar] [CrossRef]
- Sadeghi, S.H.; Raeisi, M.B.; Hazbavi, Z. Influence of freeze-only and freezing-thawing cycles on splash erosion. Int. Soil Water Conserv. Res. 2018, 6, 275–279. [Google Scholar] [CrossRef]
- Oeurng, C.; Sauvage, S.; Sánchez-Pérez, J.-M. Dynamics of suspended sediment transport and yield in a large agricultural catchment, southwest France. Earth Surf. Process. Landf. 2010, 35, 1289–1301. [Google Scholar] [CrossRef]
- López-Tarazón, J.; Batalla, R.; Vericat, D.; Balasch, J. Rainfall, runoff and sediment transport relations in a mesoscale mountainous catchment: The River Isábena (Ebro basin). Catena 2010, 82, 23–34. [Google Scholar] [CrossRef]
- Lana-Renault, N.; Alvera, B.; García-Ruiz, J.M. Runoff and Sediment Transport during the Snowmelt Period in a Mediterranean High-Mountain Catchment. Arct. Antarct. Alp. Res. 2011, 43, 213–222. [Google Scholar] [CrossRef]
- Malone, L.; Lacelle, D.; Kokelj, S.; Clark, I.D. Impacts of hillslope thaw slumps on the geochemistry of permafrost catchments (Stony Creek watershed, NWT, Canada). Chem. Geol. 2013, 356, 38–49. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Manasypov, R.M.; Loiko, S.V.; Krickov, I.A.; Kopysov, S.G.; Kolesnichenko, L.G.; Vorobyev, S.N.; Kirpotin, S.N. Trace element transport in western Siberian rivers across a permafrost gradient. Biogeosciences 2016, 13, 1877–1900. [Google Scholar] [CrossRef]
- Roberts, K.E.; Lamoureux, S.F.; Kyser, T.K.; Muir, D.C.G.; Lafreniere, M.; Iqaluk, D.; Pienkowski, A.; Normandeau, A. Climate and permafrost effects on the chemistry and ecosystems of High Arctic Lakes. Sci. Rep. 2017, 7, 13292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Ouyang, W.; Hao, Z.; Lin, C.; Liu, H.; Wang, Y. Assessment of soil erosion characteristics in response to temperature and precipitation in a freeze-thaw watershed. Geoderma 2018, 328, 56–65. [Google Scholar] [CrossRef]
- Jones, B.M.; Grosse, G.; Arp, C.D.; Jones, M.C.; Anthony, K.W.; Romanovsky, V.E. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. J. Geophys. Res. Biogeosci. 2011, 116, 1–13. [Google Scholar] [CrossRef]
- Liljedahl, A.K.; Boike, J.; Daanen, R.P.; Fedorov, A.N.; Frost, G.V.; Grosse, G.; Hinzman, L.D.; Iijma, Y.; Jorgen-son, J.C.; Matveyeva, N.; et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 2016, 9, 312–318. [Google Scholar] [CrossRef]
- Luo, J.; Niu, F.; Lin, Z.; Liu, M.; Yin, G. Recent acceleration of thaw slumping in permafrost terrain of Qinghai-Tibet Plateau: An example from the Beiluhe Region. Geomorphology 2019, 341, 79–85. [Google Scholar] [CrossRef]
- Mu, C.; Shang, J.; Zhang, T.; Fan, C.; Wang, S.; Peng, X.; Zhong, W.; Zhang, F.; Mu, M.; Jia, L. Acceleration of thaw slump during 1997–2017 in the Qilian Mountains of the northern Qinghai-Tibetan plateau. Landslides 2020, 17, 1051–1062. [Google Scholar] [CrossRef]
- Ji, X.; Abakumov, E.; Polyakov, V.; Xie, X. Mobilization of Geochemical Elements to Surface Water in the Active Layer of Permafrost in the Russian Arctic. Water Resour. Res. 2021, 57, e2020WR028269. [Google Scholar] [CrossRef]
