Differences in Fish Abundance in Rivers under the Influence of Open-Pit Gold Mining in the Santiago-Cayapas Watershed, Esmeraldas, Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Mining Activities in the Area
2.3. Study Sites
2.4. Field and Laboratory Work
2.5. Statistical Analyses
3. Results
3.1. Water Quality
3.2. Fish Communities
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Control Sites | Active Mines | Abandoned Mines | Downstream Sites | |||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | Min–Max | Mean ± SD | Min–Max | Mean ± SD | Min–Max | Mean ± SD | Min–Max | |
Temperature (°C) | 25.2 ± 1.1 | 23.7–28.4 | 26.5 ± 1.2 | 23.4–29.7 | 26.9 ± 1.7 | 24.4–30.8 | 25.3 ± 1.9 | 22–0–29.9 |
Oxygen (mg L−1) | 8.2 ± 0.4 | 7.4–9.0 | 7.7 ± 0.9 | 3.2–9.0 | 8.4 ± 0.3 | 7.7–9.3 | 8.3 ± 0.4 | 7.3–9.0 |
Conductivity (µS cm−1) | 29.5 ± 15.7 | 10.7–74.0 | 42.5 ± 29.5 | 6.0–134.0 | 33.9 ± 19.7 | 14.0–94.0 | 30.1 ± 11.5 | 12.0–55.0 |
pH | 7.0 ± 0.6 | 5.6–8.0 | 6.9 ± 0.5 | 5.5–7.9 | 7.3 ± 0.6 | 5.9–8.3 | 7.0 ± 0.5 | 5.9–8.0 |
Turbidity (NTU) | 9 ± 18 | 0–92 | 75 ± 130 | 0–690 | 11 ± 18 | 0–87 | 30 ± 45 | 0–222 |
Aluminum (mg L−1) | 1.2 ± 1.2 | 0.2–3.3 | 15.8 ± 16.6 | 1.4–58.0 | 0.7 ± 0.6 | 0.0–1.9 | 3.4 ± 4.1 | 0.1–10.0 |
Arsenic (µg L−1) | 0.9 ± 0.4 | 0.5–1.2 | 1.5 ± 1.2 | 0.2–4.9 | 0.8 ± 0.4 | 0.2–1.2 | 1.0 ± 0.5 | 0.2–1.4 |
Barium (µg L−1) | 20 ± 7 | 8–34 | 90 ± 85 | 9–340 | 14 ± 11 | 4–40 | 63 ± 113 | 1–290 |
Cadmium (µg L−1) | 0.9 ± 1.6 | 0.1–4.6 | 0.3 ± 0.2 | 0.1–0.8 | 0.1 ± 0.1 | 0.1–0.2 | 0.1 ± 0.1 | 0.1–0.2 |
Chrome (µg L−1) | 2.0 ± 2.7 | 0.2–8.0 | 32.2 ± 21.9 | 12.0–89.0 | 0.8 ± 0.7 | 0.1–2.0 | 3.4 ± 4.5 | 0.1–10.0 |
Cobalt (µg L−1) | 0.4 ± 0.5 | 0.1–1.4 | 2.7 ± 2.6 | 0.2–9.5 | 0.2 ± 0.1 | 0.1–0.2 | 1.0 ± 1.5 | 0.1–4.0 |
Copper (µg L−1) | 9.1 ± 4.9 | 0.5–14.0 | 32.2 ± 21.9 | 12.0–89.0 | 11.7 ± 4.2 | 5.0–19.0 | 11.8 ± 8.5 | 2.5–27.0 |
Iron (mg L−1) | 0.9 ± 0.7 | 0.3–2.5 | 6.7 ± 6.8 | 0.6–28.0 | 0.6 ± 0.7 | 0.1–2.1 | 2.4 ± 3.3 | 0.0–8.4 |
Magnesium (mg L−1) | 1.2 ± 0.5 | 0.7–2.1 | 2.6 ± 2.0 | 0.7–7.7 | 1.4 ± 0.9 | 0.6–3.4 | 1.8 ± 1.0 | 1.1–3.8 |
Manganese (µg L−1) | 20 ± 14 | 8–52 | 88 ± 97 | 13–350 | 15 ± 17 | 4–52 | 51 ± 72 | 6–190 |
Mercury (µg L−1) | 0.14 ± 0.05 | 0.10–0.20 | 0.14 ± 0.06 | 0.05–0.20 | 0.14 ± 0.07 | 0.05–0.20 | 0.14 ± 0.07 | 0.05–0.20 |
Nickel (µg L−1) | 1.8 ± 0.8 | 1.0–2.5 | 5.3 ± 6.4 | 1.0–28.0 | 1.7 ± 0.9 | 0.5–2.5 | 1.7 ± 0.9 | 0.5–2.0 |
Silver (µg L−1) | 0.55 ± 0.84 | 0.10–2.50 | 0.14 ± 0.06 | 0.05–0.20 | 0.14 ± 0.07 | 0.05–0.20 | 0.14 ± 0.07 | 0.05–0.20 |
Lead (µg L−1) | 1.4 ± 1.1 | 0.5–4.0 | 2.3 ± 2.5 | 0.5–11.0 | 0.8 ± 0.4 | 0.2–1.2 | 0.9 ± 0.4 | 0.2–1.2 |
Selenium (µg L−1) | 1.8 ± 0.8 | 1.0–2.5 | 2.2 ± 2.1 | 0.5–10.0 | 1.7 ± 0.9 | 0.5–2.5 | 1.7 ± 0.9 | 0.5–2.5 |
Strontium (µg L−1) | 28 ± 13 | 16–55 | 49 ± 42 | 9–150 | 31 ± 23 | 13–83 | 67 ± 105 | 19–280 |
Thallium (µg L−1) | 0.15 ± 0.05 | 0.10–0.20 | 0.14 ± 0.06 | 0.05–0.20 | 0.14 ± 0.07 | 0.05–0.20 | 0.14 ± 0.07 | 0.05–0.20 |
Uranium (µg L−1) | 0.15 ± 0.05 | 0.10–0.20 | 0.22 ± 0.17 | 0.05–0.70 | 0.14 ± 0.07 | 0.05–0.20 | 0.14 ± 0.07 | 0.05–0.20 |
Vanadium (µg L−1) | 3.8 ± 2.4 | 2.1–9.3 | 40.5 ± 38.8 | 2.9–150.0 | 2.4 ± 1.0 | 0.3–3.4 | 30.4 ± 54.9 | 1.1–140.0 |
Zinc (µg L−1) | 20 ± 35 | 5–106 | 19 ± 39 | 3–180 | 8 ± 4 | 3–12 | 10 ± 9 | 3–26 |
Metal | F Value | p | Multiple Comparisons |
---|---|---|---|
Temperature | F3,193 = 13.3 | p 0.001 | CS a DS a AcM b AbM b |
Oxygen | F3,172 = 12.6 | p 0.001 | AcM a CS b DS b AbM b |
Conductivity | F3,149 = 3.03 | p 0.05 | CS a DS ab AbM ab AcM b |
pH | F3,177 = 4.90 | p 0.01 | AcM a DS ab CS ab AbM b |
Turbidity | F3,190 = 19.9 | p 0.001 | CS a AbM a DS b AcM c |
Aluminum | F3,39 = 16.9 | p 0.001 | AbM a CS a DS a AcM b |
Arsenic | F3,39 = 0.16 | n. s. | --- |
Barium | F3,39 = 7.04 | p 0.001 | AbM a DS a CS ab AcM b |
Cadmium | F3,39 = 1.89 | n. s. | --- |
Chrome | F3,39 = 15.1 | p 0.001 | AbM a CS a DS a AcM b |
Cobalt | F3,39 = 11.9 | p 0.001 | AbM a CS a DS a AcM b |
Copper | F3,39 = 8.22 | p 0.001 | CS a DS a AbM a AcM b |
Iron | F3,39 = 12.1 | p 0.001 | AbM a CS a DS a AcM b |
Magnesium | F3,39 = 2.70 | n. s. | --- |
Manganese | F3,39 = 8.03 | p 0.001 | AbM a CS a DS ab AcM b |
Mercury | F3,39 = 0.08 | n. s. | --- |
Nickel | F3,39 = 4.47 | p 0.01 | AbM a CS ab DS ab AcM b |
Silver | F3,39 = 2.35 | n. s. | --- |
