IoT-Based Water Monitoring Systems: A Systematic Review
Abstract
:1. Introduction
- What kinds of data acquisition system (DAS) are now employed to gather water samples for testing and monitoring?
- How are DAS evaluations in the literature made?
- What kind of approach is employed to categorize water quality?
- What are the characteristics used in earlier research studies to measure water quality?
2. Systematic Review Protocol
2.1. Information Source
2.2. Search Strategy
2.3. Study Selection
2.4. Inclusion and Exclusion Criteria
2.4.1. Inclusion Criteria
- 1-
- Review or survey
- 2-
- Development of a framework or technique for water quality monitoring and/or management,
- 3-
- Empirical or experimental studies to study of water quality regardless of Whether it is management or model analysis based on external data or data collected by authors themselves. However, the articles with no clear data collection procedure (no DAS) and comprehensive analysis are neglected in the three proposed tables of analysis.
2.4.2. Exclusion Criteria
3. Taxonomy
3.1. AI-Based Methods
3.1.1. Machine Learning Methods
3.1.2. Fuzzy Logic Methods
3.1.3. Deep Learning Methods
3.2. Non-AI-Based Methods
3.2.1. Energy Efficiency
3.2.2. Water Analytics
3.2.3. System Design
3.2.4. System Development
3.3. Review and Survey Articles
4. Discussion
4.1. Challenges
4.1.1. Water Pollution
4.1.2. Limited Water Sources and Increasing Population
4.1.3. Water Management
4.1.4. Farms Management
4.1.5. Traditional Monitoring Methods
4.2. Recommendations
4.2.1. Sensor Related
4.2.2. Technology Related
4.2.3. Factors/Framework Related
5. Bibliography Analysis
6. Future Research Directions
6.1. Technology
6.2. AI Models
6.3. Geographical of Real-Time Experiments
6.4. Dataset Issues
7. Comparing This Work to Previous Work
Ref. | Main Board | Medium of Communication between Sensors and MCU (GSM/GPRS/Cable) | Number of Sensors | Ph Sensor | Conductivity Sensor | Turbidity Sensor | Ammonia Sensor | Flow Rate Sensor | Ultrasonic Sensor | Humidity and/or Temperature Sensor | Total Dissolved Solid Sensor | O2 Sensor | Calcium and Chloride Sensor | Water Level Sensor | Co2 Sensor | ORP Sensor | Chemical Oxygen Demand | Oil Content/Pressure Sensor | GPS Sensor | Nitrite Sensor | Fluoride Sensor | Chloride Sensor | Sodium Sensor | Cadmium/Chromium Sensor | Copper Sensor | Zinc Sensor | Nickel Sensor | Lead Sensor | Color/Odour/Taste Sensor | Soil Moisture/Pesticides/Arsenic Sensor | Number of Electronic MCU Boards | Design and Programming | O/P | Equipment Reliability | Implementation Cost | Total Equipment Cost | DAS Size | Power Consumption | Power Stand Alone | DAS Latency | Information Size | Information Diversity | Computational Complexity | DAS Complexity |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[16] | UAV | LoRaWAN + Cloud | 8 | × | × | × | × | × | × | × | × | 1 | VH | VH | H | VH | VH | VH | VH | No | H | VB | H | H | VH | |||||||||||||||||||
[4] | MCU + Zigbee | Zigbee + IoT | 4 | × | × | × | × | 2 | M | M | L | H | M | M | M | No | M | M | L | M | H | |||||||||||||||||||||||
[39] | ARM microprocessor + Zigbee | Zigbee + IoT | 3 | × | × | × | 2 | L | L | L | L | L | M | M | No | M | L | L | M | H | ||||||||||||||||||||||||
[40] | Waspmote + Zigbee + Cloud | Zigbee + IoT | 7 | × | × | × | × | × | × | × | 1 | H | L | H | H | H | M | H | No | M | H | H | H | H | ||||||||||||||||||||
