Determination of Water Footprint for the Cotton and Maize Production in the Küçük Menderes Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Water Footprint Calculations
2.3.1. Crop Water Requirement and Effective Rainfall Calculations
2.3.2. WF Calculations
3. Results and Discussion
3.1. Image Classification
3.2. Water Footprint of Cotton Production
3.3. The Water Footprint of Maize Production
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosegrant, M.W.; Ringler, C. Impact on food security and rural development of transferring water out of agriculture. Water Policy 2000, 1, 567–586. [Google Scholar] [CrossRef]
- UNEP Global Environment Outlook E-Geo 4: Environment for Development; United Nations Environment Programme: Valletta, Malta, 2007; Available online: https://www.unep.org/resources/global-environment-outlook-4 (accessed on 9 February 2022).
- Lamastra, L.; Suciu, N.A.; Novelli, E.; Trevisan, M. A new approach to assessing the water footprint of wine: An Italian case study. Sci. Total Environ. 2014, 490, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Sofios, S.; Polyzos, S. Water resources management in Thessaly region (Greece) and their impact on the regional development. J. Environ. Prot. Ecol. 2009, 10, 244. [Google Scholar]
- D’Odorico, P.; Carr, J.; Dalin, C.; Dell’Angelo, J.; Konar, M.; Laio, F.; Ridolfi, L.; Rosa, L.; Suweis, S.; Tamea, S.; et al. Global virtual water trade and the hydrological cycle: Patterns, drivers, and socio-environmental impacts. Environ. Res. Lett. 2019, 14, 053001. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Gerbens-Leenes, W. The water footprint of global food production. Water 2020, 12, 2696. [Google Scholar] [CrossRef]
- WWAP (World Water Assessment Programme). The United Nations World Water Development Report 3: Water in a Changing World WWAP; UNESCO Publishing: Paris, France; Earthscan: London, UK, 2009; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000181993.locale=en (accessed on 15 January 2022).
- Hoekstra, A.Y. Virtual water: An introduction. In Virtual Water Trade, Proceedings of the International Expert Meeting on Virtual Water Trade Value of Water Research Report Series 12; Hoekstra, A.Y., Ed.; UNESCO: Delft, The Netherlands, 2002. [Google Scholar]
- The United Nations World Water Development Report; UN: Geneva, Switzerland, 2021.
- Ene, S.A.; Hoekstra, A.Y.; Mekonnen, M.M.; Teodosiu, C. Water footprint assessment in north-eastern region of Romania. A case study for the Iasi county, Romania. J. Environ. Prot. Ecol. 2012, 13, 506–516. [Google Scholar]
- Bosire, C.K.; Ogutu, J.O.; Said, M.Y.; Krol, M.S.; de Leeuw, J.; Hoekstra, A.Y. Trends and spatial variation in water and land footprints of meat and milk production systems in Kenya. Agric. Ecosyst. Environ. 2015, 205, 36–47. [Google Scholar] [CrossRef]
- Liu, C.; Kroeze, C.; Hoekstra, A.Y.; Gerbens-Leenes, W. Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecol. Ind. 2012, 18, 42–49. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Global grey water footprint and water pollution levels related to anthropogenic nitrogen loads to fresh water. Environ. Sci. Technol. 2015, 49, 12860–12868. [Google Scholar] [CrossRef]
- Zeng, W.; He, J.; Qiu, Y.; Cao, X. Unravelling the Temporal Spatial Distribution of the Agricultural Water Footprint in the Yangtze River Basin (YRB) of China. Water 2021, 13, 2562. [Google Scholar] [CrossRef]
- Li, J.; Xiong, F.; Chen, Z. An integrated life cycle and water footprint assessment of nonfood crops-based bioenergy production. Nat. Sci. Rep. 2021, 11, 3912. [Google Scholar] [CrossRef] [PubMed]
- Ababaei, B.; Ramezani Etedali, H.R. Water footprint assessment of main cereals in Iran. Agric. Water Manag. 2017, 179, 401–411. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Q.; Yang, H. Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality. Ecol. Ind. 2016, 60, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Lovarelli, D.; Bacenetti, J.; Fiala, M. Water Footprint of crop productions: A review. Sci. Total Environ. 2016, 548–549, 236–251. [Google Scholar] [CrossRef]
