Stormwater Management in Urban and Rural Areas
Author Contributions
Conflicts of Interest
References
- Mishra, B.K. Storm water Management in the context of Climate Change and Rapid Urbanization: A case of Tokyo Metropolitan. J. Eng. Technol. Plan. 2019, 1, 32–44. [Google Scholar] [CrossRef]
- Yuan, Z.; Liang, C.; Li, D. Urban stormwater management based on an analysis of climate change: A case study of the Hebei and Guangdong provinces. Landsc. Urban Plan. 2018, 177, 217–226. [Google Scholar] [CrossRef]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Performance and implementation of low impact development—A review. Sci. Total Environ. 2017, 607–608, 413–432. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.; Quinn, P.; Barber, N.; Reaney, S. The Role of Attenuation and Land Management in Small Catchments to Remove Sediment and Phosphorus: A Modelling Study of Mitigation Options and Impacts. Water 2018, 10, 1227. [Google Scholar] [CrossRef] [Green Version]
- Hamidi, A.; Ramavandi, B.; Sorial, G.A. Sponge City—An emerging concept in sustainable water resource management: A scientometric analysis. Resour. Environ. Sustain. 2021, 5, 100028. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Huang, M.; Zuo, J.; Rameezdeen, R. Received vs. given: Willingness to pay for sponge city program from a perceived value perspective. J. Clean. Prod. 2020, 256, 120479. [Google Scholar] [CrossRef]
- Özerol, G.; Dolman, N.; Bormann, H.; Bressers, H.; Lulofs, K.; Böge, M. Urban water management and climate change adaptation: A self-assessment study by seven midsize cities in the North Sea Region. Sustain. Cities Soc. 2020, 55, 102066. [Google Scholar] [CrossRef]
- Fowdar, H.S.; Neo, T.H.; Ong, S.L.; Hu, J.; McCarthy, D.T. Performance analysis of a stormwater green infrastructure model for flow and water quality predictions. J. Environ. Manag. 2022, 316, 115259. [Google Scholar] [CrossRef]
- Gimenez-Maranges, M.; Breuste, J.; Hof, A. Sustainable Drainage Systems for transitioning to sustainable urban flood management in the European Union: A review. J. Clean. Prod. 2020, 255, 120191. [Google Scholar] [CrossRef]
- Liu, T.; Lawluvy, Y.; Shi, Y.; Yap, P.S. Low Impact Development (LID) Practices: A Review on Recent Developments, Challenges and Prospects. Water Air Soil Pollut. 2021, 232, 1–36. [Google Scholar] [CrossRef]
- Fogarty, J.; van Bueren, M.; Iftekhar, M.S. Making waves: Creating water sensitive cities in Australia. Water Res. 2021, 202, 117456. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, J.; Chan, F.K.S.; Shao, M.; Zhu, F.; Higgitt, D.L. Interpretation and application of Sponge City guidelines in China. Philos. Trans. R. Soc. A 2020, 378, 20190222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, F.K.S.; Griffiths, J.A.; Higgitt, D.; Xu, S.; Zhu, F.; Tang, Y.T.; Xu, Y.; Thorne, C.R. “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context. Land Use Policy 2018, 76, 772–778. [Google Scholar] [CrossRef]
- Davies, C.; Chen, W.Y.; Sanesi, G.; Lafortezza, R. The European Union roadmap for implementing nature-based solutions: A review. Environ. Sci. Policy 2021, 121, 49–67. [Google Scholar] [CrossRef]
- Veerkamp, C.J.; Schipper, A.M.; Hedlund, K.; Lazarova, T.; Nordin, A.; Hanson, H.I. A review of studies assessing ecosystem services provided by urban green and blue infrastructure. Ecosyst. Serv. 2021, 52, 101367. [Google Scholar] [CrossRef]
- Oral, H.V.; Radinja, M.; Rizzo, A.; Kearney, K.; Andersen, T.R.; Krzeminski, P.; Buttiglieri, G.; Ayral-Cinar, D.; Comas, J.; Gajewska, M.; et al. Management of Urban Waters with Nature-Based Solutions in Circular Cities—Exemplified through Seven Urban Circularity Challenges. Water 2021, 13, 3334. [Google Scholar] [CrossRef]
- Avery, L.M. Rural Sustainable Drainage Systems (RSuDS); Environment Agency: Bristol, UK, 2012.
