Residual Sediment Transport in the Fine-Grained Jiangsu Coast under Changing Climate: The Role of Wind-Driven Currents
Abstract
:1. Introduction
2. Materials Data and Methods
2.1. Study Area
2.2. Wind Data
2.3. Sediment Transport Modeling and Modeling Scenarios
2.4. Data Process
3. Results
3.1. Eulerian Residual Current Pattern
3.2. Residual Sediment Transport Pattern
4. Discussion
4.1. Wind Contribution to Residual Current and Sediment Transport in Different Regions
4.2. Wind Contribution to Sediment Budget along the Jiangsu Coast on Different Time Scales
4.3. Limitations and Remarks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Burchard, H.; Schuttelaars, H.M.; Ralston, D.K. Sediment Trapping in Estuaries. Annu. Rev. Mar. Sci. 2018, 10, 371–395. [Google Scholar] [CrossRef] [PubMed]
- Elias, E.P.L.; Hansen, J.E. Understanding processes controlling sediment transports at the mouth of a highly energetic inlet system (San Francisco Bay, CA). Mar. Geol. 2013, 345, 207–220. [Google Scholar] [CrossRef]
- Gatto, V.M.; Van Prooijen, C.B.; Wang, Z.B. Net sediment transport in tidal basins: Quantifying the tidal barotropic mechanisms in a unified framework. Ocean Dyn. 2017, 67, 1385–1406. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Jia, J.; Wang, Y.P.; Zhang, G. Net suspended sediment transport modulated by multiple flood-ebb asymmetries in the progressive tidal wave dominated and partially stratified Changjiang Estuary. Mar. Geol. 2022, 443, 106702. [Google Scholar] [CrossRef]
- Ralston, D.K.; Geyer, W.R. Episodic and Long-Term Sediment Transport Capacity in The Hudson River Estuary. Estuaries Coasts 2009, 32, 1130–1151. [Google Scholar] [CrossRef]
- Brouwer, R.L.; Schramkowski, G.P.; Dijkstra, Y.M.; Schuttelaars, H.M. Time Evolution of Estuarine Turbidity Maxima in Well-Mixed, Tidally Dominated Estuaries: The Role of Availability- and Erosion-Limited Conditions. J. Phys. Oceanogr. 2018, 48, 1629–1650. [Google Scholar] [CrossRef]
- Chernetsky, A.S.; Schuttelaars, H.M.; Talke, S.A. The effect of tidal asymmetry and temporal settling lag on sediment trapping in tidal estuaries. Ocean Dyn. 2010, 60, 1219–1241. [Google Scholar] [CrossRef] [Green Version]
- Dijkstra, Y.M.; Schuttelaars, H.M.; Schramkowski, G.P.; Brouwer, R.L. Modeling the Transition to High Sediment Concentrations as a Response to Channel Deepening in the Ems River Estuary. J. Geophys. Res. Oceans 2019, 124, 1578–1594. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Kumar, M.; Schuttelaars, H.M. Three-Dimensional Sediment Dynamics in Well-Mixed Estuaries: Importance of the Internally Generated Overtide, Spatial Settling Lag, and Gravitational Circulation: Sediment dynamics in well-mixed estuary. J. Geophys. Res. Oceans 2018, 123, 1062–1090. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, Y.; Cheng, W.; Zhang, H.; Gong, W. Wave Effects on Sediment Transport and Entrapment in a Channel-Shoal Estuary: The Pearl River Estuary in the Dry Winter Season. J. Geophys. Res. Oceans 2021, 126, e2020JC016905. [Google Scholar] [CrossRef]
- Chen, L.; Gong, W.; Scully, M.E.; Zhang, H.; Cheng, W.; Li, W. Axial Wind Effects on Stratification and Longitudinal Sediment Transport in a Convergent Estuary During Wet Season. J. Geophys. Res. Oceans 2020, 125, e2019JC015254. [Google Scholar] [CrossRef]
- Gong, W.; Jia, L.; Shen, J.; Liu, T.J. Sediment transport in response to changes in river discharge and tidal mixing in a funnel-shaped micro-tidal estuary. Cont. Shelf Res. 2014, 76, 89–107. [Google Scholar] [CrossRef]
