Groundwater Defluoridation with Composite Oxyhydroxide Mineral Ores—The Case with Bauxite, a Systematic Review
Abstract
:1. Introduction
2. The Composition and Pretreatment of Bauxite Ore and the Impact They Have on the Defluoridation of Groundwater
2.1. Characterization of Bauxite and the Effects of Minor Minerals on the Defluoridation Characteristics
2.2. Types and Influence of Composite Mineral Ore Pretreatment for Adsorption of Fluoride from Groundwater
Source of Bauxite Sample (Short Name as Used in the Text) | Modification Method | References |
---|---|---|
Seydisehir Aluminum Process Plant, Eskisehir, Turkey (B-Mg-500) * | Thermal activation and metal (Mg) incorporation | [48] |
Tailings, Ghana Bauxite Mining Company Limited, Awaso, Ghana (BXT) * | Thermal activation | [43] |
High Aluminium Bauxite Ore, Ghana (AOCB) * | Metal (Al) incorporation | [63] |
Mines in Visakhapatnam, Andhra Pradesh, India (JTTB) ** | Thermal activation | [49] |
Rawmin Mining and Industries Pvt. Ltd. Kolhapur, Maharashtra, India (KRB) ** | None | [64] |
Guinea (GRB) **, Ghana, USA, and India | None | [26] |
Mine in Visakhapatnam, Andhra Pradesh, India (CTTB) ** | Thermal activation | [50] |
An aluminum mining company in the Western Region, Ghana (Gh-B) ** | None | [58] |
Jobhipat and Narma bauxite mines of Jharkhand, India (TRB) * | Thermal activation | [45] |
Panchpatmali of Koraput district in Odisha, India (TTB) * | Thermal activation | [44] |
Lichenya Plateau, Mulanje Mountain, Malawi (LRB) ** | None | [65] |
Texas, USA (URB) ** | None | [66] |
Sadr Abad, Iran (SATB) ** | Thermal activation | [67] |
Shomal-e-Yazd mines, Iran (SYTB) ** | Thermal activation | [67] |
Not given (RGB) ** | Thermal activation | [68] |
Mulanje Mountain in Mulanje district, Malawi (SMTTB) ** | Thermal activation | [40,46] |
Awaso Bauxite Mines, Ghana (GACB) * | Thermal activation and metal (Al) incorporation | [60] |
Not given (SRB) ** | None | [59] |
Kwemashai, Usambara Mountains, Lushoto District, Tanzania (B-200) ** | Thermal activation | [41,42,69,70] |
Mahboobabad, India (LIB) * | Thermal activation and metal (La) incorporation | [61] |
Mahboobabad, India (MTTB) ** | Thermal activation | [61] |
3. Mechanism of Fluoride Sorption on a Composite Metallic Oxyhydroxide Mineral Ore
4. Effect of Adsorption Parameters on Fluoride Removal from Water by a Composite Mineral Assemblage
4.1. Effect of pH
4.2. Effect of Contact Time
4.3. Effect of Adsorbent Dose
4.4. Effect of Initial Fluoride Concentration
4.5. Effect of Coexisting Ions
5. Regenerability and Environmental Concerns
6. Comparison between Bauxite Adsorbents and AA
Material | [F−]0 (mg/L) | pH | Contact Time (h) | Ads Dose (g/L) | Max Rem. (%) | Max Ads. Cap(mg/g) | Kinetic/Isothermal Models | Ref |
---|---|---|---|---|---|---|---|---|
AA | 4GW | 7.8 | 24 | 6.67 | >99 | 1.08 | Langmuir | [58] |
ACG | 2–10 | 3–11.5 | 0–140 | 0–12.5 | 99 | 3.91–0.806 | Langmuir | [133] |
AC | 30 | 2 | 1 | 15 | 73 | 33.3 | Freundlich | [134] |
GAC | 2.5 | ~7 | 7 | 5 | 35.20 | 0.18 | PSO/ | [132] |
TiO2 | 2.5 (2.4GW) | ~7(8GW) | 7 | 5 | 98.10 (49.6GW) | 4.96 (~0.18GW) | PSO/BET | [132] |
A33E | 2.5 | ~7 | 7 | 5 | 50.40 | – | PSO/Freundlich | [132] |
GFH | 2.5 | ~7 | 7 | 5 | 14.60 | – | – | [132] |
BXT | 10.81 GW | 8.1 | 24 | 20 | 70.4 | – | – | [43] |
B-Mg-500 | 3 | 7.6 | 3 | 5 | 55 | ~0.18 | Freundlich | [48] |
AOCB | 40–60SGW | 7 | 24 | 12 | ~55.13 | 1.1 | Langmuir & Freundlich | [63] |
KRB | 3–15 | 6 | 1.5 | 32 | 96.2 | – | Langmuir | [64] |
GRB | 10SGW | 6 | 3 | ~10 | >85 | 1.7 * | Freundlich | [26] |
Gh-B | 10.07 | 5.3 | 24 | 6.67 | ~45 | 0.83 | Langmuir | [58] |
TRB | 10 | 5.5–6.5 | 1.5 | 4 | 90 | 3.6 | PFO/Langmuir & Freundlich | [45] |
TTB | 5–25 | 2–8 | 3 | 5–30 | 97.7 | 3.01 | Langmuir | [44] |
LRB | 6.17 GW | 8.12 | 1.5 | 8 | 96.1 | 0.27 | PFO/Freundlich | [65] |
URB | 10 | 7 | 3 | 10 | - | 3.15 | Freundlich | [66] |
SATB | 6 | 7 | 3 | 25 | 75.31 | 0.63 | Freundlich | [67] |
SYTB | 2.74GW | 6.9–7.7 | 3 | 30 | 59.9 | – | Freundlich | [67] |
SATB | 6 | 7 | 3 | 25 | 51.21 | 0.44 | Freundlich | [67] |
SYTB | 2.74GW | 6.9–7.7 | 3 | 30 | 36.68 | – | Freundlich | [67] |
SMTTB | 8 | 4 | 24 | 12.5 | 93.8 | – | PFO/Langmuir | [46] |
SMTTB | 7.5 max (GW) | 9.5max | 24 | 12.5 | – | – | PFO/Langmuir | [46] |
GACB | 5SGW | 6–7 | 176 | 10 | >90 | 12.29 * | PSO/Freundlich | [60] |