Lead | F3,39 = 3.98 | p 0.05 | AbM a CS ab DS ab AcM b |
Selenium | F3,39 = 0.25 | n. s. | --- |
Strontium | F3,39 = 0.75 | n. s. | --- |
Thallium | F3,39 = 0.15 | n. s. | --- |
Uranium | F3,39 = 1.31 | n. s. | --- |
Vanadium | F3,39 = 8.03 | p 0.001 | AbS a CS a DS ab AcM b |
Zinc | F3,39 = 0.50 | n. s. | --- |
Family | Species | Type | Feeding | IUNC Status |
---|---|---|---|---|
Curimatidae | Pseudocurimata lineopunctata [68] | Native | Det | LC |
Erythrinidae | Hoplias malabaricus [65] | Native | Pre | LC |
Lebiasinidae | Lebiasina astrigata [73] | Native | Ins | LC |
Characidae | Astyanax festae [69] | Native | Omn | NE |
Astyanax ruberrinus [63] | Native | Omn | NE | |
Bryconamericus dahli [59] | Native | Omn | LC | |
Bryconamericus simus [69] | Endemic | --- | DD | |
Pseudochalceus longianalis [57] | Native | --- | VU | |
Roeboides occidentalis [61] | Native | Omn | LC | |
Bryconidae | Brycon dentex [64] | Native | Omn | LC |
Brycon posadae [58] | Native | --- | NT | |
Heptapteridae | Pimelodella longate [64] | Native | Omn | LC |
Pimelodella sp [76] | --- | --- | --- | |
Loricariidae | Chaestostoma fischeri [74] | Native | Herb | LC |
Chaestostoma marginatum [60] | Native | Herb | LC | |
Hemiancistrus sp [75] | --- | --- | --- | |
Rineloricaria jubata [54] | Native | Herb | LC | |
Sturisoma frenatum [54] | Endemic | Herb | CR | |
Sternopygidae | Sternopygus arenatus [55] | Endemic | Pre | NE |
Poeciliidae | Pseudopoecilia fria [70] | Native | Ins | LC |
Belonidae | Strongylura fluviatilis [73] | Native | Pre | NE |
Syngnathidae | Pseudophallus starksii [72] | Native | --- | LC |
Cichlidae | Andinoacara blombergi [53] | Endemic | Pre | LC |
Andinoacara rivulatus [64] | Native | Omn | NE | |
Cichlasoma ornatus [100] | Native | Pre | LC | |
Cichlasoma festae [56] | Native | Omn | NE | |
Andinoacara rivulatus [64] | Native | Ins | NE | |
Eleotridae | Gobiomorus maculatus [67] | Native | Pre | LC |
Eleotris picta [71] | Native | Pre | LC | |
Hemieleotris latifasciata [66] | Native | Ins | LC | |
Gobiidae | Awaous banana [101] | Native | Herb | LC |
Sycidium rosembergi [56] | Endemic | --- | NT |
Control Sites | Active Mines | Abandoned Mines | Downstream Sites | |||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | Min–Max | Mean ± SD | Min–Max | Mean ± SD | Min–Max | Mean ± SD | Min–Max | |
Abundance (count) | 45 ± 28 | 17–88 | 22 ± 16 | 5–72 | 31 ± 16 | 11–56 | 17 ± 11 | 7–31 |
Endemic (count) | 4 ± 4 | 0–10 | 1 ± 2 | 0–6 | 3 ± 6 | 0–19 | 1 ± 1 | 0–2 |
Endangered (count) | 8 ± 9 | 0–23 | 0 ± 1 | 0–3 | 1 ± 2 | 0–6 | --- | --- |
Richness (count) | 6 ± 3 | 3–10 | 6 ± 2 | 2–8 | 6 ± 2 | 4–9 | 5 ± 1 | 4–7 |
Alpha diversity | 1.2 ± 0.4 | 0.4–1.7 | 1.3 ± 0.4 | 0.7–2.0 | 1.3 ± 0.2 | 0.9–1.7 | 1.4 ± 0.3 | 0.9–1.7 |
Variable | F Value | p | Multiple Comparisons |
---|---|---|---|
Abundance | F3,38 = 3.22 | p 0.05 | DS a AcM a AbM b CS c |
Endemic | F3,38 = 1.61 | n. s. | --- |
Endangered | F2,34 = 15.1 | p 0.001 | AcM a AbM b CS b |
Richness | F3,38 = 0.43 | n. s. | --- |
Alpha diversity | F3,38 = 0.51 | n. s. | --- |
References
- Liu, W.; Coveney, R.; Chen, J. Environmental quality assessment on a river system polluted by mining activities. Appl. Geochem. 2003, 18, 749–764. [Google Scholar] [CrossRef]
- Thorslund, J.; Jarsjö, J.; Chalov, S.R.; Belozerova, E.V. Gold mining impact on riverine heavy metal transport in a sparsely monitored region: The upper Lake Baikal Basin case. J. Environ. Monit. 2012, 14, 2780–2792. [Google Scholar] [CrossRef]
- Resongles, E.; Casiot, C.; Freydier, R.; Dezileau, L.; Viers, J.; Elbaz-Poulichet, F. Persisting impact of historical mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River, Southern France. Sci. Total Environ. 2014, 481, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, M. Sondeo ecolygico rapido de las comunidades de peces tropicales en un área de explotación minera en Costa Rica. Rev. De Biol. Trop. 2007, 56, 1971–1990. [Google Scholar]
- Yule, C.M.; Boyero, L.; Marchant, R. Effects of sediment pollution on food webs in a tropical river (Borneo, Indonesia). Mar. Freshw. Res. 2010, 61, 204–213. [Google Scholar] [CrossRef]
- Wantzen, K.; Mol, J. Soil Erosion from Agriculture and Mining: A Threat to Tropical Stream Ecosystems. Agriculture 2013, 3, 660–683. [Google Scholar]
