Critical Evaluation of Different Passive Sampler Materials and Approaches for the Recovery of SARS-CoV-2, Faecal-Indicator Viruses and Bacteria from Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Passive Sampler Selection
2.2. Characterisation of Passive Sampler Materials
2.3. Viral Test Materials
2.4. Testing the Different Passive Sampler Materials under Laboratory Conditions
2.5. Testing the Different Passive Sampler Materials under Field Conditions
2.5.1. Field Trial 1-Material Selection
2.5.2. Field Trial 2-Deployment Time Selection
2.5.3. Field Trial 3-Housing Selection
2.6. Viral RNA/DNA Recovery and Extraction
2.7. RT-qPCR Analysis
2.8. DNA Extraction, 16S rRNA Gene Amplicon Sequencing and Analysis
2.9. Statistical Analysis
3. Results
3.1. Characterisation of the Passive Sampler Materials
3.2. Viral Recovery by the Passive Sampler Materials under Laboratory Conditions
3.3. Viral Recovery of the Different Passive Sampler Materials in Field Trials
3.4. Profiling Bacterial Community Composition from Different Passive Sampler Materials and Deployment Times
3.5. Influence of Deployment Time on Passive Sampler Efficiency
3.6. Performance of the Different Sorbent Materials in the Torpedo Sampler
4. Discussion
4.1. Charge Properties of SARS-CoV-2 in Relation to Capture by Passive Sampler Materials
4.2. Success of Different Passive Sampler Materials to Capture SARS-CoV-2 from Wastewater
5. Conclusions and Future Perspectives
- In this study we use qPCR-based approaches for the quantification of SARS-CoV-2 and the faecal marker virus, crAssphage. While successful, it would be useful to interface the passive samplers with other analysis approaches (e.g., field-based RT-LAMP), to assess their suitability for remote deployment.
- There is increasing interest in the analysis of SARS-CoV-2 variants of concern or interest in wastewater. Additional research is therefore required to investigate the quality of RNA recovered from passive samplers in comparison to that recovered from refrigerated autosamplers.
- The trials detailed here were undertaken in well mixed wastewater at central wastewater treatment works. Further trials are required using a range of materials at close-to-source locations (e.g., prisons, residential blocks, hospitals) where the wastewater is more temporally and spatially (more intact faecal material) heterogenous.
- Further tests are needed to ascertain the relative contribution of particulate trapping on the retention of SARS-CoV-2 by passive samplers relative to that electrostatically held to the passive sampler surface. In this context, a direct comparison is needed between electropositive and electronegative sampler materials at retaining viruses and their associated genetic material.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sims, N.; Kasprzyk-Hordern, B. Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environ. Int. 2020, 139, 105689. [Google Scholar] [CrossRef] [PubMed]
- Polo, D.; Quintela-Baluja, M.; Corbishley, A.; Jones, D.L.; Singer, A.C.; Graham, D.W.; Romalde, J.L. Making waves: Wastewater-based epidemiology for COVID-19-approaches and challenges for surveillance and prediction. Water Res. 2020, 186, 116404. [Google Scholar] [CrossRef] [PubMed]
- Kirby, A.E.; Walters, M.S.; Jennings, W.C.; Fugitt, R.; LaCross, N.; Mattioli, M.; Marsh, Z.A.; Roberts, V.A.; Mercante, J.W.; Yoder, J.; et al. Using wastewater surveillance data to support the COVID-19 response-United States, 2020–2021. Morb. Mortal. Wkly. Rep. 2021, 70, 1242. [Google Scholar] [CrossRef] [PubMed]
- Lesimple, A.; Jasim, S.Y.; Johnson, D.J.; Hilal, N. The role of wastewater treatment plants as tools for SARS-CoV-2 early detection and removal. J. Water Process Eng. 2020, 38, 101544. [Google Scholar] [CrossRef]
