High Precision Extraction of Surface Water from Complex Terrain in Bosten Lake Basin Based on Water Index and Slope Mask Data
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area
2.2. Data Resources
2.3. Methodology
2.3.1. Remote Sensing Image
2.3.2. Selection of Sample Points for Accuracy Verification
2.3.3. Selection of Water Index and Realization of Index Calculation
2.3.4. Use of Slope Mask and Determination of Optimum Threshold of Surface Water
2.3.5. Discussion on Extraction Methods of Other Water Bodies
2.3.6. Validation of Water Extraction Accuracy in Long-Time Series
3. Results and Analysis
3.1. Extraction Effect of Surface Water with Water Index 0 as Threshold Value
3.2. Changes of Extraction Accuracy under Water Index Threshold and Slope Iteration
3.3. Comparison of Water Extraction Effects under Complex Terrains
3.4. Effect Analysis of Long Time Series Water Extraction
4. Discussion and Conclusions
4.1. Discussion
4.1.1. The Relationship between the Optimal Threshold of Water Index and Water Extraction Effect
4.1.2. The Optimal Threshold Value of Slope Mask Can Reflect the Effect of Water Index to Distinguish Shadows
4.1.3. Commonality of Water Extraction Methods
4.2. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Papa, F.; Crétaux, J.-F.; Grippa, M.; Robert, E.; Trigg, M.; Tshimanga, R.M.; Kitambo, B.; Paris, A.; Carr, A.; Fleischmann, A.S. Water resources in Africa under global change: Monitoring surface waters from space. Surv. Geophys. 2022, 20, 1–51. [Google Scholar]
- Garrido-Rubio, J.; Calera, A.; Arellano, I.; Belmonte, M.; Fraile, L.; Ortega, T.; Bravo, R.; González-Piqueras, J. Evaluation of remote sensing-based irrigation water accounting at river basin district management scale. Remote Sens. 2020, 12, 3187. [Google Scholar] [CrossRef]
- Malahlela, O.E. Inland waterbody mapping: Towards improving discrimination and extraction of inland surface water features. Int. J. Remote Sens. 2016, 37, 4574–4589. [Google Scholar] [CrossRef]
- Aznarez, C.; Jimeno-Sáez, P.; López-Ballesteros, A.; Pacheco, J.P.; Senent-Aparicio, J. Analysing the impact of climate change on hydrological ecosystem services in Laguna del Sauce (Uruguay) using the SWAT model and remote sensing data. Remote Sens. 2021, 13, 2014. [Google Scholar] [CrossRef]
- Bretreger, D.; Yeo, I.-Y.; Kuczera, G.; Hancock, G. Remote sensing’s role in improving transboundary water regulation and compliance: The Murray-Darling Basin, Australia. J. Hydrol. X 2021, 13, 100112. [Google Scholar] [CrossRef]
- Domeneghetti, A.; Schumann, G.J.-P.; Tarpanelli, A. Preface: Remote sensing for flood mapping and monitoring of flood dynamics. Remote Sens. 2019, 11, 943. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, D.Q.; Deng, Z.D.; Shi, Y.; Ding, Z.B.; Ning, H.; Zhao, H.F.; Zhao, J.Z.; Xu, H.L.; Zhao, X.N. Application of red edge band in remote sensing extraction of surface water body: A case study based on GF-6 WFV data in arid area. Hydrol. Res. 2021, 52, 1526–1541. [Google Scholar] [CrossRef]
- Yang, Y.; Ruan, R.Z. Extraction of Plain Lake Water Body Based on TM Imagery. Remote Sens. Inf. 2010, 3, 60–64. [Google Scholar]