- Mote, P.W.; Hamlet, A.F.; Clark, M.P.; Lettenmaier, D.P. Declining Mountain Snowpack In Western North America. Bull. Am. Meteorol. Soc. 2005, 86, 39–50. [Google Scholar] [CrossRef]
- Knowles, N.; Dettinger, M.D.; Cayan, D.R. Trends in Snowfall versus Rainfall in the Western United States. J. Clim. 2006, 19, 4545–4559. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Xu, Z.; Che, T.; Xiao, Q.; Ma, M.; Liu, Q.; Jin, R.; Guo, J.; Wang, L.; et al. The Heihe Integrated Observatory Network: A Basin-Scale Land Surface Processes Observatory in China. Vadose Zone J. 2018, 17, 180072-21. [Google Scholar] [CrossRef]
- Che, T.; Li, X.; Liu, S.; Li, H.; Xu, Z.; Tan, J.; Zhang, Y.; Ren, Z.; Xiao, L.; Deng, J.; et al. Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China. Earth Syst. Sci. Data 2019, 11, 1483–1499. [Google Scholar] [CrossRef] [Green Version]
- Li, H.Y.; Wang, J.; Bai, Y.J.; Li, Z.; Dou, Y. The snow hydrological processes during a Representative snow cover period in Binggou Watershed in the upper reaches of Heihe River (In Chinese with English abstract). J. Glaciol. Geocryol. 2009, 31, 293–300. Available online: http://ir.casnw.net/handle/362004/11865 (accessed on 15 April 2009).
- Yang, Z.; Yang, Z.; Liang, F.X.; Wang, Q. Permafrost hydrological processes in Binggou basin of Qilian mountains (In Chinese with English abstract). J. Glaciol. Geocryol. 1993, 15, 235–241. Available online: http://www.bcdt.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=2216 (accessed on 5 September 2022).
- Wang, Q.F.; Zhang, T.J.; Wu, J.C.; Peng, X.Q.; Zhong, X.Y.; Mu, C.C.; Wang, K.; Wu, Q.B.; Cheng, G.D. Investigation on permafrost distribution over the upper reaches of the Heihe River in the Qilian Mountains. J. Glaciol. Geocryol. 2013, 35, 19–25. [Google Scholar] [CrossRef]
- Cheng, G.; Jin, H. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China. Hydrogeol. J. 2013, 21, 5–23. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, F.; Li, X.; Wang, G.; Zeng, C.; Shi, X. Hydrological functioning of thawing soil water in a permafrost-influenced alpine meadow hillslope. Vadose Zone J. 2020, 19, e20022. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, F.; Li, X.; Zeng, C.; Shi, X.; Wu, H.; Jagirani, M.D.; Che, T. Using stable isotopes to identify major flow pathways in a permafrost influenced alpine meadow hillslope during summer rainfall period. Hydrol. Process. 2020, 34, 1104–1116. [Google Scholar] [CrossRef]
- Wang, N.L.; Zhang, S.B.; He, J.Q.; Pu, J.C.; Wu, X.B.; Jiang, X. Tracing the major source area of the mountainous runoff generation of the Heihe River in northwest China using stable isotope technique. Chin. Sci. Bull. 2009, 54, 2751–2757. [Google Scholar] [CrossRef]
- Sanchez, G. PLS path modeling with R. Berkeley Trowchez Ed. 2013, 383, 551. Available online: http://gastonsanchez.com/PLS_Path_Modeling_with_R.pdf (accessed on 1 January 2013).
