Regulation of Abiotic Factors on Aboveground Biomass and Biodiversity of Ditch Slope in Coastal Farmland
Abstract
:1. Introduction
2. Study Area Overview and Methodology
2.1. Study Area Overview
2.2. Sampling Design
2.3. Determination of Soil Properties and Species Diversity
2.4. Data Processing
3. Results
3.1. Spatial Distribution Characteristics of Soil Physical and Chemical Properties
3.2. Spatial Distribution Characteristics of Vegetation Biomass and Diversity
3.3. Correlation Analysis of Plant Diversity and Soil Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, Y.; Chen, S.; Ji, H.; Fan, Y.; Li, P. The modern Yellow River Delta in transition: Causes and implications. Mar. Geol. 2021, 436, 106476. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, G.; Zhao, Z.; Wu, C.; Yu, B. Using soil erosion to locate nonpoint source pollution risks in coastal zones: A case study in the Yellow River Delta, China. Environ. Pollut. 2021, 283, 117117. [Google Scholar] [CrossRef] [PubMed]
- Herzon, I.; Helenius, J. Agricultural drainage ditches, their biological importance and functioning. Biol. Conserv. 2008, 141, 1171–1183. [Google Scholar] [CrossRef]
- Li, S.; Wu, M.; Jia, Z.; Luo, W.; Fei, L.; Li, J. Influence of different controlled drainage strategies on the water and salt environment of ditch wetland: A model-based study. Soil Tillage Res. 2020, 208, 104894. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, W.; Liu, Z.; Yang, Y.; Luo, W.; Zhou, H.; Zhang, Y. Changes in species diversity, aboveground biomass, and vegetation cover along an afforestation successional gradient in a semiarid desert steppe of China. Ecol. Eng. 2015, 81, 301–311. [Google Scholar] [CrossRef]
- Chun, J.-H.; Ali, A.; Lee, C.-B. Topography and forest diversity facets regulate overstory and understory aboveground biomass in a temperate forest of South Korea. Sci. Total Environ. 2020, 744, 140783. [Google Scholar] [CrossRef]
- Bhat, J.A.; Kumar, M.; Negi, A.; Todaria, N.; Malik, Z.A.; Pala, N.A.; Kumar, A.; Shukla, G. Altitudinal gradient of Species diversity and community of woody vegetation along altitudinal gradient of the Western Himalayas. Glob. Ecol. Conserv. 2020, 24, e01302. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, G.; Yin, F.; Wang, S.; Li, L. Relationship between biodiversity and ecosystem multifunctionality along the elevation gradient in alpine meadows on the eastern Qinghai-Tibetan plateau. Ecol. Indic. 2022, 141, 109097. [Google Scholar] [CrossRef]
- Yang, Y.; Dou, Y.; An, S.; Zhu, Z. Abiotic and biotic factors modulate plant biomass and root/shoot (R/S) ratios in grassland on the Loess Plateau, China. Sci. Total Environ. 2018, 636, 621–631. [Google Scholar] [CrossRef]