- Zhang, Q.; Wu, B.; Yang, Y.K. Extraction of Open Water in Rugged Area with A Novel Slope Adjusted Water Index. Remote Sens. Inf. 2018, 33, 98–107. [Google Scholar]
- Vinayaraj, P.; Imamoglu, N.; Nakamura, R.; Oda, A. Investigation on perceptron learning for water region estimation using large-scale multispectral images. Sensors 2018, 18, 4333. [Google Scholar] [CrossRef] [PubMed]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H.Q. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI). J. Remote Sens. 2005, 9, 589–595. [Google Scholar]
- Danaher, T.; Collett, L. Development, optimisation and multi-temporal application of a simple Landsat based water index. In Proceedings of the 13th Australasian Remote Sensing and Photogrammetry Conference, Canberra, ACT, Australia, 20–24 November 2006. [Google Scholar]
- Yan, P.; Zhang, Y.; Zhang, Y. A study on information extraction of water enhanced water index (EWI) and GIS system in semi-arid regions with the based noise remove techniques. Remote Sens. Inf. 2007, 6, 62–67. [Google Scholar]
- Xu, H.Q. Comment on the Enhanced Water Index (EWI): A Discussion on the Creation of a Water Index. Geo-Inf. Sci. 2008, 10, 776–780. [Google Scholar]
- Cao, R.L.; Li, C.J.; Liu, L.Y.; Wang, J.H.; Yan, G.J. Extracting Miyun reservoirs water area and monitoring its change based on a revised normalized different water index. Sci. Surv. Mapp. 2008, 33, 158–160. [Google Scholar]
- Ding, F. Study on information extraction of water body with a new water index (NWI). Sci. Surv. Mapp. 2009, 34, 155–157. [Google Scholar]
- Xiao, Y.-F.; Zhu, L. A study on information extraction of water body using band 1 and band 7 of TM imagery. Sci. Surv. Mapp. 2010, 35, 226–227. [Google Scholar]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Wang, X.B.; Xie, S.P.; Zhang, X.L.; Chen, C.; Guo, H.; Du, J.K.; Duan, Z. A robust Multi-Band Water Index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 73–91. [Google Scholar] [CrossRef]
- Yamazaki, D.; Trigg, M.A.; Ikeshima, D. Development of a global similar to 90 m water body map using multi-temporal Landsat images. Remote Sens. Environ. 2015, 171, 337–351. [Google Scholar] [CrossRef]
- Allen, G.H.; Pavelsky, T.M. Global extent of rivers and streams. Science 2018, 361, 585–588. [Google Scholar] [CrossRef] [PubMed]
- Acharya, T.D.; Subedi, A.; Huang, H.; Lee, D.H. Application of water indices in surface water change detection using Landsat imagery in Nepal. Sens. Mater. 2019, 31, 1429–1447. [Google Scholar] [CrossRef]
- Colditz, R.R.; Troche Souza, C.; Vazquez, B.; Wickel, A.J.; Ressl, R. Analysis of optimal thresholds for identification of open water using MODIS-derived spectral indices for two coastal wetland systems in Mexico. Int. J. Appl. Earth Obs. Geoinf. 2018, 70, 13–24. [Google Scholar] [CrossRef]
- Ogilvie, A.; Belaud, G.; Massuel, S.; Mulligan, M.; Le Goulven, P.; Calvez, R. Surface water monitoring in small water bodies: Potential and limits of multi-sensor Landsat time series. Hydrol. Earth Syst. Sci. 2018, 22, 4349–4380. [Google Scholar] [CrossRef]
- Zou, Z.H.; Xiao, X.M.; Dong, J.W.; Qin, Y.W.; Doughty, R.B.; Menarguez, M.A.; Zhang, G.; Wang, J. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815. [Google Scholar] [CrossRef]
