Contribution of the Reconstruction of the Area of Seling Co Lake Using DEM Data and Analysis of Spatio-Temporal Variations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data and Preprocessing
2.2.1. Landsat Imagery for Lake Water-Inundation Extraction
2.2.2. Water Frequency Dataset and DEM Data of Seling Co Lake
2.3. Methods
2.3.1. Model Building
2.3.2. Model Accuracy Evaluation
2.3.3. Extracting the Water-Inundation Area of Seling Co Lake from 1987 to 2021
2.3.4. Reconstruction of the Water Area of Seling Co Lake
3. Results
3.1. Optimization of Water Frequency Data in Seling Co Lake
3.2. Model Construction
3.3. Water-Inundation Area Reconstruction of Seling Co Lake
3.4. Temporal and Spatial Variations in the Seling Co Lake Area
4. Discussion
4.1. Expansion of the Water-Inundation Area of Seling Co Lake
4.2. Comparison of the Areal Changes of Seling Co Lake with the Findings of Previous Studies
4.3. Model Deficiencies and Improvenments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, G.Q.; Wang, M.M.; Zhou, T. Progress in remote sensing monitoring of lake area, water level, and volume changes on the Tibetan Plateau. Natl. Remote Sens. Bull. 2022, 26, 115–125. [Google Scholar]
- Zhu, J.; Song, C.; Wang, J.; Ke, L. China’s Inland Water Dynamics: The Significance of Water Body Types. Proc. Natl. Acad. Sci. USA 2020, 117, 13876–13878. [Google Scholar] [CrossRef]
- Cooley, S.W.; Ryan, J.C.; Smith, L.C. Human Alteration of Global Surface Water Storage Variability. Nature 2021, 591, 78–81. [Google Scholar] [CrossRef]
- Woolway, R.I.; Jennings, E.; Shatwell, T.; Golub, M.; Pierson, D.C.; Maberly, S.C. Lake Heatwaves under Climate Change. Nature 2021, 589, 402–407. [Google Scholar] [CrossRef]
- Song, C.Q.; Zhan, P.F.; Ma, R.H. Progress in remote sensing study on lake hydrological. J. Lake Sci. 2020, 32, 1406–1420. [Google Scholar]
- Zhang, G.; Yao, T.; Chen, W.; Zheng, G.; Shum, C.K.; Yang, K.; Piao, S.; Sheng, Y.; Yi, S.; Li, J.; et al. Regional Differences of Lake Evolution across China during 1960s–2015 and Its Natural and Anthropogenic Causes. Remote Sens. Environ. 2019, 221, 386–404. [Google Scholar] [CrossRef]
- Duan, H.T.; Cao, Z.G.; Shen, M. Review of lake remote sensing research. Natl. Remote Sens. Bull. 2022, 26, 3–18. [Google Scholar]
- China’s lakes at present: Number, area and spatial distribution. Sci. China Earth Sci. 2011, 54, 283–289. [CrossRef]
- Zhang, G.; Luo, W.; Chen, W.; Zheng, G. A robust but variable lake expansion on the Tibetan Plateau. Sci. Bull. 2019, 64, 1306–1309. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.S.; Song, C.Q. Spatial distribution and dynamics of lakes in China: Progress in remote sensing monitoring at national scale and new inventory of the maximum lake extent and change trajectory. Natl. Remote Sens. Bull. 2022, 26, 92–103. [Google Scholar]
- Liu, C.; Zhu, L.; Li, J.; Wang, J.; Ju, J.; Qiao, B.; Ma, Q.; Wang, S. The Increasing Water Clarity of Tibetan Lakes over Last 20 Years According to MODIS Data. Remote Sens. Environ. 2021, 253, 112199. [Google Scholar] [CrossRef]
- Pi, X.; Feng, L.; Li, W.; Liu, J.; Kuang, X.; Shi, K.; Qi, W.; Chen, D.; Tang, J. Chlorophyll-a Concentrations in 82 Large Alpine Lakes on the Tibetan Plateau during 2003–2017: Temporal–Spatial Variations and Influencing Factors. Int. J. Digit. Earth 2021, 14, 714–735. [Google Scholar] [CrossRef]