- Hillary, L.S.; Farkas, K.; Maher, K.H.; Lucaci, A.; Thorpe, J.; Distaso, M.A.; Gaze, W.H.; Paterson, S.; Burke, T.; Connor, T.R.; et al. Monitoring SARS-CoV-2 in municipal wastewater to evaluate the success of lockdown measures for controlling COVID-19 in the UK. Water Res. 2021, 200, 117214. [Google Scholar] [CrossRef] [PubMed]
- Morvan, M.; Jacomo, A.L.; Souque, C.; Wade, M.J.; Hoffmann, T.; Pouwels, K.; Lilley, C.; Singer, A.C.; Porter, J.; Evens, N.P.; et al. An analysis of 45 large-scale wastewater sites in England to estimate SARS-CoV-2 community prevalence. Nat. Commun. 2022, 13, 1–9. [Google Scholar] [CrossRef] [PubMed]
- van Nuijs, A.L.N.; Lai, F.Y.; Lai Been, F.; Andres-Costa, M.J.; Barron, L.; Baz-Lomba, J.A.; Berset, J.D.; Benaglia, L. Multi-year inter-laboratory exercises for the analysis of illicit drugs and metabolites in wastewater: Development of a quality control system. TRAC-Trends Anal. Chem. 2018, 103, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Rocha, J.; Cacace, D.; Kampouris, I.; Guilloteau, H.; Jager, T.; Marano, R.B.M.; Karaolia, P.; Manaia, M.; Merlin, C.; Fatta-Kassinos, D.; et al. Inter-laboratory calibration of quantitative analyses of antibiotic resistance genes. J. Environ. Chem. Eng. 2020, 8, 102214. [Google Scholar] [CrossRef]
- Wade, M.J.; Jacomo, A.L.; Armenise, E.; Brown, M.R.; Bunce, J.T.; Cameron, G.J.; Fang, Z.; Farkas, K.; Gilpin, D.F.; Graham, D.W.; et al. Understanding and managing uncertainty and variability for wastewater monitoring beyond the pandemic: Lessons learned from the United Kingdom national COVID-19 surveillance programmes. J. Hazard. Mater. 2022, 424, 127456. [Google Scholar] [CrossRef]
- Lu, D.N.; Huang, Z.R.; Luo, J.Y.; Zhang, X.Q.; Sha, S. Primary concentration-The critical step in implementing the wastewater based epidemiology for the COVID-19 pandemic: A mini-review. Sci. Total Environ. 2020, 747, 141245. [Google Scholar] [CrossRef]
- Sapula, S.A.; Whittall, J.J.; Pandopulos, A.J.; Gerber, C.; Venter, H. An optimized and robust PEG precipitation method for detection of SARS-CoV-2 in wastewater. Sci. Total Environ. 2021, 785, 147270. [Google Scholar] [CrossRef] [PubMed]
- Flood, M.T.; D’Souza, N.; Rose, J.B.; Aw, T.G. Methods Evaluation for Rapid Concentration and quantification of SARS-CoV-2 in raw wastewater using droplet digital and quantitative RT-PCR. Food Environ. Virol. 2021, 13, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.S.; Nandeshwar, R.; Lad, S.B.; Megha, K.; Mangat, M.; Butterworth, A.; Knapp, C.W.; Knapp, M.; Hoskisson, P.A.; Corrigan, D.K.; et al. Electrochemical sensing of SARS-CoV-2 amplicons with PCB electrodes. Sens. Actuators B-Chem. 2021, 343, 130169. [Google Scholar] [CrossRef]
- Spurbeck, R.R.; Minard-Smith, A.; Catlin, L. Feasibility of neighborhood and building scale wastewater-based genomic epidemiology for pathogen surveillance. Sci. Total Environ. 2021, 789, 147829. [Google Scholar] [CrossRef] [PubMed]
- Sherchan, S.P.; Shahin, S.; Patel, J.; Ward, L.M.; Tandukar, S.; Uprety, S.; Schmitz, B.W.; Ahmed, W.; Simpson, S.; Gyawali, P. Occurrence of SARS-CoV-2 RNA in six municipal wastewater treatment plants at the early stage of COVID-19 pandemic in the United States. Pathogens 2021, 10, 798. [Google Scholar] [CrossRef]
- Rusiñol, M.; Zammit, I.; Itarte, M.; Forés, E.; Martínez-Puchol, S.; Girones, R.; Borrego, C.; Corominas, L.; Bofill-Mas, S. Monitoring waves of the COVID-19 pandemic: Inferences from WWTPs of different sizes. Sci. Total Environ. 2021, 787, 147463. [Google Scholar] [CrossRef]
- Gerrity, D.; Papp, K.; Stoker, M.; Sims, A.; Frehner, W. Early-pandemic wastewater surveillance of SARS-CoV-2 in Southern Nevada: Methodology, occurrence, and incidence/prevalence considerations. Water Res. X 2021, 10, 100086. [Google Scholar] [CrossRef]