[30] | Arduino | Offline | 3 | × | × | × | 1 | VL | M | L | L | M | S | L | No | L | L | L | L | M | ||||||||||||||||||||||||
[72] | LoRa node and Rx64M MCU | Offline | 3 | × | × | × | 1 | L | L | L | L | L | VL | L | No | L | L | L | VL | L | ||||||||||||||||||||||||
[32] | Arduino ATmega + Sensors | Zigbee | 6 | × | × | × | × | × | × | 1 | M | H | L | M | L | B | M | No | H | M | M | M | M | |||||||||||||||||||||
[67] | Sensor(I2C) + ESP8266 MCU + IoT | I2C/WiFI | 1 | × | 1 | VL | VL | VL | L | L | VL | VL | No | VL | VL | VL | VL | VL | ||||||||||||||||||||||||||
[73] | Arduino + (TX/RX) | offline | 4 | × | × | × | × | 1 | H | M | L | L | L | M | L | No | M | L | M | L | M | |||||||||||||||||||||||
[37] | Special Design+ Wireless | 4G | 3 | × | × | × | 1 | VH | H | H | VH | H | VB | H | No | M | L | L | L | VH | ||||||||||||||||||||||||
[58] | RF LoRa + IoT | WiFi/2G/3G | 4 | × | × | × | × | 1 | VH | H | M | H | H | B | H | No | M | M | M | L | H | |||||||||||||||||||||||
[59] | Raspberry pi + Sensors | WiFi | 5 | × | × | × | × | × | 1 | M | L | L | M | M | M | H | No | M | M | H | M | M | ||||||||||||||||||||||
[41] | Sensor + Arduino + RPI + 4G + UAV | 4G | 4 | × | × | × | × | × | 2 | VH | VH | VH | VH | VH | B | H | No | H | H | M | M | VH | ||||||||||||||||||||||
[60] | Arduini + NB-IoT | GSM | 3 | × | × | × | 1 | VH | VH | M | VH | M | VB | H | No | M | L | L | L | H | ||||||||||||||||||||||||
[54] | Intel Edison + Zigbee to sensors + Wifi to server | WiFI | 3 | × | × | × | 1 | H | H | L | M | M | S | VH | Yes | H | M | L | L | H | ||||||||||||||||||||||||
[61] | Arduino + ESP8266 | WiFi | 5 | × | × | × | × | × | 1 | H | L | M | H | M | B | H | No | L | M | M | M | H | ||||||||||||||||||||||
[62] | NB-IoT | 4G | 7 | × | × | × | × | × | × | × | 1 | H | H | M | H | H | B | H | No | M | M | M | M | H | ||||||||||||||||||||
[55] | P89V51RD2 MCU + Zigbee + Sensor | Zigbee | 4 | × | × | × | × | 1 | M | L | L | L | L | M | L | No | M | M | M | L | M | |||||||||||||||||||||||
[49] | ESP8266 + (cable) Sensors | WiFI | 4 | × | × | × | × | 1 | L | L | L | L | L | L | H | No | L | S | M | M | L | |||||||||||||||||||||||
[56] | Arduino + Xbee + Sensors | Zigbee | 2 | × | × | 2 | H | M | L | M | M | B | M | No | VH | VS | VL | VL | H | |||||||||||||||||||||||||
[63] | NodeMCU ESP8266 + Wifi | Wifi | 4 | × | × | × | × | 1 | VL | VL | L | L | L | VS | H | No | M | M | M | L | M | |||||||||||||||||||||||
[42] | Pic16f877a + Sensors | offline | 2 | × | × | 1 | L | L | VL | VL | L | S | L | No | VL | S | L | L | L | |||||||||||||||||||||||||
[45] | Arduino + ARTIK cloud | WiFi | 5 | × | × | × | × | × | 1 | L | L | L | L | M | S | H | No | VL | M | M | L | M | ||||||||||||||||||||||
[43] | Sensors(cable) +Arduino+ Raspberry Pi | WiFI/GSM | 4 | × | × | × | × | 2 | H | H | L | L | M | M | H | No | H | M | M | M | H | |||||||||||||||||||||||
[13] | RaspberryPi+ loRaWAN | 2G/3G | 4 | × | × | × | × | 1 | H | H | M | H | H | M | M | No | M | M | M | L | H | |||||||||||||||||||||||
[51] | Raspberry Pi ZeroW + SimCom(Sim800) | GSM/GPRS | 1 | × | 2 | H | H | H | H | H | B | M | No | M | VS | VL | VL | H | ||||||||||||||||||||||||||