- Yin, J.L.; Wu, N.; Engel, B.A.; Hua, E.; Zhang, F.Y.; Li, X.; Wang, Y.B. Multi-dimensional evaluation of water footprint and implication for crop production: A case study in Hetao Irrigation District, China. Agric. Water Manag. 2022, 267, 107630. [Google Scholar] [CrossRef]
- Pfister, S.; Bayer, P. Monthly water stress: Spatially and temporally explicit consumptive water footprint of global crop production. J. Clean. Prod. 2014, 73, 52–62. [Google Scholar] [CrossRef]
- Zhuo, L.; Mekonnen, M.M.; Hoekstra, A.Y.; Wada, Y. Inter- and intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River Basin (1961–2009). Adv. Water Resour. 2016, 87, 29–41. [Google Scholar] [CrossRef]
- Xinchun, C.; Mengyang, W.; Xiangping, G.; Yalian, Z.; Yan, G.; Nan, W.; Weiguang, W. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Sci. Total Environ. 2017, 609, 587–597. [Google Scholar] [CrossRef]
- Wu, P.; Wang, Y.; Zhao, X.; Sun, S.; Jin, J. Spatiotemporal variation in water footprint of grain production in China. Front. Agric. Sci. Eng. 2015, 2, 6582–6586. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chen, Y.; Duan, W.; Jiao, L. Evaluation of sustainable water resource use in the Tarim River basin based on water footprint. Sustainability 2022, 14, 10611. [Google Scholar] [CrossRef]
- Bocchiola, D.; Nana, E.; Soncini, A. Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy. Agric. Water Manag. 2013, 116, 50–61. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, X.; Chen, S.; Shao, L.; Sun, H. Changes in water use efficiency and water footprint in grain production over the past 35 years: A case study in the North China Plain. J. Clean. Prod. 2016, 116, 71–79. [Google Scholar] [CrossRef]
- Chu, Y.; Shen, Y.; Yuan, Z. Water footprint of crop production for different crop structures in the Hebei southern plain, North China. Hydrol. Earth Syst. Sci. 2017, 21, 3061–3069. [Google Scholar] [CrossRef] [Green Version]
- WWF. Water Footprint Report; WWF: Istanbul, Türkiye, 2014.
- Romaguera, M.; Hoekstra, A.Y.; Su, Z.; Krol, M.S.; Salama, M.S. Potential of using remote sensing techniques for global assessment of water footprint of crops. Remote. Sens. 2010, 2, 1177–1196. [Google Scholar] [CrossRef] [Green Version]
- Zhao, N.; Ghosh, T.; Currit, N.A.; Elvidge, C.D. Relationships between satellite observed lit area and water footprints. Water Resour. Manag. 2011, 25, 2241–2250. [Google Scholar] [CrossRef]
- Tampouratzi, V.L.; Papadopoulou, M.P.; Karantzalos, K. Remote sensing and empirical methodologies to assess green water footprint in river basin scale. In Proceedings of the 14th International Conference on Environmental Science and Technology, Rhodes, Greece, 3–5 September 2015. [Google Scholar]
- Naresh, R.K.; Timsina, J.; Dwivedi, A.; Kumar, V.; Singh, V.; Shukla, A.K.; Singh, S.P.; Gupta, R.K. Water footprint of rice from both production and consumption perspective assessment using remote sensing under subtropical India: A review. Int. J. Chem. Stud. IJCS 2017, 5, 343–350. [Google Scholar]
- Papadavid, G.; Toulios, L. The use of earth observation methods for estimating regional crop evapotranspiration and yield for water footprint accounting. J.Agric. Sci. 2018, 156, 599–617. [Google Scholar] [CrossRef]
- Basin, K.M. Management Plan, General Directorate of Water Management; DSI: Ankara, Türkiye, 2016. [Google Scholar]
- Image Analyst; Version 10.1; Software for Remote Sensing Data; Intergraph Corporation Graphics Drive: Huntsville, AL, USA, 2010.
- PCI Geomatics; Version 9; Software for Analyizing Images; PCI Geomatics Corporate: Markham, ON, Canada, 2020.
- ArcGIS; ArcMap 10.5, GIS Software; ESRI: Redlands, CA, USA, 2021.
- Liu, J.G.; Mason, P.J. Essential Image Processing and GIS for Remote Sensing; John Wiley & Sons Ltd.: London, UK, 2009; pp. 91–296. [Google Scholar]
- Gong, P. Remote Sensing and Image Analysis Textbook. Available online: http://nature.berkeley.edu/~penggong/textbook/chapter7/html/sect73.htm (accessed on 26 March 2022).