- Coulthard, T.J.; Macklin, M.G. Modeling long-term contamination in river systems from historical metal mining. Geology 2003, 31, 451. [Google Scholar] [CrossRef]
- Salomons, W. Environmental impact of metals derived from mining activities: Processes, predictions, prevention. J. Geochem. Explor. 1995, 52, 5–23. [Google Scholar] [CrossRef]
- Hilson, G. The environmental impact of small-scale gold mining in Ghana: Identifying problems and possible solutions. Geogr. J. 2002, 168, 57–72. [Google Scholar] [CrossRef]
- Ogola, J.S.; Mitullah, W.V.; Omulo, M.A. Impact of gold mining on the environment and human health: A case study in the Migori gold belt, Kenya. Environ. Geochem. Health 2002, 24, 141–157. [Google Scholar] [CrossRef]
- Lacerda, L.D.; Marins, R.V. Anthropogenic mercury emissions to the atmosphere in Brazil: The impact of gold mining. J. Geochem. Explor. 1997, 58, 223–229. [Google Scholar] [CrossRef]
- Smolders, A.; Lock, R.; Van der Velde, G.; Medina Hoyos, R.; Roelofs, J. Effects of mining activities on heavy metal concentrations in water, sediment, and macroinvertebrates in different reaches of the Pilcomayo River, South America. Arch. Environ. Contam. Toxicol. 2003, 44, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Mol, J.H.; Ouboter, P.E. Downstream effects of erosion from small-scale gold mining on the instream habitat and fish community of a small neotropical rainforest stream. Conserv. Biol. 2004, 18, 201–214. [Google Scholar] [CrossRef]
- Betancourt, O.; Narváez, A.; Roulet, M. Small-scale Gold Mining in the Puyango River Basin, Southern Ecuador: A Study of Environmental Impacts andHuman Exposures. EcoHealth 2005, 2, 323–332. [Google Scholar] [CrossRef]
- Schueler, V.; Kuemmerle, T.; Schröder, H. Impacts of surface gold mining on land use systems in Western Ghana. Ambio 2011, 40, 528–539. [Google Scholar] [CrossRef]
- Peplow, D.; Augustine, S. Community-Led Assessment of Risk from Exposure to Mercury by Native Amerindian Wayana in Southeast Suriname. J. Environ. Public Health 2012, 2012, 674596. [Google Scholar] [CrossRef]
- Klubi, E.; Abril, J.M.; Mantero, J.; García-Tenorio, R.; Nyarko, E. Environmental radioactivity and trace metals in surficial sediments from estuarine systems in Ghana (Equatorial Africa), impacted by artisanal gold-mining. J. Environ. Radioact. 2020, 218, 106260. [Google Scholar] [CrossRef]
- Mestanza-Ramón, C.; Paz-Mena, S.; Lopez-Paredes, C.; Jimenez-Gutierrez, M.; Herrera Morales, G.; Dório, G.; Straface, S.S. History, Current Situation and Challengues of Gold Mining in Ecuador’s Litoral Region. Land 2021, 10, 1220. [Google Scholar] [CrossRef]
- Olivero, J.; Johnson, B. El Lado Gris de la Mineria del oro: La Contaminación con Mercurio en el Norte de Colombia; Universidad de Cartagena: Cartagena, Colombia, 2002. [Google Scholar]
- Olivero-Verbel, J.; Johnson-Restrepo, B.; Mendoza-Marin, C.; Paz-Martinez, R.; Olivero-Verbel, R. Mercury in the aquatic environment of the village of Caimito at the Mojana region, north of Colombia. Water Air Soil Pollut. 2004, 159, 409–420. [Google Scholar] [CrossRef]
- Vargas Licona, S.P.; Marrugo Negrete, J.L. Mercurio, metilmercurio y otros metales pesados en peces de Colombia: Riesgo por ingesta. Acta Biolygica Colomb. 2019, 24, 232–242. [Google Scholar] [CrossRef]
- Trujillo, F.; Lasso, C.; Diaz-Granados, M.; Farina, O.; Pérez, L.; Barbarino, A.; González, M.; Usma, J. Evaluación de la contaminación por mercurio en peces de interés comercial y de la concentración de organoclorados y organofosforados en el agua y sedimentos de la Orinoquia. In Biodiversidad de la cuenca del Orinoco; Lasso, C.A., Usma, J.S., Trujillo, F., Rial, A., Eds.; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, WWF Colombia, Fundación Omacha, Fundación La Salle e Instituto de Estudios de la Orinoquia (Universidad Nacional de Colombia): Bogotá, Colombia, 2010; pp. 340–355. [Google Scholar]
- Swenson, J.J.; Carter, C.E.; Domec, J.-C.; Delgado, C.I. Gold Mining in the Peruvian Amazon: Global Prices, Deforestation, and Mercury Imports. PLoS ONE 2011, 6, e18875. [Google Scholar] [CrossRef] [PubMed]
- Poully, M.; Pérez, T.; Ovando, A.; Guzmán, F.; Paco, P.; Duprey, J.; Chincheros, J.; Carranzas, B.; Barbieri, F.; Gardon, J. Diagnystico de la Contaminaciyn por el Mercurio en la Cuenca Itánez; IRD-WWF Report; IRD: La Paz, Bolivia, 2008. [Google Scholar]