- Chen, J.; Mueller, V. Coastal climate change, soil salinity and human migration in Bangladesh. Nat. Clim. Chang. 2018, 8, 981–985. [Google Scholar] [CrossRef]
- Müller, M.F.; Yoon, J.; Gorelick, S.M.; Avisse, N.; Tilmant, A. Impact of the Syrian refugee crisis on land use and transboundary freshwater resources. Proc. Natl. Acad. Sci. 2016, 113, 14932–14937. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Z.; Wang, S.M.; Huang, C. Comparison of Sentinel-2 imagery with Landsat8 imagery for surface water extraction using four common water indexes. Remote Sens. Land Resour. 2019, 31, 157–165. [Google Scholar]
- Verpoorter, C.; Kutser, T.; Tranvik, L. Automated mapping of water bodies using Landsat multispectral data. Limnol. Oceanogr. Methods 2012, 10, 1037–1050. [Google Scholar] [CrossRef]
- Xu, H.Q. Development of remote sensing water indices:a review. J. Fuzhou Univ. 2021, 49, 613–625. [Google Scholar]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Li, X.D.; Ling, F.; Foody, G.M.; Boyd, D.S.; Jiang, L.; Zhang, Y.H.; Zhou, P.; Wang, Y.L.; Chen, R.; Du, Y. Monitoring high spatiotemporal water dynamics by fusing MODIS, Landsat, water occurrence data and DEM. Remote Sens. Environ. 2021, 265, 112680. [Google Scholar] [CrossRef]
- Tobón-Marín, A.; Canon Barriga, J. Analysis of changes in rivers planforms using google earth engine. Int. J. Remote Sens. 2020, 41, 8654–8681. [Google Scholar] [CrossRef]
- Ismail, M.A.; Waqas, M.; Ali, A.; Muzzamil, M.M.; Abid, U.; Zia, T. Enhanced index for water body delineation and area calculation using Google Earth Engine: A case study of the Manchar Lake. J. Water Clim. Chang. 2022, 13, 557–573. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, W.G.; Tang, Z.G.; Ling, Z.Y.; Wu, Z.F. Long-Term Changes of Open-Surface Water Bodies in the Yangtze River Basin Based on the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 2213. [Google Scholar] [CrossRef]
- Jin, Y.L.; Xu, M.L.; Gao, S.; Wan, H.W. Analysis on the Dynamic Changes and Driving Forces of Surface Water in the Three-River Headwater Region from 2001 to 2018. Remote Sens. Technol. Appl. 2021, 36, 1147–1154. [Google Scholar]
- Chai, X.R.; Li, M.; Wang, G.W. Characterizing surface water changes across the Tibetan Plateau based on Landsat time series and LandTrendr algorithm. Eur. J. Remote Sens. 2022, 55, 251–262. [Google Scholar] [CrossRef]
- Yu, Z.Q.; An, Q.; Liu, W.S.; Wang, Y.H. Analysis and evaluation of surface water changes in the lower reaches of the Yangtze River using Sentinel-1 imagery. J. Hydrol. Reg. Stud. 2022, 41, 101074. [Google Scholar] [CrossRef]
- Rad, A.M.; Kreitler, J.; Sadegh, M. Augmented Normalized Difference Water Index for improved surface water monitoring. Environ. Model. Softw. 2021, 140, 105030. [Google Scholar] [CrossRef]
- Huang, Y.L.; Deng, K.Y.; Ren, C.; Yu, Z.W.; Pan, Y.L. New water index and its stability study. Prog. Geophys. 2020, 35, 829–835. [Google Scholar]
- Chen, Y.H.; Mu, Y.C.; Xie, Y.W. Extraction of the wetland information in the middle reaches of Heihe River based on Landsat images. J. Lanzhou Univ. Nat. Sci. 2016, 52, 587–592, 598. [Google Scholar]