- Yang, K.; Ye, B.; Zhou, D.; Wu, B.; Foken, T.; Qin, J.; Zhou, Z. Response of Hydrological Cycle to Recent Climate Changes in the Tibetan Plateau. Clim. Chang. 2011, 109, 517–534. [Google Scholar] [CrossRef]
- Yao, T.; Wu, F.; Ding, L.; Sun, J.; Zhu, L.; Piao, S.; Deng, T.; Ni, X.; Zheng, H.; Ouyang, H. Multispherical Interactions and Their Effects on the Tibetan Plateau’s Earth System: A Review of the Recent Researches. Natl. Sci. Rev. 2015, 2, 468–488. [Google Scholar] [CrossRef]
- Bian, D.; Bian, B.R.C.; La, B.; Wang, C.Y.; Chen, T. The Response of Water Level of Selin Co to Climate Change during 1975–2008. J. Geogr. Sci. 2010, 65, 313–319. [Google Scholar]
- Meng, K.; Shi, X.H.; Wang, E.Q.; Liu, F. High-altitude salt lake elevation changes and glacial ablation in Central Tibet, 2000–2010. Chin. Sci. Bull. 2012, 57, 668–676. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Wang, J.; Ju, J.; Ma, N.; Zhang, Y.; Liu, C.; Han, B.; Liu, L.; Wang, M.; Ma, Q. Climatic and Lake Environmental Changes in the Serling Co Region of Tibet over a Variety of Timescales. Sci. Bull. 2019, 64, 422–424. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Ran, Y.; Wan, W.; Luo, W.; Chen, W.; Xu, F.; Li, X. 100 Years of Lake Evolution over the Qinghai–Tibet Plateau. Earth Syst. Sci. Data 2021, 13, 3951–3966. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, L.; Zhang, Y.; Guo, Y.; Li, X.; Liu, W. Exploring the Water Storage Changes in the Largest Lake (Selin Co) over the Tibetan Plateau during 2003–2012 from a Basin-Wide Hydrological Modeling. Water Resour. Res. 2015, 51, 8060–8086. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Zhang, Y.; Guo, Y.; Ma, N. Quantitative Comparison of River Inflows to a Rapidly Expanding Lake in Central Tibetan Plateau. Hydrol. Process. 2018, 32, 3241–3253. [Google Scholar] [CrossRef]
- Dong, S.Y.; Xue, X.; You, J.G.; Peng, F. Remote sensing monitoring of the lake area change in the Qinghai-Tibet Plateau in recent 40 years. J. Lake Sci. 2014, 26, 535–544. [Google Scholar]
- De, J.Y.Z.; Ni, M.J.; Qiang, B.O.Z.; Zeng, L.; Luo, S.Q.Z. Lake Area Variation of Selin Tso in 1975~2016 and Its Influential Factors. Plateau Mt. Meteorol. Res. 2018, 38, 35–41+96. [Google Scholar]
- Panagoulia, D.; Bárdossy, A.; Lourmas, G. Multivariate Stochastic Downscaling Models for Generating Precipitation and Temperature Scenarios of Climate Change Based on Atmospheric Circulation. Glob. Nest J. 2008, 10, 263–272. [Google Scholar]
- Li, L.; Yang, S.; Wang, Z.; Zhu, X.; Tang, H. Evidence of Warming and Wetting Climate over the Qinghai-Tibet Plateau. Arct. Antarct. Alp. Res. 2010, 42, 449–457. [Google Scholar] [CrossRef]
- Chen, S.; Liu, W.; Ye, T. Dataset of Trend-Preserving Bias-Corrected Daily Temperature, Precipitation and Wind from NEX-GDDP and CMIP5 over the Qinghai-Tibet Plateau. Data Brief 2020, 31, 105733. [Google Scholar] [CrossRef]
- Cao, J.; Qin, D.; Kang, E.; Li, Y. River Discharge Changes in the Qinghai-Tibet Plateau. Chin. Sci. Bull. 2006, 51, 594–600. [Google Scholar] [CrossRef]
- Bohn, V.Y.; Perillo, G.M.E.; Piccolo, M.C. Distribution and morphometry of shallow lakes in a temperate zone (Buenos Aires Province, Argentina). Limnética 2011, 30, 0089–0102. [Google Scholar] [CrossRef]
- Liu, X.-J.; Lai, Z.-P.; Zeng, F.-M.; Madsen, D.B.; E, C.-Y. Holocene Lake Level Variations on the Qinghai-Tibetan Plateau. Int. J. Earth Sci. 2013, 102, 2007–2016. [Google Scholar] [CrossRef]
