Soil Health Assessment of Three Semi-Arid Soil Textures in an Arizona Vineyard Irrigated with Reclaimed Municipal Water
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Recycled Water’s Effects on Soil pH, Organic Matter, and Elements
3.2. Recycled Water Effects on Soil Salt (Saturated Paste)
3.3. Recycled Water Effects on Soil Microbial Activities (Respiration)
3.4. Approaches to Recycled Water Use with Reduced Undesirable Effects on Soil Health
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA-NRCS. Soil Health: Unlock the Secrets of the Soil. 2012. Available online: nrcs.usda.gov/wps/portal/nrcs/main/national/soils/health (accessed on 27 July 2022).
- O’Neill, M.P.; Dobrowolski, J.P. Water and Agriculture in a Changing Climate. HortScience 2011, 46, 155–157. [Google Scholar] [CrossRef]
- Kenny, J.F.; Barber, N.L.; Hutson, S.S.; Linsey, K.S.; Lovelace, J.K.; Maupin, M.A. Estimated Use of Water in the United States in 2005; United States Geological Survey (USGS): Reston, USA, 2009. Available online: http://pubs.usgs.gov/circ/1344/pdf/c1344.pdf (accessed on 8 September 2021).
- Arora, N.K. Impact of Climate Change on Agriculture Production and Its Sustainable Solutions. Environ. Sustain. 2019, 2, 95–96. [Google Scholar] [CrossRef]
- Alston, J.M.; Pardey, P.G. Agriculture in the Global Economy. J. Econ. Perspect. 2014, 28, 121–146. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Executive Summary, Thirty-seventh Session Rome 25 June–2 July 2011. In The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW); FAO: Rome, Italy, 2011. [Google Scholar]
- Karl, T.R.; Melillo, J.M.; Peterson, T.C. Global Climate Change Impacts in the United States; Cambridge University Press: New York, USA, 2009. Available online: https://www.nrc.gov/docs/ML1006/ML100601201.pdf (accessed on 16 August 2022).
- McDonald, G.M. Water, Climate Change, and Sustainability in the Southwest. Proc. Natl. Acad. Sci. USA 2010, 107, 21256–21262. [Google Scholar] [CrossRef]
- Mpanga, I.K.; Idowu, O.J. A Decade of Irrigation Water Use Trends in Southwestern USA: The Role of Irrigation Technology, Best Management Practices, and Outreach Education Programs. Agric. Water Manag. 2021, 243, 106438. [Google Scholar] [CrossRef]
- Ofori, S.; Puškáčová, A.; Růžičková, I.; Wanner, J. Treated Wastewater Reuse for Irrigation: Pros and Cons. Sci. Total Env. 2021, 760, 144026. [Google Scholar] [CrossRef] [PubMed]
- Ritter, W. State Regulations and Guidelines for Wastewater Reuse for Irrigation in the U.S. Water 2021, 13, 2818. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (EPA). 2012 Guidelines for Water Reuse. 2012. Available online: EPA/600/R-12/618 (accessed on 8 September 2021).
- Tiseo, I. Wastewater Generation Key Facts Globally 2020; Statista: New York, NY, USA, 2020; Available online: https://www.statista.com/statistics/1124488/key-facts-wastewater-generation-globally (accessed on 1 August 2022).
- Miller, G. Integrated Concepts in Water Reuse: Managing Global Water Needs. Desalination 2006, 187, 65–75. [Google Scholar] [CrossRef]
- Global Water Intelligence (GWI). Municipal Water Reuse Markets 2010; Media Analytics Ltd.: Oxford, UK, 2009. [Google Scholar]
- Bryk, J.; Prasad, R.; Lindley, T.; Davis, S.; Carpenter, G. National Database of Water Reuse Facilities: Summary Report; WaterReuse Foundation: Alexandria, VA, USA, 2011. [Google Scholar]
- Dobrowolski, J.P.; O’Neill, M.; Duriancik, L. Agricultural Water Security Listening Session: Final Report; USDA Research, Education, and Economics: Park City, UT, USA, 9–10 September 2004. [Google Scholar]
- Dobrowolski, J.; O’Neill, M.; Duriancik, L.; Throwe, J. Opportunities and Challenges in Agricultural Water Reuse. Wash. DC USDA Coop. State Res. Educ. Ext. Serv. 2008, 44, 89. [Google Scholar]
- Arizona Department of Water Resources (ADWR); Central Arizona Project (CAP). Arizona heads into Tier 1 Colorado River Shortage for 2022. Press Release. 16 August 2021. Available online: https://www.cap-az.com/water/water-supply/adapting-to-shortage/colorado-river-shortage/ (accessed on 8 September 2021).