- Sewerniak, P.; Puchałka, R. Topographically induced variation of microclimatic and soil conditions drives ground vegetation diversity in managed Scots pine stands on inland dunes. Agric. For. Meteorol. 2020, 291, 108054. [Google Scholar] [CrossRef]
- Hou, X.-Y.; Liu, S.-L.; Cheng, F.-Y.; Su, X.-K.; Dong, S.-K.; Zhao, S.; Liu, G.-H. Variability of environmental factors and the effects on vegetation diversity with different restoration years in a large open-pit phosphorite mine. Ecol. Eng. 2018, 127, 245–253. [Google Scholar] [CrossRef]
- Teixeira, H.M.; Cardoso, I.M.; Bianchi, F.J.; Silva, A.D.C.; Jamme, D.; Peña-Claros, M. Linking vegetation and soil functions during secondary forest succession in the Atlantic forest. For. Ecol. Manag. 2019, 457, 117696. [Google Scholar] [CrossRef]
- Al-Robai, S.A.; Mohamed, H.A.; Ahmed, A.A.; Al-Khulaidi, A.W.A. Effects of elevation gradients and soil components on the vegetation density and species diversity of Alabna escarpment, southwestern Saudi Arabia. Acta Ecol. Sin. 2018, 39, 202–211. [Google Scholar] [CrossRef]
- Li, Y.; Dong, S.; Liu, S.; Su, X.; Wang, X.; Zhang, Y.; Zhao, Z.; Gao, X.; Li, S.; Tang, L. Relationships between plant diversity and biomass production of alpine grasslands are dependent on the spatial scale and the dimension of biodiversity. Ecol. Eng. 2018, 127, 375–382. [Google Scholar] [CrossRef]
- Ali, A.; Yan, E.-R. The forest strata-dependent relationship between biodiversity and aboveground biomass within a subtropical forest. For. Ecol. Manag. 2017, 401, 125–134. [Google Scholar] [CrossRef]
- Kuenzer, C.; Ottinger, M.; Liu, G.; Sun, B.; Baumhauer, R.; Dech, S. Earth observation-based coastal zone monitoring of the Yellow River Delta: Dynamics in China’s second largest oil producing region over four decades. Appl. Geogr. 2014, 55, 92–107. [Google Scholar] [CrossRef]
- Jiao, S.; Zhang, M.; Wang, Y.; Liu, J.; Li, Y. Variation of soil nutrients and particle size under different vegetation types in the Yellow River Delta. Acta Ecol. Sin. 2014, 34, 148–153. [Google Scholar] [CrossRef]
- Zhang, L.; Song, L.; Zhang, L.; Shao, H.; Chen, X.; Yan, K. Seasonal dynamics in nitrous oxide emissions under different types of vegetation in saline-alkaline soils of the Yellow River Delta, China and implications for eco-restoring coastal wetland. Ecol. Eng. 2013, 61, 82–89. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel Methods Improve Prediction of Species’ Distributions from Occurrence Data. Ecography 2006, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liang, J.; Zhou, Z.; Lv, R. Relationship between Distribution Characteristics of Soil Physicochemical Properties and Vegetation in Desert Riparian Forest in the Middle Reaches of the Tarim River. Res. Soil Water Conserv. 2016, 23, 6–12. [Google Scholar]