- Sommerfield, C.K.; Wong, K.C. Mechanisms of sediment flux and turbidity maintenance in the Delaware Estuary. J. Geophys. Res. Oceans 2011, 116, C01005. [Google Scholar] [CrossRef]
- Guo, L.; Brand, M.; Sanders, B.F.; Foufoula-Georgiou, E.; Stein, E.D. Tidal asymmetry and residual sediment transport in a short tidal basin under sea level rise. Adv. Water Resour. 2018, 121, 1–8. [Google Scholar] [CrossRef]
- Bolle, A.; Wang, Z.B.; Amos, C.; Ronde, J. The influence of changes in tidal asymmetry on residual sediment transport in the Western Scheldt. Cont. Shelf Res. 2010, 30, 871–882. [Google Scholar] [CrossRef]
- Van Maren, D.S.; Gerritsen, H. Residual flow and tidal asymmetry in the Singapore Strait, with implications for resuspension and residual transport of sediment. J. Geophys. Res. Oceans 2011, 117, C04021. [Google Scholar] [CrossRef] [Green Version]
- Chu, A.; Wang, Z.; de Vriend, H.J. Analysis on residual coarse sediment transport in estuaries. Estuar. Coast. Shelf Sci. 2015, 163, 194–205. [Google Scholar] [CrossRef]
- Cilli, S.; Billi, P.; Schippa, L.; Grottoli, E.; Ciavola, P. Bedload transport and dune bedforms characteristics in sand-bed rivers supplying a retreating beach of the northern Adriatic Sea (Italy). J. Hydrol. Reg. Stud. 2021, 37, 100894. [Google Scholar] [CrossRef]
- Bassoullet, P. Sediment transport over an intertidal mudflat: Field investigations and estimation of #uxes within the `Baie de Marennes-Olerona (France). Cont. Shelf Res. 2000, 20, 1635–1653. [Google Scholar]
- Blaas, M.; Kerkhoven, D.; de Swart, H. Large-scale circulation and flushing characteristics of the North Sea under various climate forcings. Clim. Res. 2001, 18, 47–54. [Google Scholar] [CrossRef]
- Carniello, L.; D’Alpaos, A.; Definaa, A. Modeling wind waves and tidal flows in shallow micro-tidal basins. Estuar. Coast. Shelf Sci. 2011, 92, 263–276. [Google Scholar] [CrossRef]
- Carniello, L.; Defina, A.; D’Alpaos, L. Morphological evolution of the Venice lagoon: Evidence from the past and trend for the future. J. Geophys. Res. Earth Surf. 2009, 114, F04002. [Google Scholar] [CrossRef]
- Carniello, L.; Defina, A.; Fagherazzi, S.; D’Alpaos, L. A combined wind wave-tidal model for the Venice lagoon, Italy: A combined wind wave-tidal model. J. Geophys. Res. Earth Surf. 2005, 110, F04007. [Google Scholar] [CrossRef]
- Friedrichs, C.T. Tidal Flat Morphodynamics: A Synthesis; William & Mary: Williamsburg, VA, USA, 2011. [Google Scholar]
- Green, M.O.; Coco, G. Review of wave-driven sediment resuspension and transport in estuaries. Rev. Geophys. 2014, 52, 77–117. [Google Scholar] [CrossRef]
- Mariotti, G.; Fagherazzi, S. Wind waves on a mudflat: The influence of fetch and depth on bed shear stresses. Cont. Shelf Res. 2013, 60, S99–S110. [Google Scholar] [CrossRef]
- Smith, J.A.; Damm, P.E.; Skogen, M.D.; Flather, R.A.; PÄtsch, J. An investigation into the variability of circulation and transport on the north-west european shelf using three hydrodynamic models. Dtsch. Hydrogr. Z. 1996, 48, 325–348. [Google Scholar] [CrossRef]
- Zhu, Q.; van Prooijen, B.C.; Wang, Z.B.; Yang, S.L. Bed-level changes on intertidal wetland in response to waves and tides: A case study from the Yangtze River Delta. Mar. Geol. 2017, 385, 160–172. [Google Scholar] [CrossRef]