- Xiao, L.; Robinson, M.; O’Connor, M. Woodland’s role in natural flood management: Evidence from catchment studies in Britain and Ireland. Sci. Total Environ. 2022, 813, 151877. [Google Scholar] [CrossRef]
- van Duin, B.; Zhu, D.Z.; Zhang, W.; Muir, R.J.; Johnston, C.; Kipkie, C.; Rivard, G. Toward More Resilient Urban Stormwater Management Systems—Bridging the Gap from Theory to Implementation. Front. Water 2021, 3, 62. [Google Scholar] [CrossRef]
- Rogers, B.C.; Dunn, G.; Hammer, K.; Novalia, W.; de Haan, F.J.; Brown, L.; Brown, R.R.; Lloyd, S.; Urich, C.; Wong, T.H.F.; et al. Water Sensitive Cities Index: A diagnostic tool to assess water sensitivity and guide management actions. Water Res. 2020, 186, 116411. [Google Scholar] [CrossRef]
- Oral, H.V.; Carvalho, P.; Gajewska, M.; Ursino, N.; Masi, F.; van Hullebusch, E.D.; Kazak, J.K.; Exposito, A.; Cipolletta, G.; Andersen, T.R.; et al. A review of nature-based solutions for urban water management in European circular cities: A critical assessment based on case studies and literature. Blue-Green Syst. 2020, 2, 112–136. [Google Scholar] [CrossRef]
- Le Coent, P.; Graveline, N.; Altamirano, M.A.; Arfaoui, N.; Benitez-Avila, C.; Biffin, T.; Calatrava, J.; Dartee, K.; Douai, A.; Gnonlonfin, A.; et al. Is-it worth investing in NBS aiming at reducing water risks? Insights from the economic assessment of three European case studies. Nat.-Based Solut. 2021, 1, 100002. [Google Scholar] [CrossRef]
- Rodak, C.M.; Moore, T.L.; David, R.; Jayakaran, A.D.; Vogel, J.R. Urban stormwater characterization, control, and treatment. Water Environ. Res. 2019, 91, 1034–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrydstrup, J.; Löwe, R.; Gregersen, I.B.; Koetse, M.; Aerts, J.C.J.H.; de Ruiter, M.; Arnbjerg-Nielsen, K. Assessing the recreational value of small-scale nature-based solutions when planning urban flood adaptation. J. Environ. Manag. 2022, 320, 115724. [Google Scholar] [CrossRef] [PubMed]
- Morales-Torres, A.; Escuder-Bueno, I.; Andrés-Doménech, I.; Perales-Momparler, S. Decision Support Tool for energy-efficient, sustainable and integrated urban stormwater management. Environ. Model. Softw. 2016, 84, 518–528. [Google Scholar] [CrossRef]
- Chapa, F.; Pérez, M.; Hack, J. Experimenting Transition to Sustainable Urban Drainage Systems—Identifying Constraints and Unintended Processes in a Tropical Highly Urbanized Watershed. Water 2020, 12, 3554. [Google Scholar] [CrossRef]
- Kupiec, J.M.; Bednarek, A.; Szklarek, S.; Mankiewicz-Boczek, J.; Serwecinśka, L.; Dąbrowska, J. Evaluation of the Effectiveness of the SED-BIO System in Reducing the Inflow of Selected Physical, Chemical and Biological Pollutants to a Lake. Water 2022, 14, 239. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Lee, J.M.; Jang, H.S.; Park, M.; Min, J.H.; Na, E.H. Analyzing the Impacts of Sewer Type and Spatial Distribution of LID Facilities on Urban Runoff and Non-Point Source Pollution Using the Storm Water Management Model (SWMM). Water 2022, 14, 2776. [Google Scholar] [CrossRef]
- Novaes, C.; Marques, R. Attracting the Private Sector to Urban Stormwater: A Feasible Task or Just a Pipe Dream? Water 2022, 14, 2164. [Google Scholar] [CrossRef]
- Kong, F.; Sun, S.; Lei, T. Understanding China’s Urban Rainstorm Waterlogging and Its Potential Governance. Water 2021, 13, 891. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazak, J.K.; Dąbrowska, J.; Bednarek, A. Stormwater Management in Urban and Rural Areas. Water 2022, 14, 3488. https://doi.org/10.3390/w14213488
Kazak JK, Dąbrowska J, Bednarek A. Stormwater Management in Urban and Rural Areas. Water. 2022; 14(21):3488. https://doi.org/10.3390/w14213488
Chicago/Turabian StyleKazak, Jan K., Jolanta Dąbrowska, and Agnieszka Bednarek. 2022. "Stormwater Management in Urban and Rural Areas" Water 14, no. 21: 3488. https://doi.org/10.3390/w14213488