- Ravand, H.; Baghaei, P. Partial least squares structural equation modeling with R. Pract. Assess. Res. Eval. 2016, 21, 11. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupré, B.; Louvat, P.; Allègre, C. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Yu, W.; Yao, T.; Tian, L.; Ma, Y.; Ichiyanagi, K.; Wang, Y.; Sun, W. Relationships between δ18O in precipitation and air temperature and moisture origin on a south–north transect of the Tibetan Plateau. Atmos. Res. 2008, 87, 158–169. [Google Scholar] [CrossRef]
- Yao, T.; Masson-Delmotte, V.; Gao, J.; Yu, W.; Yang, X.; Risi, C.; Sturm, C.; Werner, M.; Zhao, H.; He, Y.; et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev. Geophys. 2013, 51, 525–548. [Google Scholar] [CrossRef]
- Andermann, C.; Crave, A.; Gloaguen, R.; Davy, P.; Bonnet, S. Connecting source and transport: Suspended sediments in the Nepal Himalayas. Earth Planet. Sci. Lett. 2012, 351, 158–170. [Google Scholar] [CrossRef]
- Chen, F.; Cai, Q.; Sun, L.; Lei, T. Discharge-sediment processes of the Zhadang glacier on the Tibetan Plateau measured with a high frequency data acquisition system. Hydrol. Process. 2016, 30, 4330–4338. [Google Scholar] [CrossRef]
- Zeng, C.; Zhang, F.; Lu, X.; Wang, G.; Gong, T. Improving sediment load estimations: The case of the Yarlung Zangbo River (the upper Brahmaputra, Tibet Plateau). Catena 2018, 160, 201–211. [Google Scholar] [CrossRef]
- Singh, V.B.; Ramanathan, A.; AL, R.; Kumar, M. Seasonal variation of the solute and suspended sediment load in Gangotri glacier meltwater, central Himalaya, India. J. Southeast Asian Earth Sci. 2014, 79, 224–234. [Google Scholar] [CrossRef]
- Coe, J.; Kean, J.; Godt, J.; Baum, R.; Jones, E.S.; Gochis, D.J.; Anderson, G.S. New insights into debris-flow hazards from an extraordinary event in the Colorado Front Range. GSA Today 2014, 24, 4–10. [Google Scholar] [CrossRef]
- Parker, R.N.; Hales, T.; Mudd, S.M.; Grieve, S.; Constantine, J.A. Colluvium supply in humid regions limits the frequency of storm-triggered landslides. Sci. Rep. 2016, 6, 34438. [Google Scholar] [CrossRef]
- Patton, A.I.; Rathburn, S.L.; Capps, D.M. Landslide response to climate change in permafrost regions. Geomorphology 2019, 340, 116–128. [Google Scholar] [CrossRef]
- Beel, C.R.; Orwin, J.F.; Holland, P.G. Controls on slope-to-channel fine sediment connectivity in a largely ice-free valley, Hoophorn Stream, Southern Alps, New Zealand. Earth Surf. Process. Landf. 2011, 36, 981–994. [Google Scholar] [CrossRef]
- Taylor, R.J.; Massey, C.; Fuller, I.C.; Marden, M.; Archibald, G.; Ries, W. Quantifying sediment connectivity in an actively eroding gully complex, Waipaoa catchment, New Zealand. Geomorphology 2018, 307, 24–37. [Google Scholar] [CrossRef]
- Wolff-Boenisch, D.; Gabet, E.J.; Burbank, D.W.; Langner, H.; Putkonen, J. Spatial variations in chemical weathering and CO2 consumption in Nepalese High Himalayan catchments during the monsoon season. Geochim. Cosmochim. Acta 2009, 73, 3148–3170. [Google Scholar] [CrossRef]
- Sun, M.; Wu, W.; Ji, X.; Wang, X.; Qu, S. Silicate weathering rate and its controlling factors: A study from small granitic watersheds in the Jiuhua Mountains. Chem. Geol. 2019, 504, 253–266. [Google Scholar] [CrossRef]