- Baldovin, T.; Amoruso, I.; Fonzo, M.; Buja, A.; Baldo, V.; Cocchio, S.; Bertoncello, C. SARS-CoV-2 RNA detection and persistence in wastewater samples: An experimental network for COVID-19 environmental surveillance in Padua, Veneto Region., NE Italy. Sci. Total Environ. 2021, 760, 143329. [Google Scholar] [CrossRef]
- Betancourt, W.Q.; Schmitz, B.W.; Innes, G.K.; Prasek, S.M.; Pogreba Brown, K.M.; Stark, E.R.; Foster, A.R.; Sprissler, R.S.; Harris, D.T.; Sherchan, S.P.; et al. COVID-19 containment on a college campus via wastewater-based epidemiology, targeted clinical testing and an intervention. Sci. Total Environ. 2021, 779, 146408. [Google Scholar] [CrossRef]
- Hayes, E.K.; Sweeney, C.L.; Anderson, L.E.; Li, B.; Erjavec, G.B.; Gouthro, M.T.; Krkosek, W.H.; Stoddart, K.; Gagnon, G.A. A novel passive sampling approach for SARS-CoV-2 in wastewater in a Canadian province with low prevalence of COVID-19. Environ. Sci.-Water Res. Technol. 2021, 7, 1576–1586. [Google Scholar] [CrossRef]
- Blanco, A.; Abid, I.; Al-Otaibi, N.; Pérez-Rodríguez, F.J.; Fuentes, C.; Guix, S.; Pintó, R.M.; Bosch, A. Glass wool concentration optimization for the detection of enveloped and non-enveloped waterborne viruses. Food Environ. Virol. 2019, 11, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Jálová, V.; Jarošová, B.; Bláha, L.; Giesy, J.P.; Ocelka, T.; Grabic, R.; Jurčíková, J.; Vrana, B.; Hilscherová, K. Estrogen-, androgen- and aryl hydrocarbon receptor mediated activities in passive and composite samples from municipal waste and surface waters. Environ. Int. 2013, 59, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.; Qiu, Y.; Yu, J.; Lee, B.E.; McCarthy, D.T.; Pang, X. Comparison of auto sampling and passive sampling methods for SARS-CoV-2 detection in wastewater. Pathogens 2022, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Gell, P.; Hobbs, B.; Allison, V. An outbreak of water-borne typhoid investigated by bacteriophage typing and ‘selective’ sewage examination. J. Hyg. 1945, 44, 120–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, B. The detection of paratyphoid carriers in towns by means of sewage examination. Mon. Bull. Minist. Health Pub. Health Lab. Serv. 1948, 7, 241–248. [Google Scholar]
- Moore, B.; Perry, E.L.; Chard, S.T. A survey by the sewage swab method of latent enteric infection in an urban area. J. Hyg. 1952, 50, 137–156. [Google Scholar] [CrossRef] [Green Version]
- Folan, M.E. Sewage swab investigation of typhoid in a mental hosp. J. Ir. Med. Assoc. 1952, 31, 321–323. [Google Scholar]
- Barrett, T.J.; Blake, P.A.; Morris, G.K.; Puhr, N.D.; Bradford, H.B.; Wells, J.G. Use of Moore swabs for isolating Vibrio cholerae from sewage. J. Clin. Microbiol. 1980, 11, 385–388. [Google Scholar] [CrossRef] [Green Version]
- Moschet, C.; Vermeirssen, E.L.; Singer, H.; Stamm, C.; Hollender, J. Evaluation of in-situ calibration of Chemcatcher passive samplers for 322 micropollutants in agricultural and urban affected rivers. Water Res. 2015, 71, 306–317. [Google Scholar] [CrossRef]
- Sikorski, M.J.; Levine, M.M. Reviving the “Moore Swab”: A classic environmental surveillance tool involving filtration of flowing surface water and sewage water to recover typhoidal salmonella bacteria. Appl. Environ. Microbiol. 2020, 86, e00060-20. [Google Scholar] [CrossRef]
- Rusina, T.P.; Smedes, F.; Klanova, J.; Booij, K.; Holoubek, I. Polymer selection for passive sampling: A comparison of critical properties. Chemosphere 2007, 68, 1344–1351. [Google Scholar] [CrossRef] [PubMed]
- Schang, C.; Crosbie, N.D.; Nolan, M.; Poon, R.; Wang, M.; Jex, A.; John, N.; Baker, L.; Scales, P.; Schmidt, J.; et al. Passive sampling of SARS-CoV-2 for wastewater surveillance. Environ. Sci. Technol. 2021, 55, 10432–10441. [Google Scholar] [CrossRef] [PubMed]