SRB | 4.85 GW | 5–7 | 2 | 6 | 62 | 5.16 * | PFO/Langmuir | [59] |
LIB | 20 | 6.5–8.5 | 2 | 2 | 99 | 18.18 * | PSO/Langmuir | [61] |
7. Conclusions and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, B.-S.; Chou, P.-H.; Chen, S.-Y.; Liao, H.-Y.; Chang, C.-C. Prevention of Enamel Demineralization with a Novel Fluoride Strip: Enamel Surface Composition and Depth Profile. Sci. Rep. 2015, 5, 13352. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.; Stillman-Lowe, C.R. The Scientific Basis of Oral Health Education; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Zheng, X.; Cheng, X.; Wang, L.; Qiu, W.; Wang, S.; Zhou, Y.; Li, M.; Li, Y.; Cheng, L.; Li, J. Combinatorial Effects of Arginine and Fluoride on Oral Bacteria. J. Dent. Res. 2015, 94, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Mahramanlioglu, M.; Kizilcikli, I.; Bicer, I.O. Adsorption of Fluoride from Aqueous Solution by Acid Treated Spent Bleaching Earth. J. Fluor. Chem. 2002, 115, 41–47. [Google Scholar] [CrossRef]
- Jha, S.K.; Singh, R.K.; Damodaran, T.; Mishra, V.K.; Sharma, D.K.; Rai, D. Fluoride in Groundwater: Toxicological Exposure and Remedies. J. Toxicol. Environ. Health Part B 2013, 16, 52–66. [Google Scholar] [CrossRef]
- Lugwisha, E.H.; Lunyungu, G. Water Defluoridation Capacity of Tanzanian Kaolin-Feldspar Blend Adsorbents. Am. J. Appl. Chem. 2016, 4, 77–83. [Google Scholar] [CrossRef]
- Guissouma, W.; Hakami, O.; Al-Rajab, A.J.; Tarhouni, J. Risk Assessment of Fluoride Exposure in Drinking Water of Tunisia. Chemosphere 2017, 177, 102–108. [Google Scholar] [CrossRef]
- Raj, D.; Shaji, E. Fluoride Contamination in Groundwater Resources of Alleppey, Southern India. Geosci. Front. 2017, 8, 117–124. [Google Scholar] [CrossRef]
- Barathi, M.; Kumar, A.S.K.; Rajesh, N. Impact of Fluoride in Potable Water—An Outlook on the Existing Defluoridation Strategies and the Road Ahead. Coord. Chem. Rev. 2019, 387, 121–128. [Google Scholar] [CrossRef]
- Chinoy, N.J. Effects of Fluoride on Physiology of Animals and Human Beings. Indian J. Environ. Toxicol. 1991, 1, 17–32. [Google Scholar]
- Harrison, P.T. Fluoride in Water: A UK Perspective. J. Fluor. Chem. 2005, 126, 1448–1456. [Google Scholar] [CrossRef]
- Fawell, J.; Bailey, K.; Chilton, J.; Dahi, E.; Magara, Y. Fluoride in Drinking-Water; IWA Publishing: London, UK, 2006. [Google Scholar]
- Meenakshi, G.V.; Kavita, R.; Malik, A. Groundwater Quality in Some Villages of Haryana, India: Focus on Fluoride and Fluorosis. J. Hazard. Mater. 2004, 106, 85–97. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, C.; Shan, Y. Adsorption of Fluoride from Aqueous Solution on La3+-Impregnated Cross-Linked Gelatin. Sep. Purif. Technol. 2004, 36, 89–94. [Google Scholar] [CrossRef]
- Sujana, M.G.; Pradhan, H.K.; Anand, S. Studies on Sorption of Some Geomaterials for Fluoride Removal from Aqueous Solutions. J. Hazard. Mater. 2009, 161, 120–125. [Google Scholar] [CrossRef]
- Barberio, A.M.; Hosein, F.S.; Quiñonez, C.; McLaren, L. Fluoride Exposure and Indicators of Thyroid Functioning in the Canadian Population: Implications for Community Water Fluoridation. J. Epidemiol. Community Health 2017, 71, 1019–1025. [Google Scholar] [CrossRef]
- Choi, A.L.; Sun, G.; Zhang, Y.; Grandjean, P. Developmental Fluoride Neurotoxicity: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2012, 120, 1362–1368. [Google Scholar] [CrossRef]
- Yadav, K.K.; Kumar, S.; Pham, Q.B.; Gupta, N.; Rezania, S.; Kamyab, H.; Yadav, S.; Vymazal, J.; Kumar, V.; Tri, D.Q. Fluoride Contamination, Health Problems and Remediation Methods in Asian Groundwater: A Comprehensive Review. Ecotoxicol. Environ. Saf. 2019, 182, 109362. [Google Scholar] [CrossRef]
- Kimambo, V.; Bhattacharya, P.; Mtalo, F.; Mtamba, J.; Ahmad, A. Fluoride Occurrence in Groundwater Systems at Global Scale and Status of Defluoridation–State of the Art. Groundw. Sustain. Dev. 2019, 9, 100223. [Google Scholar] [CrossRef]
- Kut, K.M.K.; Sarswat, A.; Srivastava, A.; Pittman, C.U., Jr.; Mohan, D. A Review of Fluoride in African Groundwater and Local Remediation Methods. Groundw. Sustain. Dev. 2016, 2, 190–212. [Google Scholar] [CrossRef]
- Mohapatra, M.; Anand, S.; Mishra, B.K.; Giles, D.E.; Singh, P. Review of Fluoride Removal from Drinking Water. J. Environ. Manag. 2009, 91, 67–77. [Google Scholar] [CrossRef]