- Nguyen, U.N.; Pham, L.T.; Dang, T.D. An automatic water detection approach using Landsat 8 OLI and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand. Environ. Monit. Assess. 2019, 191, 235. [Google Scholar] [CrossRef] [PubMed]
- Tew, Y.L.; Tan, M.L.; Samat, N.; Chan, N.W.; Mahamud, M.A.; Sabjan, M.A.; Lee, L.K.; See, K.F.; Wee, S.T. Comparison of Three Water Indices for Tropical Aquaculture Ponds Extraction using Google Earth Engine. Sains Malays. 2022, 51, 369–378. [Google Scholar] [CrossRef]
- Yue, H.; Li, Y.; Qian, J.X.; Liu, Y. A new accuracy evaluation method for water body extraction. Int. J. Remote Sens. 2020, 41, 7311–7342. [Google Scholar] [CrossRef]
- Yulianto, F.; Kushardono, D.; Budhiman, S.; Nugroho, G.; Chulafak, G.A.; Dewi, E.K.; Pambudi, A.I. Evaluation of the Threshold for an Improved Surface Water Extraction Index Using Optical Remote Sensing Data. Sci. World J. 2022, 2022, 4894929. [Google Scholar] [CrossRef]
- Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of water indices for surface water extraction in a Landsat 8 scene of Nepal. Sensors 2018, 18, 2580. [Google Scholar] [CrossRef]
- Zhao, R.; Fu, P.; Zhou, Y.; Xiao, X.M.; Grebby, S.; Zhang, G.Q.; Dong, J.W. Annual 30-m big Lake Maps of the Tibetan Plateau in 1991–2018. Sci. Data 2022, 9, 164. [Google Scholar] [CrossRef]
Index Name | Index Formula | Reference |
---|---|---|
NDWI | [11] | |
MNDWI | [12] | |
AWEInsh | [19] | |
AWEIsh | [19] | |
EWI | [14] | |
ANWI | [41] | |
NWI | [17] | |
WI2015 | [20] | |
WI2019 | [42] |
Classification Method | Threshold | Slope | Land Cover Class | Overall Accuracy | User Accuracy | Producer Accuracy | Kappa |
---|---|---|---|---|---|---|---|
WI2019 | 0.00 | 0.00 | water | 0.669 | 0.274 | 0.994 | 0.29 |
nonwater | 0.999 | 0.623 | |||||
−0.25 | 0.00 | water | 0.679 | 0.299 | 0.984 | 0.31 | |
nonwater | 0.996 | 0.630 | |||||
0.00 | 10.00 | water | 0.908 | 0.807 | 0.989 | 0.81 | |
nonwater | 0.992 | 0.861 | |||||
−0.15 | 8.00 | water | 0.940 | 0.912 | 0.954 | 0.89 | |
nonwater | 0.964 | 0.929 | |||||
AWEInsh | 0.00 | 0.00 | water | 0.680 | 0.299 | 0.990 | 0.31 |
nonwater | 0.997 | 0.630 | |||||
−0.1 | 0.00 | water | 0.682 | 0.306 | 0.987 | 0.319 | |
nonwater | 0.997 | 0.632 | |||||
0.00 | 10.00 | water | 0.901 | 0.944 | 0.853 | 0.80 | |
nonwater | 0.865 | 0.949 | |||||
−0.09 | 5.00 | water | 0.937 | 0.926 | 0.935 | 0.87 | |
nonwater | 0.946 | 0.939 | |||||
AWEIsh | 0.00 | 0.00 | water | 0.676 | 0.305 | 0.949 | 0.31 |
nonwater | 0.986 | 0.630 | |||||
0.15 | 0.00 | water | 0.668 | 0.274 | 0.986 | 0.288 | |
nonwater | 0.997 | 0.622 | |||||
0.00 | 10.00 | water | 0.882 | 0.973 | 0.807 | 0.77 | |
nonwater | 0.806 | 0.973 | |||||
0.08 | 5.00 | water | 0.922 | 0.899 | 0.926 | 0.84 | |
nonwater | 0.940 | 0.918 | |||||
MNDWI | 0.00 | 0.00 | water | 0.681 | 0.307 | 0.973 | 0.32 |
nonwater | 0.993 | 0.632 | |||||
0.15 | 0.00 | water | 0.682 | 0.305 | 0.989 | 0.32 | |
nonwater | 0.997 | 0.632 | |||||
0.00 | 10.00 | water | 0.903 | 0.976 | 0.837 | 0.81 | |
nonwater | 0.841 | 0.977 | |||||
0.00 | 5.00 | water | 0.931 | 0.935 | 0.915 | 0.86 | |
nonwater | 0.928 | 0.945 | |||||