- Nasser, A.; Sasi, S.; Nitzan, Y. Coliphages as indicators for the microbial quality of treated wastewater effluents. Food Environ. Virol. 2021, 13, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Miyani, B.; Fonoll, X.; Norton, J.; Mehrotra, A.; Xagoraraki, I. SARS-CoV-2 in Detroit Wastewater. J. Environ. Eng. 2020, 146, 06020004. [Google Scholar] [CrossRef]
- Zou, Y.; Mason, M.G.; Wang, Y.; Wee, E.; Turni, C.; Blackall, P.J.; Trau, M.; Botella, J.R. Nucleic acid purification from plants, animals and microbes in under 30 seconds. PLoS Biol. 2017, 15, e2003916. [Google Scholar] [CrossRef]
- Lambertini, E.; Spencer, S.K.; Bertz, P.D.; Loge, F.J.; Kieke, B.A.; Borchardt, M.A. Concentration of enteroviruses, adenoviruses, and noroviruses from drinking water by use of glass wool filters. Appl. Environ. Microbiol. 2008, 74, 2990–2996. [Google Scholar] [CrossRef] [Green Version]
- Yano, K.; Yoshida, Y.; Kaneko, M. Improvement of the zeta-plus filter method for concentration of viruses from water. Water Sci. Technol. 1991, 24, 217–220. [Google Scholar] [CrossRef]
- Kang, J.; Lee, M.S.; Gorenstein, D.G. Characterization of heparin-living bacteria interactions by chemiluminescence electrophoretic mobility shift assay. Anal. Biochem. 2007, 363, 312–314. [Google Scholar] [CrossRef] [Green Version]
- Junter, G.A.; Lebrun, L. Cellulose-based virus-retentive filters: A review. Rev. Environ. Sci. Biotechnol. 2017, 16, 455–489. [Google Scholar] [CrossRef]
- Bivins, A.; Lott, M.; Shaffer, M.; Wu, Z.; North, D.; Lipp, E.; Bibby, K. Building-level wastewater monitoring using tampon swabs and RT-LAMP for rapid SARS-CoV-2 RNA detection. Environ. Sci. Water Res. Technol. 2021, 8, 173–183. [Google Scholar] [CrossRef]
- Calvete, T.; Lima, E.C.; Cardoso, N.F.; Dias, S.L.P.; Pavan, F.A. Application of carbon adsorbents prepared from the Brazilian pine-fruit-shell for the removal of Procion Red MX 3B from aqueous solution—Kinetic, equilibrium, and thermodynamic studies. Chem. Eng. J. 2009, 155, 627–636. [Google Scholar] [CrossRef]
- Rhoades, J.D. Cation exchange capacity. In Methods of Soil Analysis, 2nd ed.; Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy Inc.: Madison, WI, USA; Soil Science Society of America. Inc.: Madison, WI, USA, 1982; pp. 149–157. [Google Scholar]
- Mulvaney, R.L. Nitrogen-inorganic forms. In Methods of Soil Analysis. Part 3; Sparks, D.L., Ed.; Soil Society of America Inc.: Madison, WI, USA, 1996; pp. 1123–1184. [Google Scholar]
- Shen, H.; Wang, Z.; Zhou, A.; Chen, J.; Hu, M.; Dong, X.; Xia, Q. Adsorption of phosphate onto amine functionalized nano-sized magnetic polymer adsorbents: Mechanism and magnetic effects. RSC Adv. 2015, 5, 22080–22090. [Google Scholar] [CrossRef]
- Greenfield, L.M.; Hill, P.W.; Paterson, E.; Baggs, E.M.; Jones, D.L. Methodological bias associated with soluble protein recovery from soil. Sci. Rep. 2018, 8, 11186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multi-molecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Kevill, J.L.; Pellett, C.; Farkas, K.; Brown, M.R.; Bassano, I.; Denise, H.; McDonald, J.E.; Malham, S.K.; Porter, J.; Warren, J.; et al. A comparison of precipitation and filtration-based SARS-CoV-2 recovery methods and the influence of temperature, turbidity, and surfactant load in urban wastewater. Sci. Total Environ. 2022, 808, 151916. [Google Scholar] [CrossRef]
- Wurtzer, S.; Waldman, P.; Ferrier-Rembert, A.; Frenois-Veyrat, G.; Mouchel, J.M.; Boni, M.; Maday, Y.; Marechal, V.; Moulin, L. Several forms of SARS-CoV-2 RNA can be detected in wastewaters: Implication for wastewater-based epidemiology and risk assessment. Water Res. 2021, 198, 117183. [Google Scholar] [CrossRef]
- Farkas, K.; Hillary, L.S.; Thorpe, J.; Walker, D.I.; Lowther, J.A.; McDonald, J.E.; Malham, S.K.; Jones, D.L. Concentration and quantification of SARS-CoV-2 RNA in wastewater using polyethylene glycol-based concentration and qRT-PCR. Methods Protoc. 2021, 4, 17. [Google Scholar] [CrossRef]