- Miretzky, P.; Cirelli, A.F. Fluoride Removal from Water by Chitosan Derivatives and Composites: A Review. J. Fluor. Chem. 2011, 132, 231–240. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M.; Witek-Krowiak, A. Agricultural Waste Peels as Versatile Biomass for Water Purification—A Review. Chem. Eng. J. 2015, 270, 244–271. [Google Scholar] [CrossRef]
- Gautam, R.K.; Mudhoo, A.; Lofrano, G.; Chattopadhyaya, M.C. Biomass-Derived Biosorbents for Metal Ions Sequestration: Adsorbent Modification and Activation Methods and Adsorbent Regeneration. J. Environ. Chem. Eng. 2014, 2, 239–259. [Google Scholar] [CrossRef]
- Ali, I.; Alharbi, O.M.L.; ALOthman, Z.A.; Al-Mohaimeed, A.M.; Alwarthan, A. Modeling of Fenuron Pesticide Adsorption on CNTs for Mechanistic Insight and Removal in Water. Environ. Res. 2019, 170, 389–397. [Google Scholar] [CrossRef]
- Cherukumilli, K.; Delaire, C.; Amrose, S.; Gadgil, A.J. Factors Governing the Performance of Bauxite for Fluoride Remediation of Groundwater. Environ. Sci. Technol. 2017, 51, 2321–2328. [Google Scholar] [CrossRef]
- Bray, L. USGS Mineral Commodities Summaries 2015: Bauxite and Alumina; U.S. Geological Survey: Reston, VA, USA, 2016.
- Sorg, T. Removal of Fluoride from Drinking Water Supplies by Activated Alumina; USEPA: Cincinnati, OH, USA, 2014.
- Ng, C.; Marshall, W.E.; Rao, R.M.; Bansode, R.R.; Losso, J.N. Activated Carbon from Pecan Shell: Process Description and Economic Analysis. Ind. Crops Prod. 2003, 17, 209–217. [Google Scholar] [CrossRef]
- Toles, C.A.; Marshall, W.E.; Johns, M.M.; Wartelle, L.H.; McAloon, A. Acid-Activated Carbons from Almond Shells: Physical, Chemical and Adsorptive Properties and Estimated Cost of Production. Bioresour. Technol. 2000, 71, 87–92. [Google Scholar] [CrossRef]
- Lima, I.M.; McAloon, A.; Boateng, A.A. Activated Carbon from Broiler Litter: Process Description and Cost of Production. Biomass Bioenergy 2008, 32, 568–572. [Google Scholar] [CrossRef]
- Nowrouzi, M.; Younesi, H.; Bahramifar, N. High Efficient Carbon Dioxide Capture onto As-Synthesized Activated Carbon by Chemical Activation of Persian Ironwood Biomass and the Economic Pre-Feasibility Study for Scale-Up. J. Clean. Prod. 2017, 168, 499–509. [Google Scholar] [CrossRef]
- Toles, C.A.; Marshall, W.E.; Wartelle, L.H.; McAloon, A. Steam-or Carbon Dioxide-Activated Carbons from Almond Shells: Physical, Chemical, and Adsorptive Properties and Estimated Cost of Production. Bioresour. Technol. 2000, 75, 197–203. [Google Scholar] [CrossRef]
- Meyer, F.M. Availability of Bauxite Reserves. Nat. Resour. Res. 2004, 13, 161–172. [Google Scholar] [CrossRef]
- Karamalidis, A.K.; Dzombak, D.A. Surface Complexation Modeling: Gibbsite; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Bhatnagar, A.; Kumar, E.; Sillanpää, M. Fluoride Removal from Water by Adsorption—A Review. Chem. Eng. J. 2011, 171, 811–840. [Google Scholar] [CrossRef]
- He, J.; Yang, Y.; Wu, Z.; Xie, C.; Zhang, K.; Kong, L.; Liu, J. Review of Fluoride Removal from Water Environment by Adsorption. J. Environ. Chem. Eng. 2020, 8, 104516. [Google Scholar] [CrossRef]
- Biswas, G.; Kumari, M.; Adhikari, K.; Dutta, S. A Critical Review on Occurrence of Fluoride and Its Removal through Adsorption with an Emphasis on Natural Minerals. Curr. Pollut. Rep. 2017, 3, 104–119. [Google Scholar] [CrossRef]
- Maheshwari, R.C. Fluoride in Drinking Water and Its Removal. J. Hazard. Mater. 2006, 137, 456–463. [Google Scholar]
- Sajidu, S.; Kayira, C.; Masamba, W.; Mwatseteza, J. Defluoridation of Groundwater Using Raw Bauxite: Rural Domestic Defluoridation Technology. Environ. Nat. Resour. Res. 2012, 2, 1. [Google Scholar] [CrossRef]
- Thole, B. Initial Fluoride Concentration and Loading Capacity in Defluoridation with Bauxite, Gypsum, Magnesite and Their Composite. J. Water Sanit. Hyg. Dev. 2014, 4, 200–205. [Google Scholar] [CrossRef]
- Thole, B.; Mtalo, F.; Masamba, W. Groundwater Defluoridation with Raw Bauxite, Gypsum, Magnesite, and Their Composites. Clean–Soil Air Water 2012, 40, 1222–1228. [Google Scholar] [CrossRef]
- Ayamsegna, J.A.; Apambire, W.B.; Bakobie, N.; Minyila, S.A. Removal of Fluoride from Rural Drinking Water Sources Using Geomaterials from Ghana. In Access to Sanitation and Safe Water—Global Partnerships and Local Actions, Proceedings of the 33rd WEDC International Conference, Accra, Ghana, 7–11 April 2008; Jones, H., Ed.; Loughborough University: Loughborough, UK, 2008; pp. 441–446. [Google Scholar]
