Developing a Combined Drought Index to Monitor Agricultural Drought in Sri Lanka
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Used
2.2.1. Precipitation
2.2.2. Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST)
2.2.3. Evaporative Demand Drought Index (EDDI)
2.2.4. Agricultural Land Use
2.2.5. Crop Yield
2.2.6. Streamflow Data
2.3. Method
- Standardize all the input variables based on long-term weekly mean and standardization values.
- Estimate the eigenvectors/eigenvalues used to transform each variable into separate orthogonal principal components (PCs).
- Determine the percentage contributions (weight) of each input variable in PC1 (a total of 52 grid-based maps of the percentage contribution of each input variable were developed and used as a weight to combine the input variables into a single combined drought index).
- Compute the weighted sum of the input variables using Equation (1) and generate the time series CDI maps, then normalize to minimize the higher degree of variability if it exists in some weeks.
- Assess the spatial and temporal patterns of drought.
- Evaluate the agricultural drought maps using independent datasets, including crop yield and streamflow-based SRI.
2.4. Spatial and Temporal Assessment of Drought
2.5. Evaluation of agCDI
3. Results and Discussions
3.1. Identifying the Historical Drought Years
3.2. Frequency of Occurrence of Drought
3.3. Spatial Patterns of Drought
3.4. Evaluation of Drought with Crop Yield and SRI
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Alahacoon, N.; Edirisinghe, M.; Ranagalage, M. Satellite-Based Meteorological and Agricultural Drought Monitoring for Agricultural Sustainability in Sri Lanka. Sustainability 2021, 13, 3427. [Google Scholar] [CrossRef]
- Prasanna, R.P.I.R. Economic costs of drought and farmers’ adaptation strategies: Evidence from Sri Lanka. Sri Lanka J. Econ. Res. 2018, 5, 61. [Google Scholar] [CrossRef]
- WFP. Sri Lanka-Joint Assessment of Drought Impacts on Food Security and Livelihoods, March 2017. World Food Programme (WFP). 2017. Available online: https://www.wfp.org/publications/Sri_Lanka_Joint_Drought_Assessment (accessed on 5 February 2021).
- Manesha, S.; Vimukthini, S.; Premalal, K.H.M.S. Develop Drought Monitoring in Sri Lanka Using Standard Precipitation Index (SPI). Sri Lanka J. Meteorol 2015, 1, 64–71. [Google Scholar]
- Nianthi, R. Drought Risk Reduction in the Dry Zone of Sri Lanka. In Droughts in Asian Monsoon Region; Emerald Group Publishing: Bingley, UK, 2011; Volume 8, pp. 97–120. [Google Scholar] [CrossRef]
- Rajendram, K. Rainfall variability and drought in the dry and wet zones of Sri Lanka. World Sci. News 2021, 160, 172–189. [Google Scholar]
- Alahacoon, N.; Edirisinghe, M. Spatial Variability of Rainfall Trends in Sri Lanka from 1989 to 2019 as an Indication of Climate Change. ISPRS Int. J. Geo-Inf. 2021, 10, 84. [Google Scholar] [CrossRef]
- Zubair, L. El Niño-southern oscillation influences on rice production in Sri Lanka. Int. J. Clim. 2002, 22, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Rao, C.S.; Gopinath, K.A.; Raju, B.M.K.; Rejani, R.; Venkatesh, G.; Kumari, V.V. Dryland Agriculture in South Asia: Experiences, Challenges and Opportunities. In Innovations in Dryland Agriculture; Springer: Cham, Switzerland, 2016; pp. 345–392. [Google Scholar] [CrossRef]
- World Bank. Agriculture, Forestry, and Fishing, Value Added (% of GDP)–Sri Lanka. 2020. Available online: https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS?locations=LK (accessed on 24 February 2021).
- Ganapuram, S.; Nagarajan, N.; Balaji, V. Village-level drought vulnerability assessment using geographic information system (GIS). Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2013, 3, 1–10. [Google Scholar]
- Ministry of Disaster Management. Sri Lanka National Report on Disaster Risk, Poverty and Human Development Relationship; Ministry of Disaster Management, Vidya Mawatha: Colombo, Sri Lanka, 2009.