- CDC. Research Use Only 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Primers and Probes; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020. [Google Scholar]
- Gendron, L.; Verreault, D.; Veillette, M.; Moineau, S.; Duchaine, C. Evaluation of filters for the sampling and quantification of RNA phage aerosols. Aerosol Sci. Technol. 2010, 44, 893–901. [Google Scholar] [CrossRef]
- Farkas, K.; Pellett, C.; Alex-Sanders, N.; Bridgman, M.; Corbishley, A.; Grimsley, J.; Kasprzyk-Hordern, B.; Kevill, J.L.; Pântea, I.; Richardson-O’Neill, I.S.; et al. Comparative assessment of filtration- and precipitation-based methods for the concentration of SARS-CoV-2 and other viruses from wastewater. Microbiol. Spectr. 2022, 10, e0110222, In press. [Google Scholar] [CrossRef]
- Farkas, K.; Walker, D.I.; Adriaenssens, E.M.; McDonald, J.E.; Hillary, L.S.; Malham, S.K.; Jones, D.L. Viral indicators for tracking domestic wastewater contamination in the aquatic environment. Water Res. 2020, 181, 115926. [Google Scholar] [CrossRef]
- Fadrosh, D.W.; Ma, B.; Gajer, P.; Sengamalay, N.; Ott, S.; Brotman, R.M.; Ravel, J. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2014, 2, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavrilov, S.N.; Korzhenkov, A.A.; Kublanov, I.V.; Bargiela, R.; Zamana, L.V.; Popova, A.A.; Toshchakov, S.V.; Golyshin, P.N.; Golyshina, O.V. Microbial communities of polymetallic deposits’ acidic ecosystems of continental climatic zone with high temperature contrasts. Front. Microbiol. 2019, 10, 1573. [Google Scholar] [CrossRef] [PubMed]
- Joonaki, E.; Hassanpouryouzband, A.; Heldt, C.L.; Areo, O. Surface Chemistry Can Unlock Drivers of Surface Stability of SARS-CoV-2 in a variety of environmental conditions. Chem 2020, 6, 2135–2146. [Google Scholar] [CrossRef] [PubMed]
- Castaño, N.; Cordts, S.C.; Kurosu Jalil, M.; Zhang, K.S.; Koppaka, S.; Bick, A.D.; Paul, R.; Tang, S.K.Y. Fomite transmission, physicochemical origin of virus–surface interactions, and disinfection strategies for enveloped viruses with applications to SARS-CoV-2. ACS Omega 2021, 6, 6509–6527. [Google Scholar] [CrossRef] [PubMed]
- Callaway, E. The coronavirus is mutating-does it matter? Nature 2020, 585, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.H.; Pernicone, N.; Ramsay, J.D.F.; Sing, K.S.W.; Unger, K.K. Recommendations for the characterization of porous solids (technical report). Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Shu, Y.; McCauley, J. GISAID: Global initiative on sharing all influenza data-from vision to reality. Eurosurveillance 2017, 22, 30494. [Google Scholar] [CrossRef] [Green Version]
- Michen, B.; Graule, T. Isoelectric points of viruses. J. Appl. Microbiol. 2010, 109, 388–397. [Google Scholar] [CrossRef] [Green Version]
- Areo, O.; Joshi, P.U.; Obrenovich, M.; Tayahi, M.; Heldt, C.L. Single-particle characterization of SARS-CoV-2 isoelectric point and comparison to variants of interest. Microorganisms 2021, 9, 1606. [Google Scholar] [CrossRef]
- Xie, Y.; Karki, C.B.; Du, D.; Li, H.; Wang, J.; Sobitan, A.; Teng, S.; Tang, Q.; Li, L. Spike proteins of SARS-CoV and SARS-CoV-2 utilize different mechanisms to bind with human ACE2. Front. Mol. Biosci. 2020, 7, 591873. [Google Scholar] [CrossRef]
- Fantini, J.; Yahi, N.; Azzaz, F.; Chahinian, H. Structural dynamics of SARS-CoV-2 variants: A health monitoring strategy for anticipating COVID-19 outbreaks. J. Infect. 2021, 83, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Scheller, C.; Krebs, F.; Minkner, R.; Astner, I.; Gil-Moles, M.; Wätzig, H. Physicochemical properties of SARS-CoV-2 for drug targeting, virus inactivation and attenuation, vaccine formulation and quality control. Electrophoresis 2020, 41, 1137–1151. [Google Scholar] [CrossRef] [PubMed]