- Ghosh, M.R.; Mishra, S.P. Effect of Co-Ions on Cr (VI) and F-Adsorption by Thermally Treated Bauxite (TTB). Arab. J. Sci. Eng. 2017, 42, 4391–4400. [Google Scholar] [CrossRef]
- Das, N.; Pattanaik, P.; Das, R. Defluoridation of Drinking Water Using Activated Titanium Rich Bauxite. J. Colloid Interface Sci. 2005, 292, 1–10. [Google Scholar] [CrossRef]
- Sajidu, S.M.I.; Masamba, W.R.L.; Thole, B.; Mwatseteza, J.F. Groundwater Fluoride Levels in Villages of Southern Malawi and Removal Studies Using Bauxite. Int. J. Phys. Sci. 2008, 3, 1–11. [Google Scholar]
- Habuda-Stanić, M.; Ravančić, M.E.; Flanagan, A. A Review on Adsorption of Fluoride from Aqueous Solution. Materials 2014, 7, 6317–6366. [Google Scholar] [CrossRef]
- Atasoy, A.D.; Yesilnacar, M.I.; Sahin, M.O. Removal of Fluoride from Contaminated Ground Water Using Raw and Modified Bauxite. Bull. Environ. Contam. Toxicol. 2013, 91, 595–599. [Google Scholar] [CrossRef]
- Buckley, H.L.; Molla, N.J.; Cherukumilli, K.; Boden, K.S.; Gadgil, A.J. Addressing Technical Barriers for Reliable, Safe Removal of Fluoride from Drinking Water Using Minimally Processed Bauxite Ores. Dev. Eng. 2018, 3, 175–187. [Google Scholar] [CrossRef]
- Cherukumilli, K.; Maurer, T.; Hohman, J.N.; Mehta, Y.; Gadgil, A.J. Effective Remediation of Groundwater Fluoride with Inexpensively Processed Indian Bauxite. Environ. Sci. Technol. 2018, 52, 4711–4718. [Google Scholar] [CrossRef]
- Haddad, A.Z.; Pilgrim, C.D.; Sawvel, A.M.; Hohman, J.N.; Gadgil, A.J. On the Conversion of Bauxite Ores to Highly Activated Alumina Media for Water Remediation. Adv. Sustain. Syst. 2019, 3, 1900005. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Haddad, A.Z.; Gadgil, A.J. Toward Greener and More Sustainable Manufacture of Bauxite-Derived Adsorbents for Water Defluoridation. ACS Sustain. Chem. Eng. 2019, 7, 18323–18331. [Google Scholar] [CrossRef]
- Silveira, N.C.G.; Martins, M.L.F.; Bezerra, A.C.S.; Araujo, F.G.S. Red Mud from the Aluminium Industry: Production, Characteristics, and Alternative Applications in Construction Materials-A Review. Sustainability 2021, 13, 12741. [Google Scholar] [CrossRef]
- Liu, Y.; Naidu, R.; Ming, H. Red Mud as an Amendment for Pollutants in Solid and Liquid Phases. Geoderma 2011, 163, 1–12. [Google Scholar] [CrossRef]
- De Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M. Characteristics and Adsorption Capacities of Low-Cost Sorbents for Wastewater Treatment: A Review. Sustain. Mater. Technol. 2016, 9, 10–40. [Google Scholar] [CrossRef]
- Begum, S.; Shah, M.H.; Nauman, M. Preparation of Aluminum Hydroxide from Bauxite with Alkaline Additives. J. Chem. Soc. Pak. 2012, 34, 76–80. [Google Scholar]
- Malakootian, M.; Javdan, M.; Iranmanesh, F. Use of Bauxite from Active Iranian Mines for the Removal of Fluoride from Drinking Water. Environ. Health Eng. Manag. 2017, 4, 217–224. [Google Scholar] [CrossRef]
- Craig, L.; Stillings, L.L.; Decker, D.L.; Thomas, J.M. Comparing Activated Alumina with Indigenous Laterite and Bauxite as Potential Sorbents for Removing Fluoride from Drinking Water in Ghana. Appl. Geochem. 2015, 56, 50–66. [Google Scholar] [CrossRef]
- Sujana, M.G.; Anand, S. Fluoride Removal Studies from Contaminated Ground Water by Using Bauxite. Desalination 2011, 267, 222–227. [Google Scholar] [CrossRef]
- Salifu, A.; Petrusevski, B.; Mwampashi, E.S.; Pazi, I.A.; Ghebremichael, K.; Buamah, R.; Aubry, C.; Amy, G.L.; Kenedy, M.D. Defluoridation of Groundwater Using Aluminum-Coated Bauxite: Optimization of Synthesis Process Conditions and Equilibrium Study. J. Environ. Manag. 2016, 181, 108–117. [Google Scholar] [CrossRef]
- Vardhan, C.V.; Srimurali, M. Removal of Fluoride from Water Using a Novel Sorbent Lanthanum-Impregnated Bauxite. SpringerPlus 2016, 5, 1426. [Google Scholar] [CrossRef]
- Kromah, V.; Zhang, G. Aqueous Adsorption of Heavy Metals on Metal Sulfide Nanomaterials: Synthesis and Application. Water 2021, 13, 1843. [Google Scholar] [CrossRef]
- Buamah, R.; Oduro, C.A.; Sadik, M.H. Fluoride Removal from Drinking Water Using Regenerated Aluminum Oxide Coated Media. J. Environ. Chem. Eng. 2016, 4, 250–258. [Google Scholar] [CrossRef]