- Ramos, R.; Verde, A.; García, E.M. Heavy metals in Venezuelan marine sediments: Concentrations, degree of contamination, and distribution. Cienc. Mar. 2021, 47, 185–199. [Google Scholar] [CrossRef]
- Miserendino, R.A.; Bergquist, B.A.; Adler, S.E.; Guimarães, J.R.D.; Lees, P.S.; Niquen, W.; Velasquez-Lypez, P.C.; Veiga, M.M. Challenges to measuring, monitoring, and addressing the cumulative impacts of artisanal and small-scale gold mining in Ecuador. Resour. Policy 2013, 38, 713–722. [Google Scholar] [CrossRef]
- Appleton, J.D. A study of the extent of mercury and related chemical pollution along the Naboc River, Monkayo, Davao del Norte; Hijo River, Apokon ore processing site; and their neighbouring areas (rice fields and banana plantations)—A report for UNIDO Project DP/PHI/98/00511–02. Br. Geol. Surv. 2000, 108, 34. [Google Scholar]
- Tarras-Wahlberg, N.H.; Flachier, A.; Fredriksson, G.; Lane, S.; Lundberg, B.; Sangfors, O. Environmental impact of small-scale and artisanal gold mining in southern Ecuador. AMBIO J. Hum. Environ. 2000, 29, 484–491. [Google Scholar] [CrossRef]
- Tarras-Wahlberg, N.; Flachier, A.; Lane, S.; Sangfors, O. Environmental impacts and metal exposure of aquatic ecosystems in rivers contaminated by small scale gold mining: The Puyango River basin, southern Ecuador. Sci. Total Environ. 2001, 278, 239–261. [Google Scholar] [CrossRef]
- Harari, R.; Harari, F.; Gerhardsson, L.; Lundh, T.; Skerfving, S.; Strömberg, U.; Broberg, K. Exposure and toxic effects of elemental mercury in gold-mining activities in Ecuador. Toxicol. Lett. 2012, 213, 75–82. [Google Scholar] [CrossRef]
- Carling, G.T.; Diaz, X.; Ponce, M.; Perez, L.; Nasimba, L.; Pazmino, E.; Rudd, A.; Merugu, S.; Fernandez, D.P.; Gale, B.K.; et al. Particulate and dissolved trace element concentrations in three Southern Ecuador rivers impacted by artisanal gold mining. Water Air Soil Pollut. 2013, 224, 1415. [Google Scholar] [CrossRef]
- Salgado-Almeida, B.; Falquez-Torres, D.A.; Romero-Crespo, P.L.; Valverde-Armas, P.E.; Guzmán-Martínez, F.; Jiménez-Oyola, S. Risk Assessment of Mining Environmental Liabilities for Their Categorization and Prioritization in Gold-Mining Areas of Ecuador. Sustainability 2022, 14, 6089. [Google Scholar] [CrossRef]
- Warnaars, X.S. Why be poor when we can be rich? Constructing responsible mining in El Pangui, Ecuador. Resour. Policy 2012, 37, 223–232. [Google Scholar] [CrossRef]
- Galarza, E.; Cabrera, M.; Espinosa, R.; Espitia, E.; Moulatlet, G.M.; Capparelli, M.V. Assessing the Quality of Amazon Aquatic Ecosystems with Multiple Lines of Evidence: The Case of the Northeast Andean Foothills of Ecuador. Bull. Environ. Contam. Toxicol. 2021, 107, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Critical Ecosystems Partnerships Funds (CEPF). Ecosystems Profiles. Tumbes Choco Madgalena. I’Agence Francaise de Developpement, Conservation International, European Union, Global Environmental Facility, The Government of Japan and World Bank. 2022. Available online: https://www.cepf.net/our-work/biodiversity-hotspots/tumbes-choco-magdalena (accessed on 10 August 2022).
- Programa de Reparacion Ambiental y Social (PRAS); Ministerio del Ambiente del Ecuador y Centro de Investigacion y Desarrollo; Pontificia Universidad Catolica del Ecuador Sede Esmeraldas (CID PUCESE). Informe de Valoración de Pasivos Socio Ambientales Vinculados a la Actividad Minera Aurífera Ilegal en el Norte de Esmeraldas. 2011, p. 69. Available online: https://www.researchgate.net/publication/280052412_Economic_valuation_of_the_environmental_assestments_of_gold_mining_activity_in_the_north_of_Ecuador (accessed on 10 August 2022).
- Ashton, P.J.; Love, D.; Mahachi, H.; Dirks, P. An overview of the impact of mining and mineral processing operations on water resources and water quality in the Zambezi, Limpopo and Olifants Catchments in Southern Africa. Contract Report to the Mining, Minerals and Sustainable Development (Southern Africa) Project, by CSIR-Environmentek, Pretoria and Geology Department, University of Zimbabwe-Harare. Report No. ENV-PC. 2001, Volume 42, pp. 1–362. Available online: https://pubs.iied.org/sites/default/files/pdfs/migrate/G00599.pdf? (accessed on 15 March 2022).