- Xia, X. Domains and functions of spike protein in SARS-CoV-2 in the context of vaccine design. Viruses 2021, 13, 109. [Google Scholar] [CrossRef] [PubMed]
- Mallik, K. Use of isoelectric point for fast identification of anti-SARS CoV-2 Coronavirus proteins. Preprints 2020, 2020050270. [Google Scholar] [CrossRef]
- Pascarella, S.; Ciccozzi, M.; Zella, D.; Bianchi, M.; Benedetti, F.; Benvenuto, D.; Broccolo, F.; Cauda, R.; Caruso, A.; Angeletti, S.; et al. SARS-CoV-2 B.1.617 Indian variants: Are electrostatic potential changes responsible for a higher transmission rate? J. Med. Virol. 2021, 93, 6551–6556. [Google Scholar] [CrossRef]
- Sangkham, S. A review on detection of SARS-CoV-2 RNA in wastewater in light of the current knowledge of treatment process for removal of viral fragments. J. Environ. Manag. 2021, 299, 113563. [Google Scholar] [CrossRef]
- Li, J.; Verhagen, R.; Ahmed, W.; Metcalfe, S.; Thai, P.K.; Kaserzon, S.L.; Smith, W.J.; Schang, C.; Simpson, S.L.; Thomas, K.V.; et al. In situ calibration of passive samplers for viruses in wastewater. ACS EST Water, 2022; in press. [Google Scholar] [CrossRef]
- Li, J.; Ahmed, W.; Metcalfe, S.; Smith, W.; Tscharke, B.; Lynch, P.; Sherman, P.; Vo, P.; Kaserzon, S.L.; Simpson, S.L.; et al. Monitoring of SARS-CoV-2 in sewersheds with low COVID-19 cases using a passive sampling technique. Water Res. 2022, 218, 118481. [Google Scholar] [CrossRef]
- Cuevas-Ferrando, E.; Randazzo, W.; Pérez-Cataluña, A.; Falcó, I.; Navarro, D.; Martin-Latil, S.; Díaz-Reolid, A.; Girón-Guzmán, I.; Allende, A.; Sánchez, G. Platinum chloride-based viability RT-qPCR for SARS-CoV-2 detection in complex samples. Sci. Rep. 2021, 11, 18120. [Google Scholar] [CrossRef]
- Draper, D.E. A guide to ions and RNA structure. RNA 2004, 10, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Sherbet, G.V.; Lakshmi, M.S.; Cajone, F. Isoelectric characteristics and the secondary structure of some nucleic acids. Biophys. Struct. Mech. 1983, 10, 121–128. [Google Scholar] [CrossRef]
- Kitamura, K.; Sadamasu, K.; Muramatsu, M.; Yoshida, H. Efficient detection of SARS-CoV-2 RNA in the solid fraction of wastewater. Sci. Total Environ. 2021, 763, 144587. [Google Scholar] [CrossRef]
- Lundgren, L.; Moberg, C.; Lidén, C. Do insulation products of man-made vitreous fibres still cause skin discomfort? Contact Dermat. 2014, 70, 351–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsunoda, M.; Kido, T.; Mogi, S.; Sugiura, Y.; Miyajima, E.; Kudo, Y.; Kumazawa, T.; Aizawa, Y. Skin irritation to glass wool or continuous glass filaments as observed by a patch test among human Japanese volunteers. Ind. Health 2014, 52, 439–444. [Google Scholar] [CrossRef] [Green Version]
- Prussin, A.J., 2nd; Schwake, D.O.; Lin, K.; Gallagher, D.L.; Buttling, L.; Marr, L.C. Survival of the enveloped virus Phi6 in droplets as a function of relative humidity, absolute humidity, and temperature. Appl. Environ. Microbiol. 2018, 84, e00551-18. [Google Scholar] [CrossRef] [Green Version]
- Silverman, A.I.; Boehm, A.B. Systematic review and meta-analysis of the persistence and disinfection of human coronaviruses and their viral surrogates in water and wastewater. Environ. Sci. Technol. Lett. 2020, 7, 544–553. [Google Scholar] [CrossRef]
- Brassard, J.; Seyer, K.; Houde, A.; Simard, C.; Trottier, Y.-L. Concentration and detection of hepatitis A virus and rotavirus in spring water samples by reverse transcription-PCR. J. Virol. Methods 2005, 123, 163–169. [Google Scholar] [CrossRef]
- De Keuckelaere, A.; Baert, L.; Duarte, A.; Stals, A.; Uyttendaele, M. Evaluation of viral concentration methods from irrigation and processing water. J. Virol. Methods 2013, 187, 294–303. [Google Scholar] [CrossRef]
- Jones, T.H.; Muehlhauser, V.; Thériault, G. Comparison of ZetaPlus 60S and nitrocellulose membrane filters for the simultaneous concentration of F-RNA coliphages, porcine teschovirus and porcine adenovirus from river water. J. Virol. Methods 2014, 206, 5–11. [Google Scholar] [CrossRef]