- Foody, G.M.; Campbell, N.A.; Trodd, N.M.; Wood, T.F. Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification. Photogramm. Eng. Remote Sens. 1992, 58, 1335–1341. [Google Scholar]
- Jia, K.; Wu, B.F.; Tian, Y.C.; Zeng, Y.; Li, Q.Z. Vegetation classification method with biochemical composition estimated from remote sensing data. Int. J. Remote Sens. 2011, 32, 9307–9325. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K. Globalization of Water: Sharing the Planet’s Freshwater Resources; Blackwell Publishing: Oxford, UK, 2008; p. 232. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K.; Al Daya, M.M.; Mekonnen, M.M. Water Footprint Manual: State of the Art 2009; Water Footprint Network: Enschede, The Netherlands, 2009; p. 131. [Google Scholar]
- FAO. Food and Agriculture Organization Cropwat 8.0 Model; FAO: Rome, Italy, 2010. [Google Scholar]
- Yıldırım, O. Design of Irrigation Systems; Ankara University Publishing: Ankara, Türkiye, 2013; p. 159. [Google Scholar]
- DSI. General Directorate of State Hydraulic Works, Water Consumption Guide of the Irrigated Crops in Türkiye; Ministry of Agriculture Publishing: Ankara, Türkiye, 2018; p. 185.
- Pushpendra, S.S.; Vivekanand, T.; Kumar, A. In Proceedings of the IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), Jaipur, India, 9–11 May 2014.
- Siva, D.; Bojja, P. MLC based Classification of Satellite Images for Damage Assessment Index in Disaster Management. Int. J. Adv. Trends Comput. Sci. Eng. 2019, 8, 2825–2830. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- TSI. Agricultural Statistics Report; Turkish Statistical Institute: Ankara, Türkiye, 2018; p. 296.
- Swelam, A.; Farag, A.; Ramasamy, S.; Ghandour, A. Effect of climate variability on water footprint of some grain crops under different agro-climatic regions of Egypt. Atmosphere 2022, 13, 1180. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of farm animals and animal products. In Value of Water Research Report Series No. 48, 1: Main, Report; UNESCO-IHE: Delft, The Netherlands, 2010; Volume 2. [Google Scholar]
- Huang, J.; Zhang, H.; Tong, W.; Chen, F. The impact of local crops consumption on the water resources in Beijing. J. Clean. Prod. 2012, 21, 45–50. [Google Scholar] [CrossRef]
- Nana, E.; Corbari, C.; Bocchiola, D. A model for crop yield and water footprint assessment: Study of maize in the Po valley. Agric. Syst. 2014, 127, 139–149. [Google Scholar] [CrossRef]
- Cao, X.; Wang, Y.; Wu, P.; Zhao, X.; Wang, J. An evaluation of the water utilization and grain production of irrigated and rain-fed croplands in China. Sci. Total Environ. 2015, 529, 10–20. [Google Scholar] [CrossRef]
Crop | Kcini1 | Kcmid | Kclate |
---|---|---|---|
Cotton | 0.2 | 1.2 | 0.6 |
Corn (first pr.) | 0.24 | 1.18 | 1.07 |
Corn (silage) | 0.24 | 1.23 | 0.53 |
Corn (silage second pr.) | 0.06 | 1.21 | 0.51 |
Crops | Area (ha) |
---|---|
Cotton | 1260 |
1. Crop Maize | 11,160 |
1. Crop Maize (Silage) | 385 |
2. Crop Maize (Silage) | 39,769 |
Other Crops | 25,300 |
WFgreen | WFblue | WFgrey | WFtotal | |
---|---|---|---|---|
(m3/t) | ||||
Cotton | 292 | 2331 | 155 | 2778 |
WFgreen | WFblue | WFgrey | WFtotal | |
---|---|---|---|---|
(m3/t) | ||||
1. Crop Maize (Grain) | 773 | 3840 | 606 | 5219 |
1. Crop Maize Silage | 209 | 769 | 146 | 1124 |
2. Crop Maize Silage | 192 | 483 | 99 | 774 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esetlili, M.T.; Serbeş, Z.A.; Çolak Esetlili, B.; Kurucu, Y.; Delibacak, S. Determination of Water Footprint for the Cotton and Maize Production in the Küçük Menderes Basin. Water 2022, 14, 3427. https://doi.org/10.3390/w14213427
Esetlili MT, Serbeş ZA, Çolak Esetlili B, Kurucu Y, Delibacak S. Determination of Water Footprint for the Cotton and Maize Production in the Küçük Menderes Basin. Water. 2022; 14(21):3427. https://doi.org/10.3390/w14213427
Chicago/Turabian StyleEsetlili, M. Tolga, Z. Ali Serbeş, Bihter Çolak Esetlili, Yusuf Kurucu, and Sezai Delibacak. 2022. "Determination of Water Footprint for the Cotton and Maize Production in the Küçük Menderes Basin" Water 14, no. 21: 3427. https://doi.org/10.3390/w14213427
APA StyleEsetlili, M. T., Serbeş, Z. A., Çolak Esetlili, B., Kurucu, Y., & Delibacak, S. (2022). Determination of Water Footprint for the Cotton and Maize Production in the Küçük Menderes Basin. Water, 14(21), 3427. https://doi.org/10.3390/w14213427