- Hammond, D.S.; Gond, V.; De Thoisy, B.; Forget, P.-M.; DeDijn, B.P. Causes and consequences of a tropical forest gold rush in the Guiana Shield, South America. AMBIO J. Hum. Environ. 2007, 36, 661–670. [Google Scholar] [CrossRef]
- Toulkeridis, T.; Chunga, K.; Rentería, W.; Rodriguez, F.; Mato, F.; Nikolaou, S.; Cruz D’Howitt, M.; Besenzon, D.; Ruiz, H.; Parra, H.; et al. The 7.8 Mw Earthquake and Tsunami of the 16th April 2016 in Ecuador—Seismic evaluation, geological field survey and economic implications. Sci. Tsunami Hazards 2017, 36, 197–242. [Google Scholar]
- Toulkeridis, T.; Parra, H.; Mato, F.; Cruz D’Howitt, M.; Sandoval, W.; Padilla Almeida, O.; Rentería, W.; Rodríguez Espinosa, F.; Salazar Martinez, R.; Cueva Girón, J. Contrasting results of potential tsunami hazards in Muisne, central coast of Ecuador. Sci. Tsunami Hazards 2017, 36, 13–40. [Google Scholar]
- Rodríguez Espinosa, F.; Toulkeridis, T.; Salazar Martinez, R.; Cueva Girón, J.; Taipe Quispe, A.; Bernaza Quiñonez, L.; Padilla Almeida, O.; Mato, F.; Cruz D’Howitt, M.; Parra, H. Economic evaluation of recovering a natural protection with concurrent relocation of the threatened public of tsunami hazards in central coastal Ecuador. Sci. Tsunami Hazards 2017, 36, 293–306. [Google Scholar]
- Chunga, K.; Toulkeridis, T.; Vera-Grunauer, X.; Gutierrez, M.; Cahuana, N.; Alvarez, A. A review of earthquakes and tsunami records and characterization of capable faults on the northwestern coast of Ecuador. Sci. Tsunami Hazards 2017, 36, 100–127. [Google Scholar]
- Toulkeridis, T.; Porras, L.; Tierra, A.; Toulkeridis-Estrella, K.; Cisneros, D.; Luna, M.; Carrión, J.L.; Herrera, M.; Murillo, A.; Perez-Salinas, J.C. Two independent real-time precursors of the 7.8 Mw earthquake in Ecuador based on radioactive and geodetic processes—Powerful tools for an early warning system. J. Geodyn. 2019, 126, 12–22. [Google Scholar] [CrossRef]
- Jiménez-Prado, P.; Rebolledo-Monsalve, Y.E. La cuenca del río Santiago-Cayapas, Provincia de Esmeraldas, Noroccidente del Ecuador: Importancia en las Comunidades Locales y Relación con las Actividades Industriales. In Capítulo 8.9 XII. Cuencas Pericontinentales de Colombia, Ecuador, Perú y Venezuela. Tipología, Biodiversidad, Servicios eco Sistémicos y Sostenibilidad de los ríos, Quebradas y Arroyos Costeros; Carlos, A., Lasso, Blanco-Libreros, J.P., Sánchez-Duarte, P., Eds.; Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia; Instituto de Investigación de los Recursos Biológicos Alexander von Humboldt (IAvH): Bogotá, DC, Colombia, 2015; Available online: http://repository.humboldt.org.co/handle/20.500.11761/9279 (accessed on 22 April 2018).
- Jiménez Prado, P.; Aguirre, W.; Laaz, E.; Navarrete, R.; Nugra, F.; Rebolledo, E.; Zárate, E.; Torres, A.; Valdivieso, J. Guía de Peces para Aguas Continentales en la Vertiente Occidental del Ecuado; Pontificia Universidad Católica del Ecuador: Esmeraldas, Ecuador, 2015. [Google Scholar]
- Aguirre, W.E.; Alvarez-Mieles, G.; Anaguano-Yancha, F.; Morón, R.B.; Cucalyn, R.V.; Escobar-Camacho, D.; Jácome-Negrete, I.; Jiménez-Prado, P.; Laaz, E.; Miranda-Troya, K.; et al. Conservation threats and prospects for the freshwater fishes of Ecuador: A hotspot of Neotropical fish diversity. J. Fish Biol. 2021, 99, 1158–1189. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S.; Adler, D.; Bates, D.; Baud-Bovy, G.; Ellison, S.; Firth, D.; Friendly, M.; Gorjanc, G.; Graves, S.; et al. Package ‘car’. Vienna R Found. Stat. Comput. 2012, 16. [Google Scholar]
- Lenth, R.; Singmann, H.; Love, J.; Buerkner, P.; Herve, M. Emmeans: Estimated Marginal Means. R package Version 1.4.8.; University of Iowa: Iowa City, IA, USA, 2020. [Google Scholar]
- Peres-Neto, P.R.; Jackson, D.A.; Somers, K.M. Giving meaningful interpretation to ordination axes: Assessing loading significance in principal component analysis. Ecology 2003, 84, 2347–2363. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H.; et al. Package ‘Vegan’. Community Ecology Package, Version 2; Rstudio: Integrated Development Environment for R: Boston, MA, USA, 2013; pp. 1–295. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 10 August 2022).
- Boulenger, G.A. Report on the collection of fishes made by Mr. J.E.S. Moore in lake Tanganyika during his expedition 1895–1896, with ab appendix by J.E.S. Moore. Trans. Zool. Soc. Lond. 1989, 15, 1–30. [Google Scholar]
- Wijkmark, N.; Kullander, S.O.; Barriga Salazar, R.E. Andinoacara blombergi, a new species from the río Esmeraldas basin in Ecuador and a review of A. rivulatus (Teleostei: Cichlidae). Ichthyol. Explor. Freshw. 2012, 23, 117. [Google Scholar]
- Boulenger, G.A. XLVII.—Descriptions of new fishes and reptiles discovered by Dr. F. Silvestri in South America. J. Nat. Hist. 1902, 9, 284–288. [Google Scholar] [CrossRef]
- Eydoux, J.F.T.; Souleyet, F.A. Poissons. In Voyage Autour du Monde Exécuté Pendant les Années 1836 et 1837 sur la Corvette La Bonite, Commandée par M. Vaillant. Zoologie, Paris; Arthus Bertrand: Paris, France, 1850; Volume 1, pp. 155–216. [Google Scholar]
- Boulenger, G.A. XII.—Description of a new genus of Gobioid fishes from the Andes of Ecuador. J. Nat. Hist. 1899, 4, 125–126. [Google Scholar] [CrossRef]