NDWI | 0.00 | 0.00 | water | 0.675 | 0.289 | 0.987 | 0.30 |
nonwater | 0.997 | 0.627 | |||||
0.15 | 0 | water | 0.674 | 0.300 | 0.946 | 0.30 | |
nonwater | 0.986 | 0.268 | |||||
0.00 | 10.00 | water | 0.907 | 0.880 | 0.913 | 0.81 | |
nonwater | 0.930 | 0.903 | |||||
0.03 | 9.00 | water | 0.916 | 0.859 | 0.951 | 0.83 | |
nonwater | 0.963 | 0.891 | |||||
EWI | 0.00 | 0.00 | water | 0.657 | 0.248 | 0.991 | 0.26 |
nonwater | 0.998 | 0.614 | |||||
−0.15 | 0.00 | water | 0.669 | 0.275 | 0.989 | 0.290 | |
nonwater | 0.997 | 0.623 | |||||
0.00 | 10.00 | water | 0.845 | 0.694 | 0.954 | 0.68 | |
nonwater | 0.972 | 0.792 | |||||
−0.35 | 4.00 | water | 0.927 | 0.894 | 0.942 | 0.85 | |
nonwater | 0.954 | 0.915 | |||||
ANWI | 0.00 | 0.00 | water | 0.657 | 0.248 | 0.991 | 0.26 |
nonwater | 0.998 | 0.614 | |||||
−0.15 | 0.00 | water | 0.667 | 0.272 | 0.989 | 0.287 | |
nonwater | 0.997 | 0.622 | |||||
0.00 | 10.00 | water | 0.839 | 0.670 | 0.964 | 0.67 | |
nonwater | 0.979 | 0.781 | |||||
0.1 | 6.00 | water | 0.930 | 0.901 | 0.943 | 0.86 | |
nonwater | 0.954 | 0.920 | |||||
NWI | 0.00 | 0.00 | water | 0.657 | 0.248 | 0.991 | 0.26 |
nonwater | 0.998 | 0.614 | |||||
−0.4 | 0.00 | water | 0.682 | 0.305 | 0.985 | 0.319 | |
nonwater | 0.996 | 0.632 | |||||
0.00 | 10.00 | water | 0.839 | 0.670 | 0.964 | 0.67 | |
nonwater | 0.979 | 0.781 | |||||
−0.40 | 4.00 | water | 0.930 | 0.901 | 0.943 | 0.86 | |
nonwater | 0.954 | 0.920 | |||||
WI2015 | 0.00 | 0.00 | water | 0.682 | 0.306 | 0.980 | 0.32 |
nonwater | 0.995 | 0.632 | |||||
0.05 | 0 | water | 0.681 | 0.306 | 0.980 | 0.319 | |
nonwater | 0.995 | 0.632 | |||||
0.00 | 10.00 | water | 0.904 | 0.973 | 0.840 | 0.81 | |
nonwater | 0.973 | 0.975 | |||||
0.00 | 5.00 | water | 0.932 | 0.932 | 0.920 | 0.86 | |
nonwater | 0.932 | 0.943 | |||||
SmileCart | 0.931 | 0.88 | |||||
LibSVM | 0.894 | 0.79 | |||||
MinimumDistance | 0.864 | 0.87 |
Water Index | WI2019 | AWEInsh | AWEIsh | MNDWI | NDWI | EWI | ANWI | NWI | WI2015 |
---|---|---|---|---|---|---|---|---|---|
Error area (km2) | 140.5183 | 183.524 | 145.4784 | 391.2709 | 194.1482 | 266.785 | 177.5806 | 210.056 | 350.6671 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhang, F.; Chan, N.W.; Shi, J.; Liu, C.; Chen, D. High Precision Extraction of Surface Water from Complex Terrain in Bosten Lake Basin Based on Water Index and Slope Mask Data. Water 2022, 14, 2809. https://doi.org/10.3390/w14182809
Li X, Zhang F, Chan NW, Shi J, Liu C, Chen D. High Precision Extraction of Surface Water from Complex Terrain in Bosten Lake Basin Based on Water Index and Slope Mask Data. Water. 2022; 14(18):2809. https://doi.org/10.3390/w14182809
Chicago/Turabian StyleLi, Xingyou, Fei Zhang, Ngai Weng Chan, Jinchao Shi, Changjiang Liu, and Daosheng Chen. 2022. "High Precision Extraction of Surface Water from Complex Terrain in Bosten Lake Basin Based on Water Index and Slope Mask Data" Water 14, no. 18: 2809. https://doi.org/10.3390/w14182809
APA StyleLi, X., Zhang, F., Chan, N. W., Shi, J., Liu, C., & Chen, D. (2022). High Precision Extraction of Surface Water from Complex Terrain in Bosten Lake Basin Based on Water Index and Slope Mask Data. Water, 14(18), 2809. https://doi.org/10.3390/w14182809