Assessment of the Impact of Climate Extremes on the Groundwater of Eastern Croatia
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results
4.1. Climate Indicators
4.2. Water Levels in Piezometers
4.3. Groundwater Quality of the Vinogradi Pumping Station, Osijek, Croatia
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011; Available online: https://apps.who.int/iris/handle/10665/44584 (accessed on 5 July 2019).
- Christensen, O.; Christensen, J. Intensification of extreme European summer precipitation in a warmer climate. Glob. Planet. Chang. 2004, 44, 107–117. [Google Scholar] [CrossRef]
- Kundzewicz, Z.; Radziejewski, M.; Pińskwar, I. Precipitation extremes in the changing climate of Europe. Clim. Res. 2006, 31, 51–58. [Google Scholar] [CrossRef]
- Frei, C.; Schöll, R.; Fukutome, S.; Schmidli, J.; Vidale, P.L. Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models. J. Geophys. Res. Earth Surf. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.P.; Mishra, A.K.; Chowdhary, H.; Khedun, C.P. Climate Change and Its Impact on Water Resources. In Modern Water Resources Engineering; Springer: Berlin, Germany, 2013; Volume 15, pp. 525–569. [Google Scholar] [CrossRef]
- Walther, G.-R. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2019–2024. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, J.; Hattab, T.; Pierre, G. Climatic microrefugia under anthropogenic climate change: Implications for species redistribution. Ecography 2016, 40, 253–266. [Google Scholar] [CrossRef]
- Adedeji, O.; Reuben, O.; Olatoye, O. Global Climate Change. J. Geosci. Environ. Prot. 2014, 2, 114–122. [Google Scholar] [CrossRef]
- Yousefi, H.; Omidi, M.J.; Moridi, A.; Sarang, A. Groundwater Monitoring Network Design Using Optimized DRASTIC Method and Capture Zone Analysis. Int. J. Environ. Res. 2021, 15, 807–817. [Google Scholar] [CrossRef]
- Rezaei, M.; Mousavi, S.-F.; Moridi, A.; Gordji, M.E.; Karami, H. A new hybrid framework based on integration of optimization algorithms and numerical method for estimating monthly groundwater level. Arab. J. Geosci. 2021, 14, 994. [Google Scholar] [CrossRef]
- Ahani, A.; Nadoushani, S.S.M.; Moridi, A. Regionalization of watersheds based on the concept of rough set. Nat. Hazards 2020, 104, 883–899. [Google Scholar] [CrossRef]
- Döll, P.; Zhang, J. Impact of climate change on freshwater ecosystems: A global-scale analysis of ecologically relevant river flow alterations. Hydrol. Earth Syst. Sci. 2010, 14, 783–799. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, M.; Mousavi, S.-F.; Moridi, A.; Eshaghi, M.; Karami, H. An Optimal Socialist Cooperative Game Theory Model in Agricultural Sector (Case Study: Dezful-Andimeshk Plain). Int. J. Nonlinear Anal. Appl. 2021, 12, 12719–12731. [Google Scholar]
- Malmir, M.; Javadi, S.; Moridi, A.; Neshat, A.; Razdar, B. A new combined framework for sustainable development using the DPSIR approach and numerical modeling. Geosci. Front. 2021, 12, 101169. [Google Scholar] [CrossRef]
- Kundzewicz, Z.; Mata, L.J.; Arnell, N.W.; Döll, P.; Jimenez, B.; Miller, K.; Oki, T.; Şen, Z.; Shiklomanov, I. The implications of projected climate change for freshwater resources and their management. Hydrol. Sci. J. 2008, 53, 3–10. [Google Scholar] [CrossRef]
- Woodward, G.; Perkins, D.; Brown, L. Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2093–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitehead, P.G.; Wilby, R.L.; Battarbee, R.W.; Kernan, M.; Wade, A.J. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 2009, 54, 101–123. [Google Scholar] [CrossRef]
- Delpla, I.; Jung, A.-V.; Baures, E.; Clement, M.; Thomas, O. Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int. 2009, 35, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Mujere, N.; Moyce, W. Climate Change Impacts on Surface Water Quality. In Environmental Sustainability and Climate Change Adaptation Strategies; IGI Global Book: Hershey, PA, USA, 2017; pp. 97–115. [Google Scholar] [CrossRef]
- Marchane, A.; Tramblay, Y.; Hanich, L.; Ruelland, D.; Jarlan, L. Climate change impacts on surface water resources in the Rheraya catchment (High Atlas, Morocco). Hydrol. Sci. J. 2017, 62, 979–995. [Google Scholar] [CrossRef]