- Doll, D. Nitrogen Content in a Gallon of UAN-32—The Almond Doctor. 2010. Available online: https://thealmonddoctor.com/nitrogen-content-in-a-gallon-of-uan-32. (accessed on 27 July 2022).
- Michaelson, G.J.; Ping, C.L.; Mitchell, G.A.; Candler, R.J. Methods of Soil and Plant Analysis; Agricultural and Forestry Experiment Station, School of Agricultural and Land Resource Management, University of Alaska: Fairbanks, Palmer, AK, USA, 1993; p. 78. [Google Scholar]
- Combs, S.; Nathan, M. Soil organic matter. In Recommended Chemical Soil Test Procedures for the North Central Region; Nathan, M.V., Gelderman, R.H., Eds.; Research Publication 221 (Rev.). Missouri Exp. Stn. Publ. SB 1001; Univ. of Missouri: Columbia, MO, USA, 1998; pp. 53–58. [Google Scholar]
- Cusick, J. Foliar Nutrients in Black Cottonwood and Sitka Alder along a Soil Chronosequence at Exit Glacier, Kenai Fjords National Park, Alaska. Master’s Thesis, University of Alaska, Anchorage, AK, USA, 2001. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, WA, USA, 1954; Volume 939, p. 19. [Google Scholar]
- Maqueda, C.; Herencia, J.F.; Ruiz, J.C.; Hidalgo, M.F. Organic and Inorganic Fertilization Effects on DTPA-Extractable Fe, Cu, Mn and Zn, and Their Concentration in the Edible Portion of Crops. J. Agric. Sci. 2011, 149, 461–472. [Google Scholar] [CrossRef]
- Haney, R.L.; Haney, E.B.; Smith, D.R.; Harmel, R.D.; White, M.J. The Soil Health Tool—Theory and Initial Broad-Scale Application. Appl. Soil Ecol. 2018, 125, 162–168. [Google Scholar] [CrossRef]
- Gu, X.; Xiao, Y.; Yin, S.; Liu, H.; Men, B.; Hao, Z.; Qian, P.; Yan, H.; Hao, Q.; Niu, Y.; et al. Impact of Long-Term Reclaimed Water Irrigation on the Distribution of Potentially Toxic Elements in Soil: An In-Situ Experiment Study in the North China Plain. Int. J. Env. Res. Public Health 2019, 16, 649. [Google Scholar] [CrossRef] [PubMed]
- Mancino, C.F.; Pepper, I.L. Irrigation of Turfgrass with Secondary Sewage Effluent: Soil Quality. Agron. J. 1992, 84, 650–654. [Google Scholar] [CrossRef]
- Qian, Y.L.; Mecham, B. Long-Term Effects of Recycled Wastewater Irrigation on Soil Chemical Properties on Golf Course Fairways. Agron. J. 2005, 97, 717–721. [Google Scholar] [CrossRef]
- Li, P.; Qi, X.-B.; Du, Z.-J.; Hu, C.; Guo, W. Effect of Reclaimed Municipal Wastewater Irrigation on Greenhouse Soil Mineral Nitrogen Dynamic and Fruit Quality of Tomato. In Proceedings of the 2nd Annual International Conference on Energy, Environmental & Sustainable Ecosystem Development (EESED 2016), Kunming, China, 26–28 August 2016; Atlantis Press: Kunming, China, 2017. [Google Scholar] [CrossRef]
- Rezapour, S.; Nouri, A.; Jalil, H.M.; Hawkins, S.A.; Lukas, S.B. Influence of Treated Wastewater Irrigation on Soil Nutritional-Chemical Attributes Using Soil Quality Index. Sustainability 2021, 13, 1952. [Google Scholar] [CrossRef]
- Alghobar, M.A.; Suresha, S. Effect of Wastewater Irrigation on Growth and Yield of Rice Crop and Uptake and Accumulation of Nutrient and Heavy Metals in Soil. Appl. Ecol. Environ. Sci. 2016, 4, 53–60. [Google Scholar] [CrossRef]
- Pereira, B.F.F.; He, Z.L.; Silva, M.S.; Herpin, U.; Nogueira, S.F.; Montes, C.R.; Melfi, A.J. Reclaimed Wastewater: Impact on Soil–Plant System under Tropical Conditions. J. Hazard. Mater. 2011, 192, 54–61. [Google Scholar] [CrossRef]
- Howe, J.A.; Smith, A.P. The soil habitat. In Principles and Applications of Soil Microbiology, 3rd ed.; Gentry, T.J., Fuhrmann, J.J., Zuberer, D.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 23–55. [Google Scholar]
- O’Geen, A.T. Soil Water Dynamics. 2013. Available online: https://www.nature.com/scitable/knowledge/library/soil-water-dynamics-103089121/ (accessed on 27 July 2022).