[44] | Arduino + Ethernet | Ethernet | 15 | × | × | × | × | × | × | × | × | × | × | ××× | ×× | 1 | H | H | M | M | H | B | H | No | H | M | VH | H | H | |||||||||||||||
[64] | RaspberryPi + Sensors | Simple internet connection | 4 | × | ×× | × | 1 | L | L | VL | L | L | M | M | No | L | S | L | L | M | ||||||||||||||||||||||||
[57] | Smart Water Sensors + RF 900 MHZ | WiFI to cloud | 8 | × | × | × | × | × | × | × | × | 1 | H | H | H | H | H | VB | VH | No | L | B | M | M | M | |||||||||||||||||||
[19] | Arduino + RF ID+ ZigBee | Zigbee (sensors-Node) + RFID (among Nodes) | 3 | × | × | × | 1 | H | H | L | H | M | M | H | Yes | H | S | L | L | H | ||||||||||||||||||||||||
[47] | MCU + GSM | GSM | 3 | × | × | × | 1 | L | L | M | L | L | S | L | No | M | S | L | M | L | ||||||||||||||||||||||||
[46] | Arduino + Sensors | GPRS | 3 | × | × | × | 1 | L | L | L | L | H | L | H | No | M | S | L | L | M | ||||||||||||||||||||||||
[17] | Arduino + Wifi + Sensors | (Wifi) ESP8266 | 4 | × | × | × | × | 2 | M | M | L | L | L | M | H | No | L | M | L | L | H | |||||||||||||||||||||||
[52] | Arduino Atmel ATmega2560 + Wifi + Sensors | Wi-FiESP8266 | 10 | × | × | × | × | × | × | × | × | × | × | 1 | H | H | L | H | M | B | VH | No | H | B | H | H | H | |||||||||||||||||
[65] | Raspberrypi + Wi-FI | Wi-Fi | 4 | × | × | × | × | 1 | L | L | L | L | M | M | H | No | M | S | M | L | M | |||||||||||||||||||||||
[38] | Arduino + Sensor | Wifi | 2 | × | × | 1 | L | VL | L | L | L | L | H | No | L | S | L | L | L | |||||||||||||||||||||||||
[31] | Arduino + Wifi + Sensor | Wifi (Node MCU V3 ESP8266 Development Board CH340) | 4 | × | × | × | × | 1 | L | L | VL | M | M | S | H | Yes | M | S | M | L | M | |||||||||||||||||||||||
[66] | Arduino + Sensors | Offline | 3 | × | × | × | 1 | L | L | L | L | M | S | L | No | VL | VS | L | L | L | ||||||||||||||||||||||||
[2] | DAS + IoT | Wifi | 5 | × | × | × | × | × | 1 | VH | VH | H | VH | VH | VB | H | Yes | M | B | M | M | H | ||||||||||||||||||||||
[5] | Intel Galilo + Wifi | Wifi | 1 | × | 1 | H | H | M | M | M | M | H | No | L | S | VL | L | M | ||||||||||||||||||||||||||
[53] | Raspberry Pi + Wifi | WiFi | 1 | × | 1 | H | L | L | L | M | S | H | No | L | S | VL | VL | M | ||||||||||||||||||||||||||
[41] | Total | 35 | 11 | 20 | 2 | 7 | 6 | 26 | 8 | 15 | 1 | 6 | 5 | 4 | 1 | 2 | 1 | 3 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 5 | 3 |
Ref | Machine Learning Name | Classification or Regression (C/R)? | Labeling Method (Manual Automatic) | Feature Extraction Method (Manual, automated) | Data Source (Collected by Authors or Not | Number of Features | Data Size | Data Duration (Time) | Pre-Processing Required? (Y/N) | Number Metrics Used in Evaluation |
---|---|---|---|---|---|---|---|---|---|---|
[29] | K means | clustering | auto | NA | NA | NA | NA | NA | NA | NA |
[7] | -LOF -model tree | classification and regression | auto | Auto | Authors | pH, temperature, electrical conductivity, turbidity, and dissolved oxygen | S (instantaneous) | Instantaneous | Y | Mean and correlation, MAE |
[30] | RF + Fuzzy Logic | Regression | Manual | Manual | Authors | Turbidity, flow rate, and pH | M | NA | NA | Accuracy, MSE, RMSE |
[33] | LSTM deep neural network | Regression | Manual | Auto | Authors | Temperature, pH, DO, conductivity, Turbidity, CODMn, NH3–N, | B | 1 January 2016–30 June 2018 | Y linear imputation model (missing data treatment) | MSE |