- Green, T.R. Linking climate change and groundwater. In Integrated Groundwater Management; Springer: Cham, Switzerland, 2016; pp. 97–141. [Google Scholar]
- Gurdak, J.S.; Hanson, R.T.; Green, T.R. Effects of climate variability and change on groundwater resources of the United States. In Fact Sheet; US Geological Survey: Reston, VA, USA, 2009. [Google Scholar] [CrossRef]
- Tanaka, S.K.; Zhu, T.; Lund, J.R.; Howitt, R.E.; Jenkins, M.W.; Pulido, M.A.; Tauber, M.; Ritzema, R.S.; Ferreira, I.C. Climate Warming and Water Management Adaptation for California. Clim. Chang. 2006, 76, 361–387. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L.; Flores, F.; Moneo, M. Challenges to Manage the Risk of Water Scarcity and Climate Change in the Mediterranean. Water Resour. Manag. 2006, 21, 775–788. [Google Scholar] [CrossRef]
- Ojo, O.; Oni, F.; Ogunkunle, O. Implications of climate variability and climate change on water resources availability and water resources management in West Africa. In Water Resources Systems—Water Availability and Global Change; Franks, S., Bloschl, S., Kumagai, M., Musiake, K., Rosbjerg, D., Eds.; International Association of Hydrological Sciences: Wallingford, UK, 2003; pp. 37–47. [Google Scholar]
- Holman, I.P. Climate change impacts on groundwater recharge-uncertainty, shortcomings, and the way forward? Appl. Hydrogeol. 2005, 14, 637–647. [Google Scholar] [CrossRef] [Green Version]
- Afshar, M.H.; Şorman, A.; Tosunoğlu, F.; Bulut, B.; Yilmaz, M.T.; Mehr, A.D. Climate change impact assessment on mild and extreme drought events using copulas over Ankara, Turkey. Theor. Appl. Clim. 2020, 141, 1045–1055. [Google Scholar] [CrossRef]
- Ducci, D.; de Melo, M.T.C.; Preziosi, E.; Sellerino, M.; Parrone, D.; Ribeiro, L. Combining natural background levels (NBLs) assessment with indicator kriging analysis to improve groundwater quality data interpretation and management. Sci. Total. Environ. 2016, 569–570, 569–584. [Google Scholar] [CrossRef]
- Rimi, R.H.; Rahman, S.H.; Abedin, M.Z. Recent climate change trend analysis and future prediction at Satkhira District, Bangladesh. IOP Conf. Ser. Earth Environ. Sci. 2009, 6, 472014. [Google Scholar] [CrossRef]
- Ilori, O.W.; Ajayi, V.O. Change Detection and Trend Analysis of Future Temperature and Rainfall over West Africa. Earth Syst. Environ. 2020, 4, 493–512. [Google Scholar] [CrossRef]
- Mahmood, R.; Jia, S.; Zhu, W. Analysis of climate variability, trends, and prediction in the most active parts of the Lake Chad basin, Africa. Sci. Rep. 2019, 9, 6317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semenov, M.A. Development of high-resolution UKCIP02-based climate change scenarios in the UK. Agric. For. Meteorol. 2007, 144, 127–138. [Google Scholar] [CrossRef]
- MacLean, I.M.D. Predicting future climate at high spatial and temporal resolution. Glob. Chang. Biol. 2019, 26, 1003–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caballero, Y.; Voirin-Morel, S.; Habets, F.; Noilhan, J.; Lemoigne, P.; Lehenaff, A.; Boone, A. Hydrological sensitivity of the Adour-Garonne river basin to climate change. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef] [Green Version]
- Jyrkama, M.I.; Sykes, J.F. The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). J. Hydrol. 2007, 338, 237–250. [Google Scholar] [CrossRef]
- Didovets, I.; Krysanova, V.; Bürger, G.; Snizhko, S.; Balabukh, V.; Bronstert, A. Climate change impact on regional floods in the Carpathian region. J. Hydrol. Reg. Stud. 2019, 22, 100590. [Google Scholar] [CrossRef]
- Şen, Z.; Al Alsheikh, A.; Al-Turbak, A.S.; Al-Bassam, A.M.; Al-Dakheel, A.M. Climate change impact and runoff harvesting in arid regions. Arab. J. Geosci. 2011, 6, 287–295. [Google Scholar] [CrossRef]
- Bürger, G.; Heistermann, M.; Bronstert, A. Towards Subdaily Rainfall Disaggregation via Clausius–Clapeyron. J. Hydrometeorol. 2014, 15, 1303–1311. [Google Scholar] [CrossRef]
- Croatian Water Management Strategy/Strategija upravljanja vodama, Hrvatske vode. 2009. Available online: https://www.voda.hr/hr/strategija-upravljanja-vodama (accessed on 15 June 2019).