- Poustie, A.; Yang, Y.; Verburg, P.; Pagilla, K.; Hanigan, D. Reclaimed Wastewater as a Viable Water Source for Agricultural Irrigation: A Review of Food Crop Growth Inhibition and Promotion in the Context of Environmental Change. Sci. Total Environ. 2020, 739, 139756. [Google Scholar] [CrossRef]
- Lech, M.; Fronczyk, J.; Radziemska, M.; Podlasek, A.; Kazimierz, G.; Koda, E.; Lechowicz, Z. Monitoring of Total Dissolved Solids on Agricultural Lands Using Electrical Conductivity Measurements. Appl. Ecol. Environ. Res. 2016, 14, 285–295. [Google Scholar] [CrossRef]
- Palacios-Díaz, M.P.; Mendoza-Grimón, V.; Fernández-Vera, J.R.; Rodríguez-Rodríguez, F.; Tejedor-Junco, M.T.; Hernández-Moreno, J.M. Subsurface Drip Irrigation and Reclaimed Water Quality Effects on Phosphorus and Salinity Distribution and Forage Production. Agric. Water Manag. 2009, 96, 1659–1666. [Google Scholar] [CrossRef]
- Chen, W.; Lu, S.; Pan, N.; Jiao, W. Impacts of Long-Term Reclaimed Water Irrigation on Soil Salinity Accumulation in Urban Green Land in Beijing. Water Resour. Res. 2013, 49, 7401–7410. [Google Scholar] [CrossRef]
- Xu, J.; Wu, L.; Chang, A.C.; Zhang, Y. Impact of Long-Term Reclaimed Wastewater Irrigation on Agricultural Soils: A Preliminary Assessment. J. Hazard. Mater. 2010, 183, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chang, A.C.; Wu, L.; Crowley, D. Assessing the Soil Quality of Long-Term Reclaimed Wastewater-Irrigated Cropland. Geoderma 2003, 114, 261–278. [Google Scholar] [CrossRef]
- Yang, Y.L.; Han, L.B.; Zhang, Q.; Su, D.R. Effects of reclaimed water irrigation on the physical and chemical characteristics of saline-alkaline earth in Tianjin. J. Beijing For. Univ. 2006, 28, 85–91. [Google Scholar]
- Gloaguen, T.V.; Forti, M.-C.; Lucas, Y.; Montes, C.R.; Gonçalves, R.A.B.; Herpin, U.; Melfi, A.J. Soil Solution Chemistry of a Brazilian Oxisol Irrigated with Treated Sewage Effluent. Agric. Water Manag. 2007, 88, 119–131. [Google Scholar] [CrossRef]
- Leal, R.M.P.; Herpin, U.; da Fonseca, A.F.; Firme, L.P.; Montes, C.R.; Melfi, A.J. Sodicity and Salinity in a Brazilian Oxisol Cultivated with Sugarcane Irrigated with Wastewater. Agric. Water Manag. 2009, 96, 307–316. [Google Scholar] [CrossRef]
- Horneck, D.A.; Ellsworth, J.W.; Hopkins, B.G.; Sullivan, D.M.; Stevens, R.G. Managing Salt-Affected Soils for Crop Production; PNW 601-E; Oregon State University: Corvallis, OR, USA, 2007; p. 22. [Google Scholar]
- Rath, K.M.; Maheshwari, A.; Bengtson, P.; Rousk, J. Comparative Toxicities of Salts on Microbial Processes in Soil. Appl Env. Microbiol. 2016, 82, 2012–2020. [Google Scholar] [CrossRef]