[32] | Fuzzy logic | Classification | Manual | NA | Authors | Turbidity, Oxidation Reduction Potential, Temperature, pH, and Electrical Conductivity. | S instantaneous | Instantaneous | NA | NA |
[14] | LSTM deep neural network | Regression | Manual | Auto | Other Authors | salinity, temperature, pH, and dissolved oxygen | B | NA | Y (remove missing value) | Root mean squared error (RMSE) |
[13] | Linear Regression Algorithm | Regression | Manual | Manual | Authors | PH, conductivity, Salinity, water level | S | NA | NA | recharge rate and consumption rate. |
[34] | LSTM deep neural network | Regression | Auto | Algorithm | Other Authors | 1–3 Training Hidden Layers | B | 1 January 2010 till 31 March 2018 | No | MAPE, ACC, MASE |
[31] | Decision Tree Algorithm | Classification | Manual | Manual | Authors | O2, pH, Temp, Ammonia NH3, Salinity | S | NA | NA | Correlation, (R) Mean, MAE |
Ref. | Site Type (River, Sea, Lake, Farm, Etc.) | Number of Sites | Experiment Time (Day, Nigh) | Experiment Condition (Normal, Hazardous Weather) | Duration of Experiment (Min) | Experiment Purpose (Online Monitoring (Continuous Feed, Off-Line Data Collection) | Comments |
---|---|---|---|---|---|---|---|
[16] | River | 5 sites | day | normal | 10 min with Drones | Data collection | |
[29] | Rural Areas | Data collection and analysis | No experiment | ||||
[7] | Fish Farms | 2 nodes | Day and night | from 16 September 2018, to 15 October 2018, were acquired daily at time points of 6:00, 9:00, 16:00, and 22:00. | Analysis and forecasting | ||
[33] | River | 3 locations | At a fixed time daily from 1 January 2016 to 30 June 2018 with a total of 917 sets | Analysis and forecasting | |||
[36] | Secondary data used for analysis | ||||||
[14] | Forecasting water quality | Secondary data used for analysis | |||||
[37] | Secondary data used for analysis | ||||||
[54] | River | 1 location | No info (pilot test) | ||||
[61] | Lake | 16 sites | Afternoon | Normal | 5 min for each site | Data acquisition | |
[55] | Fishpond | 4 nodes, 2 locations | 24–30 January 2019. With a 6 feet depth | Data acquisition | |||
[49] | Send data every 5 s | Continuous feeding | No proper info | ||||
[50] | No info (no full paper to check) | ||||||
[51] | Wastewater | 8 devices in 4 sites | 2 daily readings during March 2019 and eight samples were compared on the following days 1, 4, 8, 12, 14, 18, 20, and 22. | Data acquisition | |||
[57] | Wastewater Industry | 14 stations | April 2018 | Data acquisition and analysis | |||
[19] | Crab Pond | sampled 10 times in the period of approximately 10.30 am on the 26 June 2019 | Data acquisition | ||||
[47] | Lake | No info | |||||
[46] | Water Pumping Station | Send data every 5 s | Report generation | ||||
[17] | 10 samples | No further info | |||||
[52] | Water Station | 5 stations | 24 h for 10 days. stored in the database every 10 min. | Continuous monitoring | |||
[65] | Aqua Tanks | No info | |||||
[34] | Forecasting water demand | Secondary data used | |||||
[66] | River | No proper info | |||||
[2] | Bristol Floating Harbour | 3 sites | 6 cm deep and Data transfer every 15 min | Continuous monitoring | |||
[5] | Water Tank | No info | |||||
[53] | Fish Pond | 2 nodes | Every 1 min | (proof of concept testing only) |
Ref | Year | Topics | Architecture