- Fouache, E.; Desruelles, S.; Magny, M.; Bordon, A.; Oberweiler, C.; Coussot, C.; Touchais, G.; Lera, P.; Lézine, A.-M. DEM and GIS as a Tool for Holocene Palaeogeographical Reconstructions from Lake Maliq (Abania, Basin of Korçë). J. Archaeol. Sci. 2010, 37, 525–535. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Liu, K.; Zhang, C.K.; Deng, X.Y.; Ma, R.H.; Song, C.Q. Progress of the DEM Application for studing lake hydrology dynamics. J. Geo-Inf. Sci. 2020, 22, 1510–1521. [Google Scholar]
- Jiang, Q.; Ma, Q.; Zhou, T. Reconstruction of Ulungur Ancient Large Lake Based on DEM. In Proceedings of the 2nd International Conference on Information Science and Engineering, Hangzhou, China, 4–6 December 2010; pp. 6793–6795. [Google Scholar]
- Buckles, J.E.; Kashiwase, K.; Krantz, T. Reconstruction of Prehistoric Lake Cahuilla in the Salton Sea Basin Using GIS and GPS. Hydrobiologia 2002, 473, 55–57. [Google Scholar] [CrossRef]
- Le Coz, M.; Delclaux, F.; Genthon, P.; Favreau, G. Assessment of Digital Elevation Model (DEM) Aggregation Methods for Hydrological Modeling: Lake Chad Basin, Africa. Comput. Geosci. 2009, 35, 1661–1670. [Google Scholar] [CrossRef]
- Qiao, C.; Luo, J.C.; Sheng, Y.W.; Shen, Z.F.; Li, J.L.; Gao, L.J. Analysis on lake changes since ancient and modern ages using remote sensing in Dagze Co, Tibetanm Plateau. J. Lake Sci. 2010, 22, 98–102. [Google Scholar]
- Nie, Y.; Sheng, Y.; Liu, Q.; Liu, L.; Liu, S.; Zhang, Y.; Song, C. A Regional-Scale Assessment of Himalayan Glacial Lake Changes Using Satellite Observations from 1990 to 2015. Remote Sens. Environ. 2017, 189, 152–163. [Google Scholar] [CrossRef] [Green Version]
- Park, E.; Lewis, Q.W.; Sanwlani, N. Large Lake Gauging Using Fractional Imagery. J. Environ. Manag. 2019, 231, 687–693. [Google Scholar] [CrossRef]
- Zhu, C.M.; Zhang, X.; Lu, M.; Luo, J.C. Lake Storage Change Automatic Detection by Multi-source Remote Sensing without Under water Terrain Data. Acta Geod. Cartogr. Sin. 2015, 44, 309–315. [Google Scholar]
- Hao, G.B.; Wu, B.; Zhang, L.F.; Fu, D.J.; Li, Y. Temporal and spatial variation analysis of the area of Siling Co lake in Tibet based on ESTARFM. Journal of Geo-information. Science 2016, 18, 833–846. [Google Scholar]
- Tai, X.M.; Wang, N.L.; Wu, Y.W.; Zhang, Y.J. Lake ice phenology variations and influencing factors of Selin Co from 2000 to 2020. J. Lake Sci. 2022, 34, 334–348. [Google Scholar]
- Yang, R.H.; Yu, X.Z.; Li, Y.L. The Dynamic Analysis of Remote Sensing Information for Monitoring the Expansion of the Selincuo Lake in Tibet. Remote Sens. Land Resour. 2003, 15, 64–67. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Pickens, A.H.; Hansen, M.C.; Hancher, M.; Stehman, S.V.; Tyukavina, A.; Potapov, P.; Marroquin, B.; Sherani, Z. Mapping and Sampling to Characterize Global Inland Water Dynamics from 1999 to 2018 with Full Landsat Time-Series. Remote Sens. Environ. 2020, 243, 111792. [Google Scholar] [CrossRef]
- Allen, G.H.; Yang, X.; Gardner, J.; Holliman, J.; David, C.H.; Ross, M. Timing of Landsat Overpasses Effectively Captures Flow Conditions of Large Rivers. Remote Sens. 2020, 12, 1510. [Google Scholar] [CrossRef]
- Yao, F.; Wang, C.; Dong, D.; Luo, J.; Shen, Z.; Yang, K. High-Resolution Mapping of Urban Surface Water Using ZY-3 Multi-Spectral Imagery. Remote Sens. 2015, 7, 12336–12355. [Google Scholar] [CrossRef] [Green Version]