- Abeysingha, N.S.; Rajapaksha, U.R.L.N. SPI-Based Spatiotemporal Drought over Sri Lanka. Adv. Meteorol. 2020, 2020, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Barichivich, J.; Osborn, T.; Harris, I.; van der Schrier, G.; Jones, P. Drought: Monitoring global drought using the self-calibrating Palmer Drought Severity Index. Bull. Am. Meteorol. Soc. 2019, 100, S39–S40. [Google Scholar]
- Sanchez, N.; González-Zamora, Á.; Martínez-Fernández, J.; Piles, M.; Pablos, M. Integrated remote sensing approach to global agricultural drought monitoring. Agric. For. Meteorol. 2018, 259, 141–153. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Hayes, M.J.; Svoboda, M.D. Drought Monitoring and Assessment: Status and Trends in the United States. In Drought and Drought Mitigation in Europe; Springer: Berlin, Germany, 2000; pp. 149–160. [Google Scholar] [CrossRef]
- Ntale, H.K.; Gan, T.Y. Drought indices and their application to East Africa. Int. J. Climatol. A J. R. Meteorol. Soc. 2003, 23, 1335–1357. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, Q.; Jiao, M.; Wu, P.; Gao, X.; Ma, M.; Hong, Y. The Temporal-Spatial Characteristics of Drought in the Loess Plateau Using the Remote-Sensed TRMM Precipitation Data from 1998 to 2014. Remote Sens. 2018, 10, 838. [Google Scholar] [CrossRef] [Green Version]
- Rhee, J.; Im, J.; Carbone, G. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar] [CrossRef]
- West, H.; Quinn, N.; Horswell, M. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sens. Environ. 2019, 232, 111291. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Pan, M.; Beck, H.; Coccia, G.; Serrat-Capdevila, A.; Verbist, K. Satellite remote sensing for water resources management: Potential for supporting sustainable development in data-poor regions. Water Resour. Res. 2018, 54, 9724–9758. [Google Scholar] [CrossRef] [Green Version]
- Thenkabail, P.S.; Gamage, M.S.D.N. The Use of Remote Sensing Data for Drought Assessment and Monitoring in Southwest Asia; IWMI: Colombo, Sri Lanka, 2004; Volume 85. [Google Scholar]
- Lyon, B.; Zubair, L.; Ralapanawe, V.; Yahiya, Z. Finescale Evaluation of Drought in a Tropical Setting: Case Study in Sri Lanka. J. Appl. Meteorol. Clim. 2009, 48, 77–88. [Google Scholar] [CrossRef]
- Abeysingha, N.S.; Wickramasuriya, M.G.; Meegastenna, T.J. Assessment of meteorological and hydrological drought; a case study in Kirindi Oya river basin in Sri Lanka. Int. J. Hydrol. Sci. Technol. 2020, 10, 429–447. [Google Scholar] [CrossRef]
- Pani, P.; Alahacoon, N.; Amarnath, G.; Bharani, G.; Mondal, S.; Jeganathan, C. Comparison of SPI and IDSI Applicability for Agriculture Drought Monitoring in Sri Lanka. In Proceedings of the 37th Asian Conference on Remote Sensing, Colombo, Sri Lanka, 17–21 October 2016; pp. 17–21. [Google Scholar]
- Sumanta, D.A.S.; Choudhury, M.R.; Gandhi, S.; Joshi, V. Application of earth observation data and standardized precipitation index-based approach for meteorological drought monitoring, assessment and prediction over Kutch, Gujarat, India. Int. J. Environ. Geoinform. 2016, 3, 24–37. [Google Scholar]
- Herath, H.M.R.C.; Premalal, K.H.M.S.; Kaumudie, A.L.I.; Sanjeewani, D.M.N. Analysis of Standard Precipitation Indices to Identify for Drought Condition in 2015. Sri Lanka J. Meteorol 2015, 1, 20–31. [Google Scholar]
- Gunda, T.; Hornberger, G.M.; Gilligan, J.M. Spatiotemporal Patterns of Agricultural Drought in Sri Lanka: 1881–2010. Int. J. Clim. 2015, 36, 563–575. [Google Scholar] [CrossRef]
- Sai, M.V.R.S.; Murthy, C.S.; Chandrasekar, K.; Jeyaseelan, A.T.; Diwakar, P.G.; Dadhwal, V.K. Agricultural drought: Assessment & monitoring. MAUSAM 2016, 67, 131–142. [Google Scholar] [CrossRef]
- Chathuranga, K.A.M.; Sandamali, K.U.J. Vegetation Condition Index based Agricultural Drought mapping over the past decade of Sri Lanka by utilizing the Satellite Remote Sensing. Built Environ. Spat. Sci. 2020. Available online: http://ir.kdu.ac.lk/handle/345/3251 (accessed on 17 September 2022).