- de Oliveira, L.C.; Torres-Franco, A.F.; Lopes, B.C.; Santos, B.; Costa, E.A.; Costa, M.S.; Reis, M.; Melo, M.C.; Polizzi, R.B.; Teixeira, M.M.; et al. Viability of SARS-CoV-2 in river water and wastewater at different temperatures and solids content. Water Res. 2021, 195, 117002. [Google Scholar] [CrossRef]
- Bivins, A.; Greaves, J.; Fischer, R.; Yinda, K.C.; Ahmed, W.; Kitajima, M.; Munster, V.J.; Bibby, K. Persistence of SARS-CoV-2 in water and wastewater. Environ. Sci. Technol. Lett. 2020, 7, 937–942. [Google Scholar] [CrossRef]
- Wilder, M.L.; Middleton, F.; Larsen, D.A.; Du, Q.; Fenty, A.; Zeng, T.; Insaf, T.; Kilaru, P.; Collins, M.; Kmush, B.; et al. Co-quantification of crAssphage increases confidence in wastewater-based epidemiology for SARS-CoV-2 in low prevalence areas. Water Res. X 2021, 11, 100100. [Google Scholar] [CrossRef]
- Draczyński, Z.; Flinčec Grgac, S.; Dekanić, T.; Tarbuk, A.; Boguń, M. Implementation of chitosan into cotton Fabric. Tekstilec 2017, 60, 296–301. [Google Scholar] [CrossRef]
- Xie, K.; Li, J.X.; Jia, R.Y.; Li, H.X.; Duan, L.; Xu, X.T.; Xia, S.Q. Microbial diversity and composition in two full-scale wastewater treatment plants (WWTPs) in Shanghai. Fresenius Environ. Bull. 2011, 20, 1525–1534. [Google Scholar]
- Lamartina, E.L.; Mohaimani, A.A.; Newton, R.J. Urban wastewater bacterial communities assemble into seasonal steady states. Microbiome 2021, 9, 116. [Google Scholar] [CrossRef]
- Guo, B.; Liu, C.; Gibson, C.; Frigon, D. Wastewater microbial community structure and functional traits change over short timescales. Sci. Total Environ. 2019, 662, 779–785. [Google Scholar] [CrossRef]
- Martínez-Campos, S.; González-Pleiter, M.; Fernández-Piñas, F.; Rosal, R.; Leganés, F. Early and differential bacterial colonization on microplastics deployed into the effluents of wastewater treatment plants. Sci. Total Environ. 2021, 757, 143832. [Google Scholar] [CrossRef]
- Stachler, E.; Kelty, C.; Sivaganesan, M.; Li, X.; Bibby, K.; Shanks, O.C. Quantitative CrAssphage PCR assays for human fecal pollution measurement. Environ. Sci. Technol. 2017, 51, 9146–9154. [Google Scholar] [CrossRef]
Sample | Material | Main Composition | Reference |
---|---|---|---|
A | NanoCeram®, Argonide Corporation | Patent protected | [33,34] |
B | SG81 ion exchange paper, Whatman | Silica-cellulose | [35] |
C | GW-40 glass wool | Glass | [36] |
D | ZetaPlus®, 3M | Patent protected | [37] |
E | Cotton (Moore) swab | Cotton fibre | [28] |
F | Biodyne® nylon membrane | Nylon | [38] |
G | 11106, Sartorius membrane | Cellulose acetate | [39] |
H | Inner tampon (Tampax Compk Super) | Cotton-based | [40] |
I | Outer tampon (Tampax Compk Super) | Cotton-based | [40] |
Sampler | Si | K | Ca | Fe | Zn |
---|---|---|---|---|---|
NanoCeram® | 47.6 ± 3.0 | 6.3 ± 0.1 | 3.7 ± 0.1 | 0.70 ± 0.06 | 15.7 ± 1.3 |
SG81, Whatman | 99.8 ± 0.1 | <0.02 | 0.05 ± 0.01 | <0.01 | <0.01 |
GW-40 glass wool | 76.6 | 0.7 | 20.1 | 2.0 | <0.01 |
ZetaPlus®, 3M | 85.2 ± 0.1 | 7.1 ± 1.7 | 1.2 ± 0.2 | 2.0 ± 0.1 | <0.01 |
Sampler | pH | EC (µS cm−1) | Moisture Content (%) | Organic Content (%) | Total C (%) | Total N (%) | P Sorption (µmol cm−2) | NH4+ Sorption (µmol cm−2) |
---|---|---|---|---|---|---|---|---|
NanoCeram® | 6.63 ± 0.23 | 424 ± 84 | 4.5 ± 0.1 | 50.7 ± 0.2 | 31.7 ± 0.1 | 0.12 ± 0.01 | 31.3 ± 1.2 | 12.9 ± 1.4 |
SG81, Whatman | 6.50 ± 0.08 | 152 ± 11 | 5.3 ± 0.1 | 78.6 ± 0.1 | 34.1 ± 0.1 | 0.18 ± 0.06 | 0.8 ± 0.1 | 2.2 ± 0.7 |
GW-40 glass wool | 10.7 ± 0.07 | 132 ± 8 | 0.4 ± 0.1 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.00 ± 0.00 | <0.1 | 0.2 ± 0.1 |
ZetaPlus®, 3M | 7.08 ± 0.28 | 201 ± 34 | 3.0 ± 0.1 | 53.5 ± 0.3 | 23.9 ± 0.7 | 0.26 ± 0.00 | 0.5 ± 0.1 | 136.0 ± 35.9 |