- Zima, J. The Effect of Climate Changes on the Ground Water Status of Deep Alluvial Aguifers in Function of Ensuring the Public Water Supply Reability. Ph.D. Thesis, Faculty of Civil Engineering Osijek, Strossmayer University of Osijek, Osijek, Croatia, July 2019. [Google Scholar]
- Taylor, C.J.; Alley, W.M. Ground-Water-Level Monitoring and the Importance of Long-Term Water-Level Data; US Geological Survey: Denver, CO, USA, 2001. [Google Scholar] [CrossRef]
Year | Deviation Annual Precipitation | Deviation Annual Temperature |
---|---|---|
2000 | extremely dry | extremely warm |
2003 | very dry | warm |
2011 | extremely dry | very warm |
2000–2001 | 2003–2004 | 2011–2012 | 1997–2015 | |||||
---|---|---|---|---|---|---|---|---|
Pz 3 | Pz 8 | Pz 3 | Pz 8 | Pz 3 | Pz 8 | Pz 3 | Pz 8 | |
Minimum level (meters above sea level) | 75.37 | 83.51 | 77.16 | 83.18 | 75.57 | 82.32 | 75.37 | 82.32 |
Maximum level (meters above sea level) | 80.63 | 85.92 | 78.96 | 84.64 | 79.81 | 85.34 | 81.21 | 86.64 |
Difference max and min level (m) | 5.26 | 2.41 | 1.80 | 1.46 | 4.24 | 3.02 | 5.84 | 4.32 |
Arithmetic mean of sequence 97–15 (meters above sea level) | 78.36 | 84.30 | 78.36 | 84.30 | 78.36 | 84.30 | 78.36 | 84.30 |
Standard deviation (m) | 1.162 | 0.673 | 0.528 | 0.528 | 1.362 | 1.049 | 1.019 | 0.868 |
Coefficient of variation | 0.014 | 0.008 | 0.006 | 0.006 | 0.017 | 0.012 | 0.013 | 0.010 |
Fe (mg L−1) | Mn (mg L−1) | NH4 (mg L−1) | NO3 (mg L−1) | |
---|---|---|---|---|
MPC | 0.2 | 0.05 | 0.5 | 50 |
Min | 1.22 | 0.08 | 1.67 | 0.02 |
Max | 1.63 | 0.20 | 3.01 | 1.04 |
Fe (mg L−1) | Mn (mg L−1) | NH4 (mg L−1) | NO3 (mg L−1) | |
---|---|---|---|---|
Precipitation (mm) | −0.027962 | −0.2177654 | 0.009258 | 0.04986 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šperac, M.; Zima, J. Assessment of the Impact of Climate Extremes on the Groundwater of Eastern Croatia. Water 2022, 14, 254. https://doi.org/10.3390/w14020254
Šperac M, Zima J. Assessment of the Impact of Climate Extremes on the Groundwater of Eastern Croatia. Water. 2022; 14(2):254. https://doi.org/10.3390/w14020254
Chicago/Turabian StyleŠperac, Marija, and Jasna Zima. 2022. "Assessment of the Impact of Climate Extremes on the Groundwater of Eastern Croatia" Water 14, no. 2: 254. https://doi.org/10.3390/w14020254
APA StyleŠperac, M., & Zima, J. (2022). Assessment of the Impact of Climate Extremes on the Groundwater of Eastern Croatia. Water, 14(2), 254. https://doi.org/10.3390/w14020254