- Jayawardhana, W.G.N.N.; Chathurange, V.M.I. Investigate the sensitivity of the satellite-based agricultural drought indices to monitor the drought condition of paddy and introduction to enhanced multi-temporal drought indices. J. Remote Sens. GIS 2020, 9, 272. [Google Scholar]
- De Silva, M.; Kawasaki, A. Socioeconomic Vulnerability to Disaster Risk: A Case Study of Flood and Drought Impact in a Rural Sri Lankan Community. Ecol. Econ. 2018, 152, 131–140. [Google Scholar] [CrossRef]
- Fragaszy, S.R.; Jedd, T.; Wall, N.; Knutson, C.; Fraj, M.B.; Bergaoui, K.; Svoboda, M.; Hayes, M.; McDonnell, R. Drought Monitoring in the Middle East and North Africa (MENA) Region: Participatory Engagement to Inform Early Warning Systems. Bull. Am. Meteorol. Soc. 2020, 101, E1148–E1173. [Google Scholar] [CrossRef] [Green Version]
- Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al. The drought monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.F.; Wardlow, B.D.; Tadesse, T.; Hayes, M.J.; Reed, B.C. The Vegetation Drought Response Index (VegDRI): A New Integrated Approach for Monitoring Drought Stress in Vegetation. GIScience Remote Sens. 2008, 45, 16–46. [Google Scholar] [CrossRef]
- Tadesse, T.; Champagne, C.; Wardlow, B.D.; Hadwen, T.A.; Brown, J.F.; Demisse, G.B.; Bayissa, Y.A.; Davidson, A.M. Building the vegetation drought response index for Canada (VegDRI-Canada) to monitor agricultural drought: First results. GIScience Remote Sens. 2017, 54, 230–257. [Google Scholar] [CrossRef]
- Keyantash, J.A.; Dracup, J.A. An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resour. Res. 2004, 40, W09304. [Google Scholar] [CrossRef] [Green Version]
- Bayissa, Y.A.; Tadesse, T.; Svoboda, M.; Wardlow, B.; Poulsen, C.; Swigart, J.; Van Andel, S.J. Developing a satellite-based combined drought indicator to monitor agricultural drought: A case study for Ethiopia. GISci. Remote Sens. 2019, 56, 718–748. [Google Scholar] [CrossRef]
- Bayissa, Y.; Tadesse, T.; Demisse, G. Building A High-Resolution Vegetation Outlook Model to Monitor Agricultural Drought for the Upper Blue Nile Basin, Ethiopia. Remote Sens. 2019, 11, 371. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, S.; Wardlow, B.; Bayissa, Y.; Tadesse, T.; Svoboda, M.; Gedam, S. Developing a Remote Sensing-Based Combined Drought Indicator Approach for Agricultural Drought Monitoring over Marathwada, India. Remote Sens. 2020, 12, 2091. [Google Scholar] [CrossRef]
- Zubair, L.; Siriwardhana, M.; Chandimala, J.; Yahiya, Z. Predictability of Sri Lankan rainfall based on ENSO. Int. J. Climatol. A J. R. Meteorol. Soc. 2008, 28, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Naveendrakumar, G.; Vithanage, M.; Kwon, H.-H.; Iqbal, M.C.M.; Pathmarajah, S.; Obeysekera, J. Five Decadal Trends in Averages and Extremes of Rainfall and Temperature in Sri Lanka. Adv. Meteorol. 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Chithranayana, R.; Punyawardena, B. Identification of drought prone agro-ecological regions in Sri Lanka. J. Natl. Sci. Found. Sri Lanka 2008, 36, 117. [Google Scholar] [CrossRef] [Green Version]
- Mapa, R.B.; Kumaragamage, D.; Gunarathne, W.D.L.; Dassanayake, A.R. Land use in Sri Lanka: Past, present and the future. In Proceedings of the 17th World Congress of Social Science (WCSS), Bangkok, Thailand, 14–21 August 2002; pp. 14–21. [Google Scholar]