Cotton (Moore) swab | 6.33 ± 0.07 | 108 ± 8 | 4.9 ± 0.1 | 99.7 ± 0.1 | 51.3 ± 0.1 | 0.19 ± 0.01 | <0.1 | 0.7 ± 0.3 |
Biodyne® nylon | 4.07 ± 0.24 | 88 ± 7 | 2.8 ± 0.1 | 99.7 ± 0.1 | 43.3 ± 0.1 | 0.01 ± 0.00 | 3.5 ± 0.1 | 0.3 ± 0.1 |
11106, Sartorius | 4.34 ± 0.01 | 311 ± 61 | 7.3 ± 1.8 | 99.7 ± 0.2 | 49.8 ± 0.4 | 0.05 ± 0.00 | 0.3 ± 0.0 | 0.2 ± 0.1 |
Inner tampon | 6.65 ± 0.05 | 123 ± 16 | 3.7 ± 0.1 | 99.8 ± 0.0 | 53.7 ± 0.4 | 0.12 ± 0.03 | 0.3 ± 0.0 | 0.8 ± 0.1 |
Outer tampon | 8.18 ± 0.05 | 181 ± 22 | 4.5 ± 0.2 | 99.7 ± 0.0 | 41.3 ± 0.3 | 0.18 ± 0.02 | <0.1 | 2.6 ± 0.1 |
Sampler | Protein binding (% of Total Added) | Physical Integrity (RAU) | Mass/Area Ratio (mg cm−2) | PZC (pH Value) | Water Holding Capacity (g g−1) | Specific Surface Area (m2 g−1) |
---|---|---|---|---|---|---|
NanoCeram® | 38.3 ± 2.2 | 382 ± 18 | 58 ± 1 | 6.26 ± 0.09 | 3.9 ± 0.2 | 19.0 ± 0.8 |
SG81, Whatman | 22.0 ± 0.7 | 936 ± 330 | 21± 0 | 5.91 ± 0.08 | 5.5 ± 0.5 | 42.5 ± 1.4 |
GW-40 glass wool | 0.4 ± 0.3 | 22 ± 11 | 71 ± 6 | 9.78 ± 0.01 | 6.5 ± 1.0 | <0.01 |
ZetaPlus®, 3M | 53.3 ± 1.9 | 53 ± 17 | 248 ± 2 | 5.35 ± 0.03 | 6.5 ± 0.5 | 0.02 |
Cotton swab | 24.1 ± 1.7 | 41 ± 19 | 28 ± 1 | 4.90 ± 0.04 | 21.2 ± 1.2 | <0.01 |
Biodyne® nylon | 32.3 ± 0.5 | 4 ± 1 | 98 ± 6 | 6.02 ± 0.10 | 3.8 ± 0.5 | 3.8 ± 0.9 |
11106, Sartorius | 16.9 ± 0.8 | 2 ± 1 | 14 ± 1 | 4.54 ± 0.02 | 7.1 ± 0.3 | 7.0 ± 2.0 |
Inner tampon | 40.3 ± 2.5 | 4 ± 1 | 153 ± 10 | 4.60 ± 0.04 | 24.2 ± 4.5 | <0.01 |
Outer tampon | 22.2 ± 0.5 | 21 ± 5 | 33 ± 3 | 4.66 ± 0.06 | 12.9 ± 1.1 | <0.01 |
Scoring Criteria | Nano Ceram | SG81, Whatman | GW-40 Glass Wool | ZetaPlus, 3M | Cotton-Moore Swab | Biodyne Nylon | 11106, Sartorius | Cotton Tampon | ||
---|---|---|---|---|---|---|---|---|---|---|
Code | A | B | C | D | E | F | G | H | ||
Viral capture/recovery | ||||||||||
Bacteria capture/recovery | ||||||||||
Ease of use | ||||||||||
Placement in devices | ||||||||||
Multifunctionality | ||||||||||
Particle trapping | Score | |||||||||
Physical integrity | 1 | Low | ||||||||
Health and safety issues | 2 | |||||||||
Ragging potential | 3 | Medium | ||||||||
Cost | 4 | |||||||||
Overall score | 31 | 41 | 39 | 36 | 46 | 38 | 38 | 46 | 5 | High |
Ranking | 8 | 3 | 4 | 7 | 2 | =5 | =5 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, D.L.; Grimsley, J.M.S.; Kevill, J.L.; Williams, R.; Pellett, C.; Lambert-Slosarska, K.; Singer, A.C.; Williams, G.B.; Bargiela, R.; Brown, R.W.; et al. Critical Evaluation of Different Passive Sampler Materials and Approaches for the Recovery of SARS-CoV-2, Faecal-Indicator Viruses and Bacteria from Wastewater. Water 2022, 14, 3568. https://doi.org/10.3390/w14213568
Jones DL, Grimsley JMS, Kevill JL, Williams R, Pellett C, Lambert-Slosarska K, Singer AC, Williams GB, Bargiela R, Brown RW, et al. Critical Evaluation of Different Passive Sampler Materials and Approaches for the Recovery of SARS-CoV-2, Faecal-Indicator Viruses and Bacteria from Wastewater. Water. 2022; 14(21):3568. https://doi.org/10.3390/w14213568
Chicago/Turabian StyleJones, Davey L., Jasmine M. S. Grimsley, Jessica L. Kevill, Rachel Williams, Cameron Pellett, Kathryn Lambert-Slosarska, Andrew C. Singer, Gwion B. Williams, Rafael Bargiela, Robert W. Brown, and et al. 2022. "Critical Evaluation of Different Passive Sampler Materials and Approaches for the Recovery of SARS-CoV-2, Faecal-Indicator Viruses and Bacteria from Wastewater" Water 14, no. 21: 3568. https://doi.org/10.3390/w14213568
APA StyleJones, D. L., Grimsley, J. M. S., Kevill, J. L., Williams, R., Pellett, C., Lambert-Slosarska, K., Singer, A. C., Williams, G. B., Bargiela, R., Brown, R. W., Wade, M. J., & Farkas, K. (2022). Critical Evaluation of Different Passive Sampler Materials and Approaches for the Recovery of SARS-CoV-2, Faecal-Indicator Viruses and Bacteria from Wastewater. Water, 14(21), 3568. https://doi.org/10.3390/w14213568