- Sherman, R.; Mullen, R.; Haomin, L.; Zhendong, F.; Yi, W. Spatial patterns of plant diversity and communities in Alpine ecosystems of the Hengduan Mountains, northwest Yunnan, China. J. Plant. Ecol. 2008, 1, 117–136. [Google Scholar] [CrossRef]
- Måren, I.E.; Karki, S.; Prajapati, C.; Yadav, R.K.; Shrestha, B.B. Facing north or south: Does slope aspect impact forest stand characteristics and soil properties in a semiarid trans-Himalayan valley? J. Arid Environ. 2015, 121, 112–123. [Google Scholar] [CrossRef] [Green Version]
- Schittko, C.; Onandia, G.; Bernard-Verdier, M.; Heger, T.; Jeschke, J.M.; Kowarik, I.; Maaß, S.; Joshi, J. Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems. J. Ecol. 2022, 110, 916–934. [Google Scholar] [CrossRef]
- Ricotta, C.; Szeidl, L.; Pavoine, S. Towards a unifying framework for diversity and dissimilarity coefficients. Ecol. Indic. 2021, 129, 107971. [Google Scholar] [CrossRef]
- Le Bagousse-Pinguet, Y.; Soliveres, S.; Gross, N.; Torices, R.; Berdugo, M.; Maestre, F.T. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl. Acad. Sci. 2019, 116, 8419–8424. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.R.; Mallik, A.U.; Braithwaite, N.T.; Biswas, P.L. Effects of disturbance type and microhabitat on species and functional diversity relationship in stream-bank plant communities. For. Ecol. Manag. 2018, 432, 812–822. [Google Scholar] [CrossRef]
- Harpole, W.S.; Tilman, D. Grassland species loss resulting from reduced niche dimension. Nature 2007, 446, 791–793. [Google Scholar] [CrossRef]
- Zheng, X.; Zhao, J.; Zhang, Y.; Wu, Y.; Jin, T.; Liu, G. Variation of Grassland Biomass and Its Relationships with Environmental Factors in Hulunbeier, Inner Mongolia. J. Ecol 2007, 04, 533–538. [Google Scholar]
- Yuan, Z.-Q.; Fang, C.; Zhang, R.; Li, F.-M.; Javaid, M.M.; Janssens, I.A. Topographic influences on soil properties and aboveground biomass in lucerne-rich vegetation in a semi-arid environment. Geoderma 2019, 344, 137–143. [Google Scholar] [CrossRef]
- Principe, R.E. Ecological effects of small dams on benthic macroinvertebrate communities of mountain streams (Córdoba, Argentina). Ann. de Limnol Int. J. Limnol. 2010, 46, 77–91. [Google Scholar] [CrossRef] [Green Version]
- Zang, M.; Liu, W.; Zhu, M.; Qin, Y.; Li, R. Responses of Soil Properties and Vegetation Biomass to Slope Aspect and Position in Forest-Steppe Zone of the Qilian Mountains. Glacier Frozen Soil 2021, 43, 233–241. [Google Scholar]
- Yang, L.; Chen, S.; An, J.; Zhao, F.; Han, X.; Feng, Y.; Yang, G.; Ren, G. Relationships among Community Diversity and Soil Organic Matter, Total Nitrogen under Different Vegetation Types in the Gully Region of Loess Region. Acta Agrestia Sin. 2014, 22, 291–298. [Google Scholar]