- Wichern, J.; Wichern, F.; Joergensen, R. Impact of Salinity on Soil Microbial Communities and the Decomposition of Maize in Acidic Soils. Geoderma 2006, 137, 100–108. [Google Scholar] [CrossRef]
- Yuan, B.-C.; Li, Z.-Z.; Liu, H.; Gao, M.; Zhang, Y.-Y. Microbial Biomass and Activity in Salt Affected Soils under Arid Conditions. Appl. Soil Ecol. 2007, 35, 319–328. [Google Scholar] [CrossRef]
- Tam, N.F.Y. Effects of Wastewater Discharge on Microbial Populations and Enzyme Activities in Mangrove Soils. Environ. Pollut. 1998, 102, 233–242. [Google Scholar] [CrossRef]
- Ghollarata, M.; Raiesi, F. The Adverse Effects of Soil Salinization on the Growth of Trifolium alexandrinum L. and Associated Microbial and Biochemical Properties in a Soil from Iran. Soil Biol. Biochem. 2007, 39, 1699–1702. [Google Scholar] [CrossRef]
- Setia, R.; Marschner, P.; Baldock, J.; Chittleborough, D. Is CO2 Evolution in Saline Soils Affected by an Osmotic Effect and Calcium Carbonate? Biol. Fertil. Soils 2010, 46, 781–792. [Google Scholar] [CrossRef]
- Borruso, L.; Bacci, G.; Mengoni, A.; De Philippis, R.; Brusetti, L. Rhizosphere Effect and Salinity Competing to Shape Microbial Communities in Phragmites Australis (Cav.) Trin. Ex-Steud. FEMS Microbiol. Lett. 2014, 359, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Starke, R.; Bastida, F.; Abadía, J.; García, C.; Nicolás, E.; Jehmlich, N. Ecological and Functional Adaptations to Water Management in a Semiarid Agroecosystem: A Soil Metaproteomics Approach. Sci. Rep. 2017, 7, 10221. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.A.; Blankinship, J.C. Making Soil Health Science Practical: Guiding Research for Agronomic and Environmental Benefits. Soil Biol. Biochem. 2022, 172, 108776. [Google Scholar] [CrossRef]
Soil Properties | Field 1: 60% Clay Soil | Field 2: 30% Clay Soil | Field 3: 20% Clay Soil |
---|---|---|---|
Physical soil description | |||
Soil classification | Alluvial | Alluvial | Alluvial |
Clay | 60% | 30% | 20% |
Sand | Thick deposits of gravels | Thick deposits of gravels | Thick deposits of gravels |
Rocks | Large rocks | Large rocks | Large rocks |
Drainage | Low | Fair | Good |
Organic matter | Low | Moderate | Moderate |
Chemical soil description | |||
pH | 8.6 | 8.2 | 7.9 |
Nitrate | Very low | low | Medium |
Phosphorus | Very low | Medium | High |
Potassium | Very high | Very high | Very high |
Calcium | Medium | Very high | High |
Magnesium | Very high | Very high | Very high |
Sodium | Very high | Medium | Low |
Test | mg/L |
---|---|
Sodium | 126 |
Calcium | 38 |
Magnesium | 27 |
Potassium | 15 |
Carbonate | 0 |
Bicarbonate | 320 |
Chloride | 154 |
Sulfate-S | 12 |
Nitrate | 1.8 |
Phosphate | <0.10 |
Boron | 0.23 |
pH | 7.6 |
ECw | 1.2 dS/m |