- Géry, J. Poissons Characoïdes des Guyanes: I. Généralités. II. Famille des Serrasalmidae; EJ Brill: Leiden, The Netherlands, 1972. [Google Scholar]
- Fowler, H.W. Colombian Zoological Survey. Part I: The Fresh-Water Fishes Obtained in 1945. Proc. Acad. Nat. Sci. Phila. 1945, 97, 93–135. [Google Scholar]
- Román-Valencia, C. Tres nuevas especies de Bryconamericus (Ostariophysi: Characidae) de Colombia y diagnóstico del género. Rev. Biol. Trop. 2000, 48, 449–464. [Google Scholar] [CrossRef]
- Regan, C.T. A Monograph of the Fishes of the Family Loricariidæ. Trans. Zool. Soc. Lond. 1904, 17, 191–350. [Google Scholar] [CrossRef]
- Meek, S.E.; Hildebrand, S.F. The Fishes of the Fresh Waters of Panama; Field Museum of Natural History: London, UK, 1916; Volume 10. [Google Scholar]
- Boulenger, G.A. LIX.—Descriptions of new fishes from the collection made by Mr. E. Degen in Abyssinia. J. Nat. Hist. 1902, 10, 421–439. [Google Scholar] [CrossRef]
- Eigenmann, C.H.; Kettleborough, C.; Holmes, C.D.V.; Jackson, D.E.; McDonald, E.D.; Mathers, F.C.; Williams, K.P.; Adams, L.C.; Esarey, L.; Lockhart, O.C.; et al. Some Results from an Ichthyological Reconnaissance of Colombia, South America, Part II; Indiana University: Bloomington, IN, USA, 1913. [Google Scholar]
- Günther, A.C.L.G. Catalogue of the Fishes in the British Museum: Acanthopterygian Fishes: Squamipinnes, Cirrhitidœ, Triglidœ, Trachinidœ, Sciœnidœ, Polynemidœ, Sphyrœnidœ, Trichiuridœ, Scombridœ, Carangidœ, Xiphiidœ; The Trustees: London, UK, 1860; Volume 2. [Google Scholar]
- Bloch, M.E. Der Malabarische Hecht; Naturgeschichte des Auslandische Fische: Berlin, Germany, 1794; pp. 149–150. [Google Scholar]
- Meek, S.E.; Hildebrand, S.F. Descriptions of New Fishes from Panama; Field Museum of Natural History: Berlin, Germany, 1912. [Google Scholar]
- Günther, A.C.L.G. Sexual Differences Found in Bones of Some Recent and Fossil Species of Frogs and Fishes; Annals and Magazine of Natural History: London, UK, 1859. [Google Scholar]
- Boulenger, G.A. XLI.—Descriptions of new freshwater fishes discovered by Dr. WJ Ansorge in Portuguese Guinea. Ann. Mag. Nat. Hist. 1911, 7, 373–376. [Google Scholar] [CrossRef]
- Boulenger, G.A. LVIII.—Descriptions of two new Siluroid fishes from Brazil. J. Nat. Hist. 1898, 2, 477–478. [Google Scholar] [CrossRef]
- Eigenmann, C.H.; Henn, A.W. On New Species of Fishes from Colombia, Ecuador, and Brazil; Indiana University: Bloomington, IN, USA, 1914. [Google Scholar]
- Kner, R. Eine Uebersicht der Ichthyologischen Ausbeute des Herrn Professors Doktor Moritz Wagner in Central-Amerika; Sitzungsberichte der königl. bayer.; Akademie der Wissenschaften: Munich, Germany, 1863. [Google Scholar]
- Jordan, D.S. The Fishes of Sinaloa; Leland Stanford, Jr. University: Palo Alto, CA, USA, 1895; Volume 1. [Google Scholar]
- Regan, C.T. LXXIX. Description of a new fish of the genus Chætostomus from Venezuela. J. Nat. Hist. 1903, 11, 601–602. [Google Scholar] [CrossRef]
- Steindachner, F. Beiträge zur Kenntniss der Flussfische Südamerika’s; Gerold Kaiserlich-Königlichen Hof-und Staatsdruckerei: Vienna, Austria, 1879; Volume 1. [Google Scholar]
- Bleeker, P. Atlas Ichthyologique; Frederic Muller: Amsterdam, The Netherlands, 1862. [Google Scholar]
- Eigenmann, C.H.; Eigenmann, R.S. A Revision of the South American Nematognathi or Catfishes (No. 1); California Academy of Sciences: San Francisco, CA, USA, 1890. [Google Scholar]
- Hammond, D.S.; Rosales, J.; Ouboter, P.E. Gestión del impacto de la explotación minera a cielo abierto sobre el agua dulce en América Latina. Banco Interam. Desarro. 2013, 40. [Google Scholar]
- Programa de Reparacion Ambiental y Social (PRAS), Ministerio del Ambiente del Ecuador y Centro de Investigacion y Desarrollo, Pontificia Universidad Catolica del Ecuador Sede Esmeraldas (CID PUCESE), 2011b. Producto 2: Indicadores ecológicos, económicos y sociales vinculados a la mineria de oro en el norte de Esmeraldas. Esmeraldas, 9 de septiembre del 2011. 23.
- Toulkeridis, T.; Tamayo, E.; Simón-Baile, D.; Merizalde-Mora, M.J.; Reyes–Yunga, D.F.; Viera-Torres, M.; Heredia, M. Climate Change according to Ecuadorian academics–Perceptions versus facts. Granja. Rev. Cienc. Vida 2020, 31, 21–46. [Google Scholar] [CrossRef]
- Konkel, L. A Safer Gold Rush? Curbing Mercury Pollution in Artisanal and Small-Scale Gold Mining. Environ. Health Perspect. 2019, 127, 112001. [Google Scholar] [CrossRef]
- Capparelli, M.V.; Moulatlet, G.M.; de Souza Abessa, D.M.; Lucas-Solis, O.; Rosero, B.; Galarza, E.; Tuba, D.; Carpintero, N.; Ochoa-Herrera, V.; Cipriani-Avila, I. An integrative approach to identify the impacts of multiple metal contamination sources on the Eastern Andean foothills of the Ecuadorian Amazonia. Sci. Total Environ. 2020, 709, 136088. [Google Scholar] [CrossRef]
- República de Ecuador, 2015. Acuerdo A97. Ministerio del Ambiente de la República del Ecuador. Registro Oficial Año III-N°387- Quito, Miercoles 4 de Noviembre de. 2015. Available online: https://www.gob.ec/regulaciones/acuerdo-ministerial-097-anexos-normativa-reforma-libro-vi-texto-unificado-legislacion-secundaria-ministerio-ambiente (accessed on 10 August 2022).