- Chaudhari, V.S.; Sasane, V.V. Investigation of Optimum Operating Parameters for Removal of Fluoride Using Naturally Available Geomaterial. Int. J. Eng. Res. Technol. 2014, 3, 2123–2128. [Google Scholar]
- Kayira, C.; Sajidu, S.; Masamba, W.; Mwatseteza, J. Defluoridation of Groundwater Using Raw Bauxite: Kinetics and Thermodynamics. Clean–Soil Air Water 2014, 42, 546–551. [Google Scholar] [CrossRef]
- Lavecchia, R.; Medici, F.; Piga, L.; Rinaldi, G.; Zuorro, A. Fluoride Removal from Water by Adsorption on a High Alumina Content Bauxite. Chem. Eng. 2012, 26, 225–230. [Google Scholar]
- Malakootian, M.; Javdan, M.; Iranmanesh, F. Fluoride Removal from Aqueous Solutions Using Bauxite Activated Mines in Yazd Province (Case Study: Kuhbanan Water). J. Community Health Res. 2014, 3, 103–114. [Google Scholar]
- Mohapatra, D.; Mishra, D.; Mishra, S.P.; Chaudhury, G.R.; Das, R.P. Use of Oxide Minerals to Abate Fluoride from Water. J. Colloid Interface Sci. 2004, 275, 355–359. [Google Scholar] [CrossRef]
- Thole, B.; Mtalo, F.; Masamba, W. Effect of Particle Size on Loading Capacity and Water Quality in Water Defluoridation with 200C Calcined Bauxite, Gypsum, Magnesite and Their Composite Filter. Afr. J. Pure Appl. Chem. 2012, 6, 26–34. [Google Scholar]
- Thole, B. Defluoridation Kinetics of 200 C Calcined Bauxite, Gypsum, and Magnesite and Breakthrough Characteristics of Their Composite Filter. J. Fluor. Chem. 2011, 132, 529–535. [Google Scholar] [CrossRef]
- Wu, C.; Liu, D. Mineral Phase and Physical Properties of Red Mud Calcined at Different Temperatures. J. Nanomater. 2012, 2012, 628592. [Google Scholar] [CrossRef]
- Liang, W.; Couperthwaite, S.J.; Kaur, G.; Yan, C.; Johnstone, D.W.; Millar, G.J. Effect of Strong Acids on Red Mud Structural and Fluoride Adsorption Properties. J. Colloid Interface Sci. 2014, 423, 158–165. [Google Scholar] [CrossRef]
- Choi, M.-Y.; Lee, C.-G.; Park, S.-J. Conversion of Organic Waste to Novel Adsorbent for Fluoride Removal: Efficacy and Mechanism of Fluoride Adsorption by Calcined Venerupis Philippinarum Shells. Water Air Soil Pollut. 2022, 233, 281. [Google Scholar] [CrossRef]
- Kim, M.-J.; Hong, S.-H.; Lee, J.-I.; Lee, C.-G.; Park, S.-J. Removal of Fluoride from Water Using Thermally Treated Dolomite and Optimization of Experimental Conditions Using Response Surface Methodology. Desalin Water Treat. 2019, 155, 311–320. [Google Scholar] [CrossRef]
- Wang, Y.; Reardon, E.J. Activation and Regeneration of a Soil Sorbent for Defluoridation of Drinking Water. Appl. Geochem. 2001, 16, 531–539. [Google Scholar] [CrossRef]
- Deju, R.; Cucos, A.; Mincu, M.; Tuca, C. Thermal Characterization of Kaolinitic Clay. Rom. J. Phys. 2021, 66, 904. [Google Scholar]
- Pereira, A.L.; Reis, M.A.; Ferreira, L.; Nakachima, P.M. Brazilian Refractory Grade Bauxite: A New Alternative to Refractories Makers and Users. Cerâmica 2019, 65, 40–46. [Google Scholar] [CrossRef]
- Fang, B.Z.; Li, H.; Cao, J.W.; Wu, J.F.; Xu, X.H.; Wang, X.D. Structure and Performance of Calcined Bauxite. In Advanced Materials Research; Trans Tech Publications: Zurich, Switzerland, 2014; Volume 887, pp. 305–308. [Google Scholar]
- Sajidu, S.M.I. Thermal Studies of Layered Oxides and Hydroxides. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2001. [Google Scholar]
- Leofanti, G.; Padovan, M.; Tozzola, G.; Venturelli, B. Surface Area and Pore Texture of Catalysts. Catal. Today 1998, 41, 207–219. [Google Scholar] [CrossRef]
- Tokunaga, T.K.; Olson, K.R.; Wan, J. Moisture Characteristics of Hanford Gravels: Bulk, Grain-Surface, and Intragranular Components. Vadose Zone J. 2003, 2, 322–329. [Google Scholar]
- Tijburg, I.I.M.; De Bruin, H.; Elberse, P.A.; Geus, J.W. Sintering of Pseudo-Boehmite and γ-Al2O3. J. Mater. Sci. 1991, 26, 5945–5949. [Google Scholar] [CrossRef]
- Shackelford, J.F.; Doremus, R.H. Ceramic and Glass Materials; Springer: New York, NY, USA, 2008. [Google Scholar]
- Mekasuwandumrong, O.; Tantichuwet, P.; Chaisuk, C.; Praserthdam, P. Impact of Concentration and Si Doping on the Properties and Phase Transformation Behavior of Nanocrystalline Alumina Prepared via Solvothermal Synthesis. Mater. Chem. Phys. 2008, 107, 208–214. [Google Scholar] [CrossRef]
- Bowen, P.; Carry, C. From Powders to Sintered Pieces: Forming, Transformations and Sintering of Nanostructured Ceramic Oxides. Powder Technol. 2002, 128, 248–255. [Google Scholar] [CrossRef]