- Baeye, M.; Fettweis, M.; Voulgaris, G.; Van Lancker, V. Sediment mobility in response to tidal and wind-driven flows along the Belgian inner shelf, southern North Sea. Ocean Dyn. 2011, 61, 611–622. [Google Scholar] [CrossRef]
- Christiansen, C.; Vølund, G.; Lund-Hansen, L.C.; Bartholdy, J. Wind influence on tidal flat sediment dynamics: Field investigations in the Ho Bugt, Danish Wadden Sea. Mar. Geol. 2006, 235, 75–86. [Google Scholar] [CrossRef]
- Duran-Matute, M.; Gerkema, T.; de Boer, G.; Nauw, J.; Gräwe, U. Residual circulation and fresh-water transport in the Dutch Wadden Sea: A numerical modeling study. Ocean Sci. Discuss 2013, 11, 197–257. [Google Scholar] [CrossRef]
- Talke, S.A.; Stacey, M.T. Suspended sediment fluxes at an intertidal flat: The shifting influence of wave, wind, tidal, and freshwater forcing. Cont. Shelf Res. 2008, 28, 710–725. [Google Scholar] [CrossRef]
- Sassi, M.; Duran-Matute, M.; van Kessel, T.; Gerkema, T. Variability of residual fluxes of suspended sediment in a multiple tidal-inlet system: The Dutch Wadden Sea. Ocean Dyn. 2015, 65, 1321–1333. [Google Scholar] [CrossRef] [Green Version]
- Colosimo, I.; de Vet, P.L.M.; van Maren, D.S.; Reniers, A.J.H.M.; Winterwerp, J.C.; van Prooijen, B.C. The Impact of Wind on Flow and Sediment Transport over Intertidal Flats. J. Mar. Sci. Eng. 2020, 8, 910. [Google Scholar] [CrossRef]
- Yu, H. The Impacts of Wind Fields on Sea Level at Jiangsu Offshore under the Climate Warming Conditions; Nanjing University of Information Science and Technology: Nanjing, China, 2014. [Google Scholar]
- Yao, P.; Su, M.; Wang, Z.; van Rijn, L.C.; Zhang, C.; Stive, M.J.F. Modelling tidal-induced sediment transport in a sand-silt mixed environment from days to years: Application to the Jiangsu coastal water, China. Coast. Eng. 2018, 141, 86–106. [Google Scholar] [CrossRef]
- Zhang, C.K. The Comprehensive Survey and Evaluation Report on Coastal Zone of Jiangsu Province; Science Press: Beijing, China, 2012. [Google Scholar]
- Choi, B.H. A Three-Dimensional Model of the East China Sea. In Elsevier Oceanography Series; Ichiye, T., Ed.; Ocean Hydrodynamics of the Japan and East China Seas; Elsevier: Amsterdam, The Netherlands, 1984; Volume 39, pp. 209–224. [Google Scholar]
- Su, M.; Yao, P.; Wang, Z.B.; Zhang, C.K.; Stive, M.J.F. Tidal Wave Propagation in the Yellow Sea. Coast. Eng. J. 2015, 57, 1550008-1–1550008-29. [Google Scholar] [CrossRef]
- Guohong, F. Tide and tidal current charts for the marginal seas adjacent to China. Chin. J. Oceanol. Limnol. 1986, 4, 1–16. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- Hoffman, R.N.; Leidner, S.M. An Introduction to the Near–Real–Time QuikSCAT Data. Weather Forecast. 2005, 20, 476–493. [Google Scholar] [CrossRef] [Green Version]
- Atlas, R.; Hoffman, R.N.; Ardizzone, J.; Leidner, S.M.; Jusem, J.C.; Smith, D.K.; Gombos, D. A Cross-calibrated, Multiplatform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications. Bull. Am. Meteorol. Soc. 2011, 92, 157–174. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Alvarez, I.; Gomez-Gesteira, M.; deCastro, M.; Carvalho, D. Comparison of different wind products and buoy wind data with seasonality and interannual climate variability in the southern Bay of Biscay (2000–2009). Deep. Sea Res. Part II Top. Stud. Oceanogr. 2014, 106, 38–48. [Google Scholar] [CrossRef]
- Lamb, M.P.; Parsons, J.D. High-Density Suspensions Formed Under Waves. J. Sediment. Res. 2005, 75, 386–397. [Google Scholar] [CrossRef] [Green Version]