- Piqué, G.; Batalla, R.; López, R.; Sabater, S. The fluvial sediment budget of a dammed river (upper Muga, southern Pyrenees). Geomorphology 2017, 293, 211–226. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, F.; Che, T.; Shi, X.; Zeng, C.; Wang, G. Changes in plot-scale runoff generation processes from the spring–summer transition period to the summer months in a permafrost-dominated catchment. J. Hydrol. 2020, 587, 124966. [Google Scholar] [CrossRef]
- Fassnacht, S.; Kouwen, N.; Soulis, E. Surface temperature adjustments to improve weather radar representation of multi-temporal winter precipitation accumulations. J. Hydrol. 2001, 253, 148–168. [Google Scholar] [CrossRef]
- McCabe, G.J.; Clark, M.P.; Hay, L.E. Rain-on-Snow Events in the Western United States. Bull. Am. Meteorol. Soc. 2007, 88, 319–328. [Google Scholar] [CrossRef]
- Ye, H. Changes in Frequency of Precipitation Types Associated with Surface Air Temperature over Northern Eurasia during 1936–1990. J. Clim. 2008, 21, 5807–5819. [Google Scholar] [CrossRef]
- Jin, L.; Siegel, D.I.; Lautz, L.K.; Lu, Z. Identifying streamflow sources during spring snowmelt using water chemistry and isotopic composition in semi-arid mountain streams. J. Hydrol. 2012, 470, 289–301. [Google Scholar] [CrossRef]
- Winnick, M.J.; Carroll, R.W.H.; Williams, K.H.; Maxwell, R.M.; Dong, W.; Maher, K. Snowmelt controls on concentration-discharge relationships and the balance of oxidative and acid-base weathering fluxes in an alpine catchment, East River, Colorado. Water Resour. Res. 2017, 53, 2507–2523. [Google Scholar] [CrossRef]
- Throckmorton, H.M.; Newman, B.D.; Heikoop, J.M.; Perkins, G.B.; Feng, X.; Graham, D.E.; O’Malley, D.; Vesselinov, V.V.; Young, J.; Wullschleger, S.D.; et al. Active layer hydrology in an arctic tundra ecosystem: Quantifying water sources and cycling using water stable isotopes. Hydrol. Process. 2016, 30, 4972–4986. [Google Scholar] [CrossRef]
- Wang, W.; Wu, T.; Zhao, L.; Li, R.; Xie, C.; Qiao, Y.; Zhang, H.; Zhu, X.; Yang, S.; Qin, Y.; et al. Hydrochemical characteristics of ground ice in permafrost regions of the Qinghai-Tibet Plateau. Sci. Total Environ. 2018, 626, 366–376. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Petersen, L.R.; Ragettli, S.; Pellicciotti, F. The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas. Water Resour. Res. 2014, 50, 2212–2226. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, S.; Ueno, K.; Sha, W. Transportation of Water Vapor into the Tibetan Plateau in the Case of a Passing Synoptic-Scale Trough. J. Meteorol. Soc. Jpn. Ser. II 2008, 86, 935–949. [Google Scholar] [CrossRef]
- Liu, X.; Bai, A.; Liu, C. Diurnal variations of summertime precipitation over the Tibetan Plateau in relation to orographically-induced regional circulations. Environ. Res. Lett. 2009, 4, 045203. [Google Scholar] [CrossRef]
Water Types | Values | TDS | Ca2+ | Mg2+ | K+ | Na+ | SiO2 | Cl− | NO3− | SO42− | HCO3− |
---|---|---|---|---|---|---|---|---|---|---|---|
Stream water | |||||||||||
Spring stream water | Average | 142.3 | 24.4 | 5.8 | 1.4 | 4.2 | 1.2 | 4.7 | 2.4 | 46.5 | 47.0 |