- Newman, A.C. Chemistry of Clays and Clay Minerals. Monogr. Mineral. Soc. 1987, 6, 486. [Google Scholar]
- Matori, K.A.; Wah, L.C.; Hashim, M.; Ismail, I.; Zaid, M.H.M. Phase Transformations of α-Alumina Made from Waste Aluminum via a Precipitation Technique. Int. J. Mol. Sci. 2012, 13, 16812–16821. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Duan, L.; Wei, J.; Hoffmann, E.; Song, Y.; Meng, X. Lead Removal from Water Using Organic Acrylic Amine Fiber (AAF) and Inorganic-Organic P-AAF, Fixed Bed Filtration and Surface-Induced Precipitation. J. Environ. Sci. 2021, 101, 135–144. [Google Scholar] [CrossRef]
- Guo, H.; Yang, L.; Zhou, X. Simultaneous Removal of Fluoride and Arsenic from Aqueous Solution Using Activated Red Mud. Sep. Sci. Technol. 2014, 49, 2412–2425. [Google Scholar] [CrossRef]
- Teutli-Sequeira, A.; Solache-Ríos, M.; Balderas-Hernández, P. Modification Effects of Hematite with Aluminum Hydroxide on the Removal of Fluoride Ions from Water. Water Air Soil Pollut. 2012, 223, 319–327. [Google Scholar] [CrossRef]
- Jiménez-Becerril, J.; Solache-Ríos, M.; García-Sosa, I. Fluoride Removal from Aqueous Solutions by Boehmite. Water Air Soil Pollut. 2012, 223, 1073–1078. [Google Scholar] [CrossRef]
- Levason, W.; Monzittu, F.M.; Reid, G. Coordination Chemistry and Applications of Medium/High Oxidation State Metal and Non-Metal Fluoride and Oxide-Fluoride Complexes with Neutral Donor Ligands. Coord. Chem. Rev. 2019, 391, 90–130. [Google Scholar] [CrossRef]
- Corbillon, M.S.; Olazabal, M.A.; Madariaga, J.M. Potentiometric Study of Aluminium-Fluoride Complexation Equilibria and Definition of the Thermodynamic Model. J. Solut. Chem. 2008, 37, 567–579. [Google Scholar] [CrossRef]
- Li, L.; Zhu, Q.; Man, K.; Xing, Z. Fluoride Removal from Liquid Phase by Fe-Al-La Trimetal Hydroxides Adsorbent Prepared by Iron and Aluminum Leaching from Red Mud. J. Mol. Liq. 2017, 237, 164–172. [Google Scholar] [CrossRef]
- GV, K.M.; Kalpana, K.; Ravindhranath, K. Removal of Fluoride from Water Using H2O2-Treated Fine Red Mud Doped in Zn-Alginate Beads as Adsorbent. J. Environ. Chem. Eng. 2018, 6, 906–916. [Google Scholar]
- Du, J.; Wu, D.; Xiao, H.; Li, P. Adsorption of Fluoride on Clay Minerals and Their Mechanisms Using X-Ray Photoelectron Spectroscopy. Front. Environ. Sci. Eng. China 2011, 5, 212–226. [Google Scholar] [CrossRef]
- Rude, P.D.; Aller, R.C. The Influence of Mg2+ on the Adsorption of Fluoride by Hydrous Oxides in Seawater. Am. J. Sci. 1993, 293, 1–24. [Google Scholar] [CrossRef]
- Stumm, W.; Kummert, R.; Sigg, L. A Ligand Exchange Model for the Adsorption of Inorganic and Organic Ligands at Hydrous Oxide Interfaces. Croat. Chem. Acta 1980, 53, 291–312. [Google Scholar]
- Sposito, G. The Surface Chemistry of Soils; Oxford University Press: Oxford, UK, 1984. [Google Scholar]
- Vinati, A.; Mahanty, B.; Behera, S.K. Clay and Clay Minerals for Fluoride Removal from Water: A State-of-the-Art Review. Appl. Clay Sci. 2015, 114, 340–348. [Google Scholar] [CrossRef]
- Stumm, W. Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems; John Wiley & Son Inc.: New York, NY, USA, 1992. [Google Scholar]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution; CRC Balkema: Roterdam, The Netherlands, 2005. [Google Scholar]
- Liu, R.; Gong, W.; Lan, H.; Yang, T.; Liu, H.; Qu, J. Simultaneous Removal of Arsenate and Fluoride by Iron and Aluminum Binary Oxide: Competitive Adsorption Effects. Sep. Purif. Technol. 2012, 92, 100–105. [Google Scholar] [CrossRef]
- Umlong, I.M.; Das, B.; Devi, R.R.; Borah, K.; Saikia, L.B.; Raul, P.K.; Banerjee, S.; Singh, L. Defluoridation from Aqueous Solution Using Stone Dust and Activated Alumina at a Fixed Ratio. Appl. Water Sci. 2012, 2, 29–36. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Manoharan, R.; Paranthaman, M. Surface Protonation and Electrochemical Activity of Oxides in Aqueous Solution. J. Am. Chem. Soc. 1990, 112, 2076–2082. [Google Scholar] [CrossRef]
- Benjamin, M.M.; Leckie, J.O. Conceptual Model for Metal-Ligand-Surface Interactions during Adsorption. Environ. Sci. Technol. 1981, 15, 1050–1057. [Google Scholar] [CrossRef]
- Schindler, P.W. Surface Complexes at Oxide-Water Interfaces. In Adsorption of Inorganics at Solid-Liquid Interfaces; Anderson, M.A., Rubin, A.J., Eds.; Ann Arbor Science: Ann Arbor, MI, USA, 1981; pp. 1–49. [Google Scholar]