- Figueiredo-Fernandes, A.; Ferreira-Cardoso, J.V.; Garcia-Santos, S.; Monteiro, S.M.; Carrola, J.; Matos, P.; Fontainhas-Fernandes, A. Histopathological changes in liver and gill epithelium of Nile tilapia, Oreochromis niloticus, exposed to waterborne copper. Pesqui. Vet. Bras. 2007, 27, 103–109. [Google Scholar] [CrossRef]
- Coban, M.; Eroglu, M.; Canpolat, O.; Calta, M.; Sen, D. Effect of chromium on scale morphology in scaly carp (Cyprinus carpio L.). J. Anim. Plant Sci. 2013, 23, 1455–1459. [Google Scholar]
- Badr, A.M.; Mahana, N.A.; Eissa, A. Assessment of heavy metal levels in water and their toxicity in some tissues of Nile Tilapia (Oreochromis niloticus) in River Nile basin at Greater Cairo, Egypt. Glob. Vet. 2014, 13, 432–443. [Google Scholar]
- Dane, H.; Sisman, T. A morpho-histopathological study in the digestive tract of three fish species influenced with heavy metal pollution. Chemosphere 2020, 242, 125212. [Google Scholar] [CrossRef]
- Sfakianblakis, D.; Renieri, E.; Kentouri, M.; Tsatsakis, A. Effect of heavy metals on fish larvae deformities: A review. Environ. Res. 2015, 137, 246–255. [Google Scholar] [CrossRef]
- Kemp, P.; Sear, D.; Collins, A.; Naden, P.; Jones, I. The impacts of fine sediment on riverine fish. Hydrol. Process. 2011, 25, 1800–1821. [Google Scholar] [CrossRef]
- Cavanagh, J.; Harding, J. Effects of Suspended Sediment on Freshwater Fish; Landcare Research: South Beach, New Zealand, 2014; p. 29. [Google Scholar]
- Ramezani, J.; Rennebeck, L.; Closs, G.P.; Matthaei, C.D. Effects of fine sediment addition and removal on stream invertebrates and fish: A reach-scale experiment. Freshw. Biol. 2014, 59, 2584–2604. [Google Scholar] [CrossRef]
- Affandi, F.A.; Ishak, M.Y. Impacts of suspended sediment and metal pollution from mining activities on riverine fish population: A review. Environ. Sci. Pollut. Res. 2019, 26, 16939–16951. [Google Scholar] [CrossRef] [PubMed]
- Torremorell, A.; Hegoburu, C.; Brandimarte, A.L.; Rodrigues, E.H.C.; Pompko, M.; da Silva, S.C.; Moschini-Carlos, V.; Caputo, L.; Fierro, P.; Mojica, J.I.; et al. Current and future threats for ecological quality management of South American freshwater ecosystems. Inland Waters 2021, 11, 125–140. [Google Scholar] [CrossRef]
- Storey, A.W.; Yarrao, M.; Tenakanai, C.; Figa, B.; Lynas, J. Chapter 12 Use of Changes in Fish Assemblages in the Fly River System, Papua New Guinea, to Assess Effects of the Ok Tedi Copper Mine. Dev. Earth Environ. Sci. 2008, 9, 427–462. [Google Scholar]
- Allard, L.; Popée, M.; Vigouroux, R.; Brosse, S. Effect of reduced impact logging and small-scale mining disturbances on Neotropical stream fish assemblages. Aquat. Sci. 2015, 78, 315–325. [Google Scholar] [CrossRef]
- Silva, N.C.D.S.; Soares, B.E.; Teresa, F.B.; Caramaschi, E.P.; Albrecht, M.P. Fish functional diversity is less impacted by mining than fish taxonomic richness in an Amazonian stream system. Aquat. Ecol. 2022, 56, 815–827. [Google Scholar] [CrossRef]
- Brosse, S.; Grenouillet, G.; Gevrey, M.; Khazraie, K.; Tudesque, L. Small-scale gold mining erodes fish assemblage structure in small neotropical streams. Biodivers. Conserv. 2011, 20, 1013–1026. [Google Scholar] [CrossRef]
- Dos Dantos, J.A.; Barbosa Silva, C.; Soares de Santana, H.; Cano-Barbacil, C.; Agostinho, A.A.; Normando, T.F.; Cabeza, J.R.; Roland, F.; Garcia-Berthou, E. Assessing the short-term response of fish assemblages to damming of a Amazonias river. J. Environ. Manag. 2022, 307, 114571. [Google Scholar] [CrossRef]
- Roth, T.R.; Westhoff, M.C.; Huwald, H.; Huff, J.A.; Rubin, J.F.; Barrenetxea, G.; Vetterli, M.; Parriaux, A.; Selker, J.S.; Parlange, M.B. Stream temperature response to three riparian vegetation scenarios by use of a distributed temperature validated model. Environ. Sci. Technol. 2010, 44, 2072–2078. [Google Scholar] [CrossRef] [PubMed]
- Bowler, D.E.; Mant, R.; Orr, H.; Hannah, D.M.; Pullin, A.S. What are the effects of wooded riparian zones on stream temperature? Environ. Evid. 2012, 1, 3. [Google Scholar] [CrossRef]
- Regan, C.T. XLII. A Revision of the Fishes of the South-American Cichlid Genera Acara, Nannacara, Acaropsis, and Astronotus. J. Nat. Hist. 1905, 15, 329–347. [Google Scholar] [CrossRef] [Green Version]
- Valenciennes, A. Des Chironectes (Chironectes, Cuv., Antennarius, Comm.). Hist. Nat. Poisson. Levrault Paris Strasburg 1837, 11, 389–437. [Google Scholar]
Location | Site | River | UTM X | UTM Y | Order | Elevation (m) | Drainage Area (km2) |
---|---|---|---|---|---|---|---|
Control sites | C1 | San José | 762978 | 10118038 | 2 | 155 | 10.3 |
C2 | Comba | 757920 | 10111840 | 1 | 120 | 2.5 | |
C3 | Palabí | 753154 | 10129883 | 4 | 52 | 172.6 | |
C4 | Cayapas | 730650 | 10082455 | 6 | 45 | 809.3 | |
Active mines | M1 | Tululbí | 763135 | 10119944 | 3 | 108 | 52.4 |
M2 | Tululbí | 753154 | 10129883 | 3 | 52 | 131.7 | |
M3 | Cachabí | 757594 | 10109272 | 4 | 111 | 81.1 | |
M4 | Cachabí | 752850 | 10112894 | 4 | 72 | 115.6 | |