- Te Slaa, S.; He, Q.; van Maren, D.S.; Winterwerp, J.C. Sedimentation processes in silt-rich sediment systems. Ocean Dyn. 2013, 63, 399–421. [Google Scholar] [CrossRef]
- Yao, P.; Su, M.; Wang, Z.; van Rijn, L.C.; Zhang, C.; Chen, Y.; Stive, M.J.F. Experiment inspired numerical modeling of sediment concentration over sand–silt mixtures. Coast. Eng. 2015, 105, 75–89. [Google Scholar] [CrossRef]
- Zuo, L.; Roelvink, D.; Lu, Y.; Wang, H. Modelling and analysis on high sediment concentration layer of fine sediments under wave-dominated conditions. Coast. Eng. 2018, 140, 205–231. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Unified View of Sediment Transport by Currents and Waves. I: Initiation of Motion, Bed Roughness, and Bed-Load Transport. J. Hydraul. Eng. 2007, 133, 649–667. [Google Scholar] [CrossRef] [Green Version]
- Van Rijn, L.C. Unified View of Sediment Transport by Currents and Waves. II: Suspended Transport. J. Hydraul. Eng. 2007, 133, 668–689. [Google Scholar] [CrossRef]
- Komar, P. The budget of littoral sediments, concepts and applications. Shore Beach 1996, 64, 18–26. [Google Scholar]
- Su, M.; Yao, P.; Wang, Z.B.; Zhang, C.K.; Stive, M.J.F. Exploratory morphodynamic hindcast of the evolution of the abandoned Yellow River delta, 1578–1855 CE. Mar. Geol. 2017, 383, 99–119. [Google Scholar] [CrossRef] [Green Version]
- Su, M.; Yao, P.; Wang, Z.B.; Zhang, C.K.; Stive, M.J.F. Exploratory morphodynamic modeling of the evolution of the Jiangsu coast, China, since 1855: Contributions of old Yellow River-derived sediment. Mar. Geol. 2017, 390, 306–320. [Google Scholar] [CrossRef]
- Xing, F.; Wang, Y.P.; Wang, H.V. Tidal hydrodynamics and fine-grained sediment transport on the radial sand ridge system in the southern Yellow Sea. Mar. Geol. 2012, 291–294, 192–210. [Google Scholar] [CrossRef]
Wind | NCEP | QSCAT | ||||
RMS | Bias | STD | RMS | Bias | STD | |
Speed | 2.78 | 0.40 | 2.75 | 2.50 | 0.15 | 2.50 |
Direction | 62.45 | −8.03 | 61.93 | 61.62 | −2.55 | 61.57 |
Wind | CCMP | ERA5 | ||||
RMS | Bias | STD | RMS | Bias | STD | |
Speed | 2.34 | −0.13 | 2.34 | 2.39 | −0.25 | 2.37 |
Direction | 54.33 | −1.00 | 54.32 | 55.77 | −3.68 | 55.65 |
Sectors | I | II | III | IV |
---|---|---|---|---|
Tide-induced volume changes | 6 | −132 | −29 | 124 |
Wind-induced volume changes | −2 | 13 | −6 | −12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, J.; Chen, Y.; Su, M.; Mei, J.; Yang, X.; Yu, Z.; Yao, P. Residual Sediment Transport in the Fine-Grained Jiangsu Coast under Changing Climate: The Role of Wind-Driven Currents. Water 2022, 14, 3113. https://doi.org/10.3390/w14193113
Pu J, Chen Y, Su M, Mei J, Yang X, Yu Z, Yao P. Residual Sediment Transport in the Fine-Grained Jiangsu Coast under Changing Climate: The Role of Wind-Driven Currents. Water. 2022; 14(19):3113. https://doi.org/10.3390/w14193113
Chicago/Turabian StylePu, Jinshan, Yongping Chen, Min Su, Jinya Mei, Xinyi Yang, Zhibin Yu, and Peng Yao. 2022. "Residual Sediment Transport in the Fine-Grained Jiangsu Coast under Changing Climate: The Role of Wind-Driven Currents" Water 14, no. 19: 3113. https://doi.org/10.3390/w14193113
APA StylePu, J., Chen, Y., Su, M., Mei, J., Yang, X., Yu, Z., & Yao, P. (2022). Residual Sediment Transport in the Fine-Grained Jiangsu Coast under Changing Climate: The Role of Wind-Driven Currents. Water, 14(19), 3113. https://doi.org/10.3390/w14193113