- Manoharan, R.; Paranthaman, M.; Goodenough, J.B. Electrocatalysis on Pb2Ir2-XPbxO7-y. Eur. J. Solid State Inorg. Chem. 1989, 26, 155–174. [Google Scholar]
- England, W.A.; Cross, M.G.; Hamnett, A.; Wiseman, P.J.; Goodenough, J.B. Fast Proton Conduction in Inorganic Ion-Exchange Compounds. Solid State Ion. 1980, 1, 231–249. [Google Scholar] [CrossRef]
- Shukla, A.K.; Manoharan, R.; Goodenough, J.B. Enhancement of Ionic Conductivity by Dispersed Oxide Inclusions: Influence of Oxide Isoelectric Point and Cation Size. Solid State Ion. 1988, 26, 5–10. [Google Scholar] [CrossRef]
- Furlong, D.N.; Yates, D.E.; Healy, T.W.; Trasatti, S. Electrodes of Conductive Metallic Oxides, Part B; Elsevier: Amsterdam, The Netherlands, 1981. [Google Scholar]
- Na, C.-K.; Park, H.-J. Defluoridation from Aqueous Solution by Lanthanum Hydroxide. J. Hazard. Mater. 2010, 183, 512–520. [Google Scholar] [CrossRef]
- Raul, P.K.; Devi, R.R.; Umlong, I.M.; Banerjee, S.; Singh, L.; Purkait, M. Removal of Fluoride from Water Using Iron Oxide-Hydroxide Nanoparticles. J. Nanosci. Nanotechnol. 2012, 12, 3922–3930. [Google Scholar] [CrossRef]
- Tor, A.; Danaoglu, N.; Arslan, G.; Cengeloglu, Y. Removal of Fluoride from Water by Using Granular Red Mud: Batch and Column Studies. J. Hazard. Mater. 2009, 164, 271–278. [Google Scholar] [CrossRef]
- Kamble, S.P.; Dixit, P.; Rayalu, S.S.; Labhsetwar, N.K. Defluoridation of Drinking Water Using Chemically Modified Bentonite Clay. Desalination 2009, 249, 687–693. [Google Scholar] [CrossRef]
- Limousin, G.; Gaudet, J.-P.; Charlet, L.; Szenknect, S.; Barthes, V.; Krimissa, M. Sorption Isotherms: A Review on Physical Bases, Modeling and Measurement. Appl. Geochem. 2007, 22, 249–275. [Google Scholar] [CrossRef]
- Goswami, A.; Purkait, M.K. Kinetic and Equilibrium Study for the Fluoride Adsorption Using Pyrophyllite. Sep. Sci. Technol. 2011, 46, 1797–1807. [Google Scholar] [CrossRef]
- Mandal, S.; Mayadevi, S. Adsorption of Fluoride Ions by Zn–Al Layered Double Hydroxides. Appl. Clay Sci. 2008, 40, 54–62. [Google Scholar] [CrossRef]
- Malakootian, M.; Moosazadeh, M.; Yousefi, N.; Fatehizadeh, A. Fluoride Removal from Aqueous Solution by Pumice: Case Study on Kuhbonan Water. Afr. J. Environ. Sci. Technol. 2011, 5, 299–306. [Google Scholar]
- Sparks, D.L. Sorption Phenomena on Soils. In Environmental Soil Chemistry; Academic Press: San Diego, CA, USA; New York, NY, USA; Boston, MA, USA; London, UK, 1995; pp. 99–139. [Google Scholar] [CrossRef]
- Dzombak, D.A.; Morel, F.M. Surface Complexation Modeling: Hydrous Ferric Oxide; John Wiley & Sons: New York, NY, USA, 1990. [Google Scholar]
- Thakre, D.; Rayalu, S.; Kawade, R.; Meshram, S.; Subrt, J.; Labhsetwar, N. Magnesium Incorporated Bentonite Clay for Defluoridation of Drinking Water. J. Hazard. Mater. 2010, 180, 122–130. [Google Scholar] [CrossRef]
- Tembhurkar, A.R.; Dongre, S. Studies on Fluoride Removal Using Adsorption Process. J. Environ. Sci. Eng. 2006, 48, 151–156. [Google Scholar]
- Kamble, S.P.; Jagtap, S.; Labhsetwar, N.K.; Thakare, D.; Godfrey, S.; Devotta, S.; Rayalu, S.S. Defluoridation of Drinking Water Using Chitin, Chitosan and Lanthanum-Modified Chitosan. Chem. Eng. J. 2007, 129, 173–180. [Google Scholar] [CrossRef]
- Onyango, M.S.; Kojima, Y.; Aoyi, O.; Bernardo, E.C.; Matsuda, H. Adsorption Equilibrium Modeling and Solution Chemistry Dependence of Fluoride Removal from Water by Trivalent-Cation-Exchanged Zeolite F-9. J. Colloid Interface Sci. 2004, 279, 341–350. [Google Scholar] [CrossRef]
- Tang, Y.; Guan, X.; Wang, J.; Gao, N.; McPhail, M.R.; Chusuei, C.C. Fluoride Adsorption onto Granular Ferric Hydroxide: Effects of Ionic Strength, PH, Surface Loading, and Major Co-Existing Anions. J. Hazard. Mater. 2009, 171, 774–779. [Google Scholar] [CrossRef]
- Goldberg, S. Competitive Adsorption of Molybdenum in the Presence of Phosphorus or Sulfur on Gibbsite. Soil Sci. 2010, 175, 105–110. [Google Scholar] [CrossRef]
- Su, C.; Suarez, D.L. In Situ Infrared Speciation of Adsorbed Carbonate on Aluminum and Iron Oxides. Clays Clay Miner. 1997, 45, 814–825. [Google Scholar] [CrossRef]
- Ripin, D.H.; Evans, D.A. PKa Table. 2005. Available online: https://www.scribd.com/document/328605649/Evans-PKa-Table (accessed on 12 May 2022).