M5 | Cachabí | 748501 | 10115067 | 4 | 49 | 131.1 | |
M6 | Uimbí | 747990 | 10105803 | 5 | 84 | 126.8 | |
M7 | Las Antonias | 737489 | 10108449 | 1 | 47 | 0.5 | |
M8 | María | 730966 | 10115077 | 4 | 31 | 70.8 | |
M9 | Zapallito | 737481 | 10092225 | 3 | 92 | 26.8 | |
M10 | Zapallito | 730215 | 10091429 | 5 | 40 | 75.4 | |
Abandoned mines | A1 | Bogotá | 759521 | 10113752 | 3 | 114 | 48.9 |
A2 | Bogotá | 754426 | 10120966 | 4 | 60 | 109.2 | |
A3 | Durango | 759827 | 10118532 | 3 | 105 | 21.1 | |
A4 | San Antonio | 761906 | 10105896 | 2 | 161 | 2.5 | |
A5 | Uimbicito | 748388 | 10111966 | 3 | 56 | 35.6 | |
A6 | María | 735549 | 10103020 | 1 | 80 | 2.5 | |
Downstream sites | D1 | Santiago | 740255 | 10099818 | 6 | 76 | 1481.0 |
D2 | Santiago | 741474 | 10114714 | 6 | 34 | 1695.4 | |
D3 | Tululbí | 747964 | 10129930 | 4 | 40 | 428.4 |
PC1 | PC2 | |
---|---|---|
Variance % | 45% | 15% |
Cum. Variance % | 45% | 60% |
Temperature | --- | --- |
Oxygen | --- | --- |
pH | --- | 0.396 |
Turbidity | 0.226 | 0.209 |
Conductivity | --- | --- |
Al | 0.307 | --- |
As | --- | --- |
Ba | --- | --- |
Cd | --- | −0.316 |
Co | 0.292 | --- |
Cu | --- | --- |
Cr | 0.293 | --- |
St | 0.179 | --- |
Fe | 0.310 | --- |
Mg | --- | 0.301 |
Mn | 0.290 | --- |
Ni | --- | --- |
Pb | --- | --- |
Se | --- | −0.420 |
V | 0.300 | --- |
Zn | 0.123 | −0.290 |
Control Sites | Abandoned Sites | Downstream Sites | Mining Sites | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | A1 | A2 | A3 | A4 | A5 | A6 | D1 | D2 | D3 | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | |
Briconamericus dalhi | ⬤ | ⬤ | ⬤ | + | ⬤ | ⬤ | ◯ | ⬤ | ⬤ | ⬤ | ⬤ | • | ⬤ | ⬤ | ⬤ | ⬤ | ⬤ | ⬤ | ⬤ | ⬤ | ⬤ | ||
Chaestostoma marginatum | • | ⬤ | ⬤ | • | ⬤ | + | • | ◯ | ⬤ | ◯ | |||||||||||||
Roeboides occidentalis | ∙ | ◯ | ⬤ | ◯ | ◯ | • | • | ◯ | • | ◯ | ⬤ | • | ⬤ | + | + | ||||||||
Hemielotris latifasciata | ⬤ | + | + | ◯ | + | ⬤ | • | ◯ | + | + | ◯ | ◯ | ⬤ | ||||||||||
Pseudochalceus longianalis | ⬤ | ∙ | ◯ | + | |||||||||||||||||||
Cichlasoma festae | + | + | ◯ | • | ◯ | + | + | • | ⬤ | + | ◯ | + | |||||||||||
Pimelodella elongatus | ◯ | + | + | ◯ | • | ◯ | • | + | ◯ | ⬤ | + | + | ⬤ | ||||||||||
Gobiomorus maculatus | + | + | + | + | ◯ | + | • | ⬤ | • | + | • | + | + | + | |||||||||
Cichlasoma ornatum | ◯ | + | ◯ | + | + | + | + | ◯ | + | • | ◯ | + | + | + | + | • | |||||||
Sternopygus arenatus | + | ◯ | + | + | • | • | + | + | • | • | |||||||||||||
Andinocara blombergi | + | ⬤ | + | + | + | • | |||||||||||||||||
Pseudocurimata lineopunctatus | + | + | + | + | ◯ | ⬤ | ◯ | ◯ | |||||||||||||||
Brycon dentex | + | + | + | ◯ | ◯ | + | ◯ | + | + | ||||||||||||||
Sicydium rosembergi | ◯ | + | + | ||||||||||||||||||||
Rinelocaria jubata | + | + | ◯ | + | + | + | + | ||||||||||||||||
Awaous banana | ◯ | + | + | ||||||||||||||||||||
Astianax ruberrinus | ◯ | + | + | ◯ | |||||||||||||||||||
Sturisoma frenatum | + | + | ◯ | • | |||||||||||||||||||
Hoplias malabaricus | + | ◯ | + | ||||||||||||||||||||
Richness | 5 | 11 | 4 | 9 | 10 | 11 | 12 | 11 | 5 | 6 | 8 | 9 | 5 | 10 | 8 | 10 | 8 | 8 | 10 | 6 | 11 | 8 | 5 |
Control Sites | Active Mines | Abandoned Mines | Downstream Sites | |
---|---|---|---|---|
pH | 77 | 79 | 93 | 83 |
Aluminum (mg L−1) | 0 | 0 | 20 | 17 |
Arsenic (µg L−1) | 100 | 100 | 100 | 100 |
Barium (µg L−1) | 100 | 100 | 100 | 100 |
Cadmium (µg L−1) | 75 | 100 | 100 | 100 |
Chrome (µg L−1) | 100 | 84 | 100 | 100 |
Cobalt (µg L−1) | 100 | 100 | 100 | 100 |
Copper (µg L−1) | 38 | 0 | 20 | 33 |
Iron (mg l−1) | 0 | 0 | 40 | 33 |
Manganese (µg L−1) | 100 | 79 | 100 | 83 |
Mercury (µg L−1) | 100 | 100 | 100 | 100 |
Nickel (µg L−1) | 100 | 95 | 100 | 100 |
Silver (µg L−1) | 100 | 100 | 100 | 100 |
Lead (µg L−1) | 25 | 11 | 50 | 33 |
Selenium (µg L−1) | 50 | 47 | 50 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebolledo Monsalve, E.; Jiménez Prado, P.; Molinero Ortiz, J.; Toulkeridis, T. Differences in Fish Abundance in Rivers under the Influence of Open-Pit Gold Mining in the Santiago-Cayapas Watershed, Esmeraldas, Ecuador. Water 2022, 14, 2992. https://doi.org/10.3390/w14192992
Rebolledo Monsalve E, Jiménez Prado P, Molinero Ortiz J, Toulkeridis T. Differences in Fish Abundance in Rivers under the Influence of Open-Pit Gold Mining in the Santiago-Cayapas Watershed, Esmeraldas, Ecuador. Water. 2022; 14(19):2992. https://doi.org/10.3390/w14192992
Chicago/Turabian StyleRebolledo Monsalve, Eduardo, Pedro Jiménez Prado, Jon Molinero Ortiz, and Theofilos Toulkeridis. 2022. "Differences in Fish Abundance in Rivers under the Influence of Open-Pit Gold Mining in the Santiago-Cayapas Watershed, Esmeraldas, Ecuador" Water 14, no. 19: 2992. https://doi.org/10.3390/w14192992
APA StyleRebolledo Monsalve, E., Jiménez Prado, P., Molinero Ortiz, J., & Toulkeridis, T. (2022). Differences in Fish Abundance in Rivers under the Influence of Open-Pit Gold Mining in the Santiago-Cayapas Watershed, Esmeraldas, Ecuador. Water, 14(19), 2992. https://doi.org/10.3390/w14192992