SD | 34.2 | 8.1 | 2.9 | 0.6 | 2.1 | 0.5 | 2.2 | 1.1 | 23.7 | 31.0 | |
Summer stream water | Average | 233.1 | 33.8 | 14.0 | 1.6 | 8.4 | 2.1 | 4.2 | 4.5 | 99.7 | 59.3 |
SD | 20.9 | 6.8 | 1.9 | 0.3 | 1.4 | 0.2 | 0.9 | 0.5 | 9.4 | 24.6 | |
Spring intensive 24 h sampling | Average | 123.9 | 20.7 | 4.6 | 1.2 | 3.0 | 1.1 | 3.9 | 2.3 | 38.3 | 39.0 |
SD | 18.9 | 7.0 | 2.4 | 0.5 | 1.5 | 0.5 | 2.0 | 1.2 | 19.3 | 28.0 | |
Summer intensive 24 h sampling | Average | 251.0 | 33.7 | 15.2 | 1.6 | 9.1 | 2.0 | 4.9 | 4.5 | 105.3 | 58.8 |
SD | 3.8 | 6.2 | 0.4 | 0.1 | 0.7 | 0.1 | 0.4 | 0.4 | 5.1 | 21.4 | |
Precipitation | |||||||||||
Snowfall | Average | 19.5 | 1.7 | 0.3 | 0.3 | 0.7 | 0.1 | 7.3 | 1.0 | 8.2 | 0.0 |
SD | 3.4 | 0.3 | 0.1 | 0.0 | 0.4 | 0.0 | 3.6 | 0.5 | 4.7 | 0.0 | |
Rainfall | Average | 8.1 | 1.2 | 0.2 | 0.5 | 0.5 | 0.1 | 1.0 | 1.6 | 1.4 | 1.7 |
SD | 4.4 | 0.7 | 0.1 | 0.4 | 0.4 | 0.0 | 0.6 | 1.5 | 0.6 | 1.3 | |
Runoff components | |||||||||||
20 cm riparian soil water | Average | 400.7 | 47.8 | 37.6 | 0.2 | 2.4 | 5.2 | 1.4 | 0.5 | 96.1 | 214.8 |
SD | 46.8 | 1.5 | 8.5 | 0.1 | 0.4 | 0.5 | 0.2 | 0.1 | 50.5 | 32.6 | |
50 cm riparian soil water | Average | 535.9 | 50.7 | 60.6 | 1.3 | 3.5 | 8.4 | 3.3 | 1.9 | 172.4 | 242.2 |
SD | 71.3 | 9.1 | 3.5 | 0.2 | 0.2 | 1.5 | 0.6 | 1.8 | 56.1 | 112.6 | |
80 cm riparian soil water | Average | 573.5 | 34.6 | 73.5 | 2.6 | 12.9 | 14.7 | 4.5 | 0.5 | 214.6 | 230.5 |
SD | 103.8 | 11.1 | 13.0 | 0.4 | 12.8 | 8.3 | 1.6 | 0.1 | 105.5 | 193.5 | |
30-60 cm subsurface flow | Average | 162.6 | 20.0 | 13.7 | 0.6 | 2.0 | 7.3 | 1.2 | 1.0 | 30.7 | 93.4 |
SD | 26.5 | 5.0 | 1.6 | 0.3 | 1.2 | 0.5 | 0.7 | 1.5 | 8.7 | 24.1 | |
Surface ponding water | Average | 276.8 | 36.3 | 24.5 | 0.9 | 2.4 | 2.5 | 4.5 | 0.9 | 94.0 | 113.3 |
SD | 170.0 | 19.6 | 18.2 | 0.5 | 1.0 | 1.5 | 1.7 | 0.7 | 64.3 | 72.0 | |
Frozen soil seeps | Average | 476.4 | 68.9 | 42.2 | 1.0 | 3.3 | 4.1 | 10.4 | 2.0 | 232.3 | 116.4 |
SD | 245.0 | 37.4 | 23.5 | 0.8 | 1.3 | 1.2 | 3.7 | 1.5 | 155.1 | 44.3 |
Time | Days | Value Type | Discharge | Sediment Flux | Solute Flux a | Solute Flux b |
---|---|---|---|---|---|---|
Spring period (18 April to 5 May) | 18 | Daily mean | 3.9 × 104 m3 | 46.9 ton | 6.2 ton | 5.9 ton |
Sum | 69.9 × 104 m3 | 892.4 ton | 112.4 ton | 105.5 ton | ||
Summer period (14 July to 23 August) | 32 | Daily mean | 5.3 × 104 m3 | 41.2 ton | 11.4 ton | — |
Sum | 169.3 × 104 m3 | 1319 ton | 366.3 ton | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Liu, Z.; Liu, K.; Wang, J. Temporal Variation of Suspended Sediment and Solute Fluxes in a Permafrost-Underlain Headwater Catchment on the Tibetan Plateau. Water 2022, 14, 2782. https://doi.org/10.3390/w14182782
Xiao X, Liu Z, Liu K, Wang J. Temporal Variation of Suspended Sediment and Solute Fluxes in a Permafrost-Underlain Headwater Catchment on the Tibetan Plateau. Water. 2022; 14(18):2782. https://doi.org/10.3390/w14182782
Chicago/Turabian StyleXiao, Xiong, Zhu Liu, Keshao Liu, and Jiaqi Wang. 2022. "Temporal Variation of Suspended Sediment and Solute Fluxes in a Permafrost-Underlain Headwater Catchment on the Tibetan Plateau" Water 14, no. 18: 2782. https://doi.org/10.3390/w14182782