- Punyawardena, B.V.R. Climate of the Dry Zone of Sri Lanka. In Soils of the Dry Zone of Sri Lanka; Special Publication No.7. Soil Science Society of Sri Lanka; Springer: Berlin/Heidelberg, Germany, 2010; pp. 9–26. [Google Scholar]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A quasi-global precipitation time series for drought monitoring. US Geol. Surv. Data Ser. 2014, 832, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Alahacoon, N.; Edirisinghe, M. A comprehensive assessment of remote sensing and traditional based drought monitoring indices at global and regional scale. Geomat. Nat. Hazards Risk 2022, 13, 762–799. [Google Scholar] [CrossRef]
- Bandurathna, L.B.; Wang, L.; Zhou, X.; Cheng, Y.; Chen, L. Intraseasonal oscillation of the southwest monsoon over Sri Lanka and evaluation of its subseasonal forecast skill. Atmos. Ocean. Sci. Lett. 2021, 14, 100062. [Google Scholar] [CrossRef]
- Bayissa, Y.; Tadesse, T.; Demisse, G.; Shiferaw, A. Evaluation of Satellite-Based Rainfall Estimates and Application to Monitor Meteorological Drought for the Upper Blue Nile Basin, Ethiopia. Remote Sens. 2017, 9, 669. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Zhang, Y.; Ren, X.; Yao, Y.; Hao, Z.; Cai, W. Evaluation of CHIRPS and its application for drought monitoring over the Haihe River Basin, China. Nat. Hazards 2018, 92, 155–172. [Google Scholar] [CrossRef]
- Saeidizand, R.; Sabetghadam, S.; Tarnavsky, E.; Pierleoni, A. Evaluation of CHIRPS rainfall estimates over Iran. Q. J. R. Meteorol. Soc. 2018, 144, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Shangguan, D.; Liu, S.; Ding, Y.; Wang, S.; Wang, X. Evaluation and comparison of CHIRPS and MSWEP daily-precipitation products in the Qinghai-Tibet Plateau during the period of 1981–2015. Atmos. Res. 2019, 230, 104634. [Google Scholar] [CrossRef]
- Abdelmoneim, H.; Soliman, M.R.; Moghazy, H.M. Evaluation of TRMM 3B42V7 and CHIRPS Satellite Precipitation Products as an Input for Hydrological Model over Eastern Nile Basin. Earth Syst. Environ. 2020, 4, 685–698. [Google Scholar] [CrossRef]
- Kogan, F. Remote Sensing for Food Security. In Remote Sensing for Food Security; Springer: Cham, Switzerland, 2019; pp. 51–73. [Google Scholar] [CrossRef]
- Hobbins, M.T.; Wood, A.; McEvoy, D.J.; Huntington, J.L.; Morton, C.; Anderson, M.; Hain, C. The Evaporative Demand Drought Index. Part I: Linking Drought Evolution to Variations in Evaporative Demand. J. Hydrometeorol. 2016, 17, 1745–1761. [Google Scholar] [CrossRef]
- Peters, A.J.; Walter-Shea, E.A.; Ji, L.; Vina, A.; Hayes, M.; Svoboda, M.D. Drought monitoring with NDVI-based standardized vegetation index. Photogramm. Eng. Remote Sens. 2002, 68, 71–75. [Google Scholar]
- Lu, J.; Carbone, G.J.; Gao, P. Mapping the agricultural drought based on the long-term AVHRR NDVI and North American Regional Reanalysis (NARR) in the United States, 1981–2013. Appl. Geogr. 2019, 104, 10–20. [Google Scholar] [CrossRef]
- Nanzad, L.; Zhang, J.; Tuvdendorj, B.; Nabil, M.; Zhang, S.; Bai, Y. NDVI anomaly for drought monitoring and its correlation with climate factors over Mongolia from 2000 to 2016. J. Arid Environ. 2019, 164, 69–77. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; No. 22. pp. 179–183. [Google Scholar]
- FAO. Production Variability and Losses. In Special: Agroclimatic Concepts. Sustainable Development Department (SD), R. Gommes, Ed.; Food Agriculture Organization of the United Nations (FAO): Rome, Italy, 1999; Available online: http://www.fao.org/nr/climpag/agroclim/losses_en.asp (accessed on 6 March 2022).