- Leng, C.-C.; Pinto, N.G. An Investigation of the Mechanisms of Chemical Regeneration of Activated Carbon. Ind. Eng. Chem. Res. 1996, 35, 2024–2031. [Google Scholar] [CrossRef]
- Valeev, D.V.; Mansurova, E.R.; Bychinskii, V.A.; Chudnenko, K.V. Extraction of Alumina from High-Silica Bauxite by Hydrochloric Acid Leaching Using Preliminary Roasting Method. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2016; Volume 110, p. 012049. [Google Scholar]
- Chiavola, A.; D’Amato, E.; Di Marcantonio, C. Comparison of Adsorptive Removal of Fluoride from Water by Different Adsorbents under Laboratory and Real Conditions. Water 2022, 14, 1423. [Google Scholar] [CrossRef]
- Ayoob, S.; Gupta, A.K. Performance Evaluation of Alumina Cement Granules in Removing Fluoride from Natural and Synthetic Waters. Chem. Eng. J. 2009, 150, 485–491. [Google Scholar] [CrossRef]
- Fito, J.; Said, H.; Feleke, S.; Worku, A. Fluoride Removal from Aqueous Solution onto Activated Carbon of Catha Edulis through the Adsorption Treatment Technology. Environ. Syst. Res. 2019, 8, 25. [Google Scholar] [CrossRef]
Methods | Main Properties | Merits | Drawbacks |
---|---|---|---|
Ion exchange | Non-destructive process using adsorbents | Highly rapid and efficient; easily used with other techniques; technologically tested and straightforward procedures. | May be expensive; replacement of media after multiple regenerations; matrix degrades with time and presents toxic solid waste; large volume. |
Coagulation/precipitation | Uptake of the pollutants and separation of the products formed | It is highly efficient, economical, and technologically simple, adapted to high pollutant loads, and tested in actual conditions. | Expensive and affected by factors such as temperature, pH, presence of other ions, high residual aluminum, toxic sludge formation, and severe automation difficulty |
Electro- coagulation | Use of electric current | Adaptation to different pollutant loads and different flow rates; pH control is not needed; generation of coagulants in situ; no secondary pollutants. | Release of aluminum; high cost of installation and maintenance; requires the addition of chemicals; anode passivation and sludge deposition of the electrodes; formation of sludge. |
Membrane filtration | Non-destructive separation with semi-permeable barrier | Small space requirement; simple, rapid, and efficient; color and taste of treated water are unaffected; limited maintenance; no chemicals required; pH-independent. | High investment, maintenance, and operational costs; rapid membrane clogging; low throughput; removal of essential ions; requires pH correction of treated water. |
Adsorption | Non-destructive process using an absorbent | Technologically simple operation; excellent treated effluent quality; environmentally friendly; cost-effective process; greater accessibility. | Rapid saturation and clogging of the reactors (regeneration costly); affected by interfering ions; without high adsorption capacity, pretreatment is required. |
Chemical Composition (%) | Mineralogical Composition | References | ||||
---|---|---|---|---|---|---|
Al2O3 | Fe2O3 | SiO2 | TiO2 | CaO | ||
74.78 | 18.64 | 1.55 | – | – | – | [43] |
41.56–54.78 | 15.93 | 1.07–19.2 | <3.34 | <2.52 | Gibbsite, hematite, and anatase | [26] |
70.90 | 23.60 | 2.20 | 2.60 | - | Gibbsite, hematite, anatase, and kaolinite | [58] |
34.38 | 19.93 | 17.27 | 4.74 | 6.62 | Diaspore, hematite, dolomite, quartz, and anatase | [57] |
45.77 | 10.20 | 24.77 | 5.87 | 0.52 | Diaspore, hematite, chlorite, and anatase | [57] |
52.50 | 22.50 | 2.40 | 1.40 | – | Gibbsite, hematite, goethite, anatase, and quartz | [59] |
53.64 | 19.51 | 12.43 | 2.48 | 0.29 | Boehmite, hematie, and kaolinite | [57] |
59.90 | 1.89 | 9.31 | 11.60 | 0.45 | Diaspore and anatase | [57] |
43.30 | 14.20 | 2.20 | 1.80 | – | Gibbsite, hematite, and kaolinite | [40] |
30.33 | 14.30 | 15.00 | 1.57 | 0.76 | – | [41] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kromah, V.; Powoe, S.-P.B.; Asumana, C. Groundwater Defluoridation with Composite Oxyhydroxide Mineral Ores—The Case with Bauxite, a Systematic Review. Water 2022, 14, 2829. https://doi.org/10.3390/w14182829
Kromah V, Powoe S-PB, Asumana C. Groundwater Defluoridation with Composite Oxyhydroxide Mineral Ores—The Case with Bauxite, a Systematic Review. Water. 2022; 14(18):2829. https://doi.org/10.3390/w14182829
Chicago/Turabian StyleKromah, Varney, Soehoe-Panhyonon Benedict Powoe, and Charles Asumana. 2022. "Groundwater Defluoridation with Composite Oxyhydroxide Mineral Ores—The Case with Bauxite, a Systematic Review" Water 14, no. 18: 2829. https://doi.org/10.3390/w14182829