Field 1: 60% Clay Soil | Field 2: 30% Clay Soil | Field 3: 20% Clay Soil | ||||
---|---|---|---|---|---|---|
Irrigated | Non-Irrigated | Irrigated | Non-Irrigated | Irrigated | Non-Irrigated | |
Soil pH (1: n1) | 8.3 * | 8 | 8.1 * | 7.3 | 8.4 * | 7.1 |
CEC (me/100 g) | 38.9 | 40.7 | 29.2 * | 24.6 | 18.1 * | 14.9 |
Organic matter (%) | 4.8 | 5.2 * | 3.3 | 3.5 | 3.1 | 3.1 |
Nitrate-N (mg/g) | 13.7 * | 5.1 | 23.8 * | 10.3 | 10.1 * | 2.9 |
Olsen P (mg/g) | 13.4 | 12.9 | 28.8 | 44.0 * | 8.9 | 23.5 |
Potassium (mg/g) | 628.3 | 534 | 653 | 764.0 * | 423.7 | 778.3 * |
Sulfate (mg/g) | 126.4 | 100.8 | 145.5 | 115.8 | 47.5 | 51.4 |
Calcium (mg/g) | 4947.3 | 6419.7 * | 3698.3 | 3872.7 | 2129 | 2056.7 |
Magnesium (mg/g) | 957.3 | 833 | 718.7 * | 380.3 | 606.3 * | 304.3 |
Sodium (mg/g) | 1052.3 * | 65.7 | 697.0 * | 23 | 318.0 * | 18.3 |
Zinc (mg/g) | 8.4 | 11.2 * | 9.8 * | 8.3 | 8.5 | 13.5 * |
Iron (mg/g) | 6.3 | 11.7 * | 8.7 | 14.6 * | 6.6 | 17.8 * |
Manganese (mg/g) | 9.9 | 9.6 | 24.4 | 57.6 * | 10.8 | 64.0 * |
Copper (mg/g) | 32.7 | 45.9 * | 14.5 | 20.9 * | 15.1 | 34.8 * |
Recycled water irrigation start year | 2012 | 2014 | 2017 |
Field 1: 60% Clay Soil | Field 2: 30% Clay Soil | Field 3: 20% Clay Soil | ||||
---|---|---|---|---|---|---|
Irrigated | Non-Irrigated | Irrigated | Non-Irrigated | Irrigated | Non-Irrigated | |
EC (mmho/cm) | 5.3 * | 1.7 | 6.2 * | 1.9 | 2.4 * | 1.4 |
Chlorine (mg/g) | 1242.7 * | 162.3 | 1399.3 * | 48.7 | 369.7 * | 39.7 |
Calcium (mg/g) | 295 | 290.3 | 413 | 370.3 | 124.7 | 231.0 * |
Magnesium (mg/g) | 91.0 * | 56.3 | 166.7 * | 62.3 | 58.3 * | 51.7 |
Sodium (mg/g) | 904.7 * | 52 | 897.3 * | 20.3 | 329.0 * | 12.3 |
Sulfur (mg/g) | 237.2 * | 170.4 | 337.0 * | 281.3 | 142.8 | 164.4 * |
Sodium absorption ratio | 11.8 * | 0.7 | 9.4 * | 0.2 | 6.1 * | 0.2 |
Recycled water irrigation start year | 2012 | 2014 | 2017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpanga, I.K.; Sserunkuma, H.; Tronstad, R.; Pierce, M.; Brown, J.K. Soil Health Assessment of Three Semi-Arid Soil Textures in an Arizona Vineyard Irrigated with Reclaimed Municipal Water. Water 2022, 14, 2922. https://doi.org/10.3390/w14182922
Mpanga IK, Sserunkuma H, Tronstad R, Pierce M, Brown JK. Soil Health Assessment of Three Semi-Arid Soil Textures in an Arizona Vineyard Irrigated with Reclaimed Municipal Water. Water. 2022; 14(18):2922. https://doi.org/10.3390/w14182922
Chicago/Turabian StyleMpanga, Isaac K., Herbert Sserunkuma, Russell Tronstad, Michael Pierce, and Judith K. Brown. 2022. "Soil Health Assessment of Three Semi-Arid Soil Textures in an Arizona Vineyard Irrigated with Reclaimed Municipal Water" Water 14, no. 18: 2922. https://doi.org/10.3390/w14182922