- Donchyts, G.; Schellekens, J.; Winsemius, H.; Eisemann, E.; Van de Giesen, N. A 30 m Resolution Surface Water Mask Including Estimation of Positional and Thematic Differences Using Landsat 8, SRTM and OpenStreetMap: A Case Study in the Murray-Darling Basin, Australia. Remote Sens. 2016, 8, 386. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Li, N.; Zhu, J.; Pan, Z.; Qin, F. Spatial and Temporal Characteristics and Driving Forces of Vegetation Changes in the Huaihe River Basin from 2003 to 2018. Sustainability 2020, 12, 2198. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-Temporal Analysis of Vegetation Variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Liu, W.; Liu, H.; Xie, C.; Liu, G.; Wang, W.; Zhang, Q.; Zhang, Q. Dynamic Changes in Lakes within the Selin Co Basin and Potential Drivers in Tibet; Research Square: Durham, NC, USA, 2021. [Google Scholar]
- La, B.; Chen, T.; La, B.Z.M.; Ci, Z. Area change of Selincuo Lake and its forming reasons based on MODIS data. J. Meteorol. Environ. 2011, 27, 69–72. [Google Scholar]
- Song, Y.Z.; De, J.Y.Z. Variation characteristics of lake area of Silingco and its response to climate change in recent 30 years. J. Nanjing Univ. Inf. Sci. Technol. (Nat. Sci. Ed.) 2022, 1–14. Available online: http://kns.cnki.net/kcms/detail/32.1801.N.20220426.1127.004.html (accessed on 17 October 2022).
- Hu, J.P.; Guan, X.R.; Liu, X.J. Spatial Distribution of SRTM DEM and ASTER GDEM Error in China. Natl. Remote Sens. Bull. 2017, 33, 28–33. [Google Scholar]
- Tang, X.M.; Li, S.J.; Li, T.; Gao, Y.D.; Zhang, S.H.; Chen, Q.F.; Zhang, X. Review on global digital elevation products. Natl. Remote Sens. Bull. 2021, 25, 167–181. [Google Scholar]
- Gao, Z.Y.; Xie, Y.L.; Wang, N.L.; Jiang, G.X.; Zhou, P. Response of Three Global DEM Dat Accuracy to Different Terrain Factors in Qinghai-Tibet Plateau. Bull. Soil Water Conserv. 2019, 39, 184–191. [Google Scholar] [CrossRef]
Trend Type | Trend Feature | ||
---|---|---|---|
4 | Extremely significant increase (ESI) | ||
3 | Significant increase (SI) | ||
2 | Slightly significant increase (SSI) | ||
1 | Non-significant increase (NSI) | ||
0 | No change (NC) | ||
−1 | Non-significant decrease (NSD) | ||
−2 | Slightly significant decrease (SSD) | ||
−3 | Significant decrease (SD) | ||
−4 | Extremely significant decrease (ESD) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Jing, H.; Zhang, D.; Tang, J.; Liu, Q.; Luan, W. Contribution of the Reconstruction of the Area of Seling Co Lake Using DEM Data and Analysis of Spatio-Temporal Variations. Water 2022, 14, 3599. https://doi.org/10.3390/w14223599
Liu P, Jing H, Zhang D, Tang J, Liu Q, Luan W. Contribution of the Reconstruction of the Area of Seling Co Lake Using DEM Data and Analysis of Spatio-Temporal Variations. Water. 2022; 14(22):3599. https://doi.org/10.3390/w14223599
Chicago/Turabian StyleLiu, Panpan, Haitao Jing, Dapeng Zhang, Jingying Tang, Qi Liu, and Wenfei Luan. 2022. "Contribution of the Reconstruction of the Area of Seling Co Lake Using DEM Data and Analysis of Spatio-Temporal Variations" Water 14, no. 22: 3599. https://doi.org/10.3390/w14223599
APA StyleLiu, P., Jing, H., Zhang, D., Tang, J., Liu, Q., & Luan, W. (2022). Contribution of the Reconstruction of the Area of Seling Co Lake Using DEM Data and Analysis of Spatio-Temporal Variations. Water, 14(22), 3599. https://doi.org/10.3390/w14223599