- Ekanayake, E.M.R.S.B.; Perera, K. Analysis of Drought Severity and Duration Using Copulas in Anuradhapura, Sri Lanka. Br. J. Environ. Clim. Chang. 2014, 4, 312–327. [Google Scholar] [CrossRef]
- Modarres, R.; Sarhadi, A.; Burn, D.H. Changes of extreme drought and flood events in Iran. Glob. Planet. Chang. 2016, 144, 67–81. [Google Scholar] [CrossRef]
- Chandrasekara, S.S.; Kwon, H.-H.; Vithanage, M.; Obeysekera, J.; Kim, T.-W. Drought in South Asia: A Review of Drought Assessment and Prediction in South Asian Countries. Atmosphere 2021, 12, 369. [Google Scholar] [CrossRef]
- Zubair, L.; Yahiya, Z.; Agalawatte, P.; Lokuhetti, R. The El Niño event of 2015/16 in Sri Lanka predictions, preparedness, communication, and impacts. Neela Har. Clim. Chang. Mag. Sri Lanka 2016, II, 40–46. [Google Scholar]
- WFP. Sri Lanka-Initial Rapid Assessment on Drought 2016. World Food Programme (WFP). 2016. Available online: https://www.wfp.org/publications/Sri_Lanka_Drought_Assessment (accessed on 10 April 2022).
Sno | Input Variables | Resolution | Data Length | Source | |
---|---|---|---|---|---|
Spatial | Temporal | ||||
1 | CHIRPS or other satellite or observed rainfall (SPI- at various time scales) | 5 km | daily | 1982-present | University of California, Santa Barbara |
2 | Normalized difference vegetation index (NDVI) | 4 km | weekly | 1982-present | NOAA STAR |
3 | Land surface temperature (LST) | 4 km | weekly | 1982-present | NOAA STAR |
4 | Evaporative demand drought Index (EDDI) | 12.5 km | Monthly | 1982-present | NOAA |
Land Use Type | Area Coverage (%) |
---|---|
Paddy | 13 |
Crop lands | 5 |
Vegetated area | 16 |
Perennial agriculture—rubber | 4 |
Perennial agriculture—tea | 3 |
Perennial agriculture—coconut | 6 |
Woody perennial crops | 17 |
Other land uses | 28 |
Water bodies | 7 |
SPI Values | Drought Category |
---|---|
−2.00 and less | Extreme drought |
−1.50 to −1.99 | Severe drought |
−1.00 to −1.49 | Moderate drought |
0 to −0.99 | Near normal or mild drought |
Above 0 | No drought |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayissa, Y.; Srinivasan, R.; Joseph, G.; Bahuguna, A.; Shrestha, A.; Ayling, S.; Punyawardena, R.; Nandalal, K.D.W. Developing a Combined Drought Index to Monitor Agricultural Drought in Sri Lanka. Water 2022, 14, 3317. https://doi.org/10.3390/w14203317
Bayissa Y, Srinivasan R, Joseph G, Bahuguna A, Shrestha A, Ayling S, Punyawardena R, Nandalal KDW. Developing a Combined Drought Index to Monitor Agricultural Drought in Sri Lanka. Water. 2022; 14(20):3317. https://doi.org/10.3390/w14203317
Chicago/Turabian StyleBayissa, Yared, Raghavan Srinivasan, George Joseph, Aroha Bahuguna, Anne Shrestha, Sophie Ayling, Ranjith Punyawardena, and K. D. W. Nandalal. 2022. "Developing a Combined Drought Index to Monitor Agricultural Drought in Sri Lanka" Water 14, no. 20: 3317. https://doi.org/10.3390/w14203317
APA StyleBayissa, Y., Srinivasan, R., Joseph, G., Bahuguna, A., Shrestha, A., Ayling, S., Punyawardena, R., & Nandalal, K. D. W. (2022). Developing a Combined Drought Index to Monitor Agricultural Drought in Sri Lanka. Water, 14(20), 3317. https://doi.org/10.3390/w14203317