- Wang, S.; Chen, G.; Bai, Y.; Zhou, G.; Sun, J. Interrelation between plant species diversity and soil environmental factors in bird island of Qinghai Lake. Ying Yong Sheng Tai Xue Bao. 2005, 16, 186–188. [Google Scholar] [PubMed]
- He, K.; Huang, Y.; Qi, Y.; Sheng, Z.; Chen, H. Effects of nitrogen addition on vegetation and soil and its linkages to plant diversity and productivity in a semi-arid steppe. Sci. Total Environ. 2021, 778, 146299. [Google Scholar] [CrossRef]
- Al-Gifri, A.N.; Kasem, W.T.; Shalabi, L.F. Vegetation Structure and Diversity of Wadi Wasaa, Jazan, Saudi Arabia. J. Adv. Biol. Biotechnol. 2018, 18, 1–16. [Google Scholar] [CrossRef]
Sampling Point | Slope Direction | Slope Position | Soil Depth cm | Bulk Density g/cm3 | pH | Total Salt Content g/kg | Water Content % | Soil Organic Matter Content g/kg | Total Nitrogen Content g/kg | Available Phosphorus Content mg/kg | Available Potassium Content mg/kg |
---|---|---|---|---|---|---|---|---|---|---|---|
Sampling point 1 | North | Upper | 0–20 | 1.50 ± 0.03 b | 8.17 ± 0.11 bc | 4.03 ± 0.42 a | 17.97 ± 2.42 c | 7.09 ± 0.88 a | 0.57 ± 0.08 a | 4.29 ± 0.38 a | 185.67 ± 19.45 a |
20–40 | 1.52 ± 0.05 ab | 8.11 ± 0.10 c | 3.12 ± 0.43 b | 22.71 ± 3.08 b | 4.61 ± 0.64 b | 0.35 ± 0.04 b | 2.58 ± 0.25 c | 99.67 ± 9.24 cd | |||
Middle | 0–20 | 1.51 ± 0.05 ab | 8.13 ± 0.11 bc | 2.71 ± 0.36 bc | 23.87 ± 2.36 b | 6.41 ± 0.68 a | 0.55 ± 0.07 a | 4.09 ± 0.49 a | 138.33 ± 18.47 b | ||
20–40 | 1.53 ± 0.04 ab | 8.21 ± 0.08 abc | 2.38 ± 0.33 cd | 26.28 ± 3.00 b | 4.56 ± 0.55 b | 0.34 ± 0.03 b | 2.74 ± 0.26 c | 83.78 ± 2.82 d | |||
Bottom | 0–20 | 1.54 ± 0.05 ab | 8.29 ± 0.17 ab | 2.25 ± 0.27 d | 30.74 ± 3.03 a | 6.33 ± 0.73 a | 0.52 ± 0.05 a | 3.23 ± 0.32 b | 110.78 ± 9.48 c | ||
20–40 | 1.56 ± 0.03 a | 8.35 ± 0.19 a | 1.95 ± 0.25 d | 30.95 ± 2.91 a | 3.96 ± 0.47 b | 0.29 ± 0.04 b | 2.81 ± 0.33 bc | 65.33 ± 6.94 e | |||
South | Upper | 0–20 | 1.46 ± 0.03 b | 8.15 ± 0.17 b | 4.14 ± 0.34 a | 21.60 ± 2.55 c | 4.57 ± 0.63 b | 0.45 ± 0.06 b | 4.29 ± 0.42 b | 139.56 ± 16.99 a | |
20–40 | 1.48 ± 0.03 ab | 8.14 ± 0.14 b | 3.97 ± 0.47 a | 22.60 ± 2.22 c | 4.41 ± 0.57 b | 0.29 ± 0.03 c | 1.79 ± 0.21 d | 88.44 ± 8.18 c | |||
Middle | 0–20 | 1.47 ± 0.03 b | 8.28 ± 0.13 ab | 2.72 ± 0.38 b | 26.95 ± 2.45 b | 5.58 ± 1.10 b | 0.49 ± 0.06 b | 2.81 ± 0.30 c | 135.44 ± 12.72 a | ||
20–40 | 1.50 ± 0.03 ab | 8.26 ± 0.13 ab | 2.10 ± 0.25 c | 27.38 ± 3.81 b | 4.51 ± 0.44 b | 0.35 ± 0.03 c | 1.85 ± 0.21 d | 94.11 ± 11.60 c | |||
Bottom | 0–20 | 1.49 ± 0.04 ab | 8.34 ± 0.09 a | 2.16 ± 0.28 c | 30.48 ± 2.59 ab | 7.20 ± 0.86 a | 0.60 ± 0.08 a | 6.36 ± 0.59 a | 120.11 ± 8.69 b | ||
20–40 | 1.52 ± 0.03 a | 8.37 ± 0.11 a | 2.08 ± 0.26 c | 32.36 ± 3.29 a | 5.30 ± 0.65 b | 0.31 ± 0.03 c | 2.89 ± 0.32 c | 81.44 ± 7.57 c | |||
Sampling point 2 | North | Upper | 0–20 | 1.50 ± 0.06 a | 8.65 ± 0.40 a | 5.64 ± 0.57 a | 9.89 ± 1.30 d | 6.88 ± 0.78 a | 0.54 ± 0.06 a | 8.41 ± 1.16 b | 599.33 ± 58.88 a |
20–40 | 1.52 ± 0.03 a | 8.54 ± 0.24 a | 5.44 ± 0.44 ab | 15.51 ± 1.74 c | 5.10 ± 0.48 b | 0.31 ± 0.04 c | 3.75 ± 0.51 e | 517.00 ± 51.67 bc | |||
Middle | 0–20 | 1.49 ± 0.02 a | 8.51 ± 0.17 a | 5.73 ± 0.52 a | 16.81 ± 2.21 c | 4.89 ± 0.46 b | 0.34 ± 0.04 c | 9.45 ± 1.03 a | 470.78 ± 63.89 c | ||
20–40 | 1.53 ± 0.06 a | 8.56 ± 0.20 a | 4.85 ± 0.30 bc | 19.81 ± 2.34 bc | 2.18 ± 0.29 b | 0.31 ± 0.03 c | 4.78 ± 0.47 d | 380.89 ± 41.05 d | |||
Bottom | 0–20 | 1.52 ± 0.03 a | 8.55 ± 0.32 a | 5.79 ± 0.44 a | 17.26 ± 2.37 b | 5.07 ± 0.51 b | 0.40 ± 0.05 b | 8.40 ± 0.27 b | 594.78 ± 63.36 a | ||
20–40 | 1.54 ± 0.02 a | 8.53 ± 0.22 a | 4.60 ± 0.57 d | 23.38 ± 1.91 a | 4.88 ± 0.51 c | 0.31 ± 0.04 c | 6.62 ± 0.64 c | 557.78 ± 67.88 ab | |||
South | Upper | 0–20 | 1.40 ± 0.05 d | 8.75 ± 0.50 a | 5.75 ± 0.77 a | 9.76 ± 1.09 d | 6.75 ± 0.61 b | 0.45 ± 0.05 b | 6.36 ± 0.50 b | 491.33 ± 34.79 ab | |
20–40 | 1.45 ± 0.06 cd | 8.64 ± 0.35 a | 5.02 ± 0.63 b | 13.49 ± 1.36 cd | 4.66 ± 0.43 c | 0.29 ± 0.03 c | 4.39 ± 0.42 c | 479.50 ± 51.30 abc | |||
Middle | 0–20 | 1.46 ± 0.05 c | 8.55 ± 0.36 a | 5.72 ± 0.54 a | 12.07 ± 1.62 c | 9.12 ± 1.07 a | 0.54 ± 0.06 a | 4.45 ± 0.33 c | 520.89 ± 58.34 a | ||
20–40 | 1.49 ± 0.03 bc | 8.55 ± 0.36 a | 4.52 ± 0.15 bc | 18.30 ± 1.78 b | 3.13 ± 0.39 d | 0.25 ± 0.03 c | 3.66 ± 0.34 c | 459.44 ± 39.15 bc | |||
Bottom | 0–20 | 1.53 ± 0.03 ab | 8.35 ± 0.36 a | 3.65 ± 0.49 d | 22.59 ± 2.70 a | 3.76 ± 0.53 d | 0.26 ± 0.03 c | 9.69 ± 1.26 a | 440.00 ± 41.15 bc | ||
20–40 | 1.55 ± 0.03 a | 8.45 ± 0.40 a | 3.97 ± 0.27 cd | 22.73 ± 2.64 a | 3.56 ± 0.47 d | 0.25 ± 0.03 c | 5.78 ± 0.70 b | 431.00 ± 52.93 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, S.; Jiang, B.; Zhu, Y.; Niu, X.; Li, C.; Wu, Z.; Chen, W. Regulation of Abiotic Factors on Aboveground Biomass and Biodiversity of Ditch Slope in Coastal Farmland. Water 2022, 14, 3547. https://doi.org/10.3390/w14213547
Wang Y, Wang S, Jiang B, Zhu Y, Niu X, Li C, Wu Z, Chen W. Regulation of Abiotic Factors on Aboveground Biomass and Biodiversity of Ditch Slope in Coastal Farmland. Water. 2022; 14(21):3547. https://doi.org/10.3390/w14213547
Chicago/Turabian StyleWang, Yueying, Songtao Wang, Bing Jiang, Yihao Zhu, Xuchang Niu, Changjiang Li, Zhen Wu, and Weifeng Chen. 2022. "Regulation of Abiotic Factors on Aboveground Biomass and Biodiversity of Ditch Slope in Coastal Farmland" Water 14, no. 21: 3547. https://doi.org/10.3390/w14213547
APA StyleWang, Y., Wang, S., Jiang, B., Zhu, Y., Niu, X., Li, C., Wu, Z., & Chen, W. (2022). Regulation of Abiotic Factors on Aboveground Biomass and Biodiversity of Ditch Slope in Coastal Farmland. Water, 14(21), 3547. https://doi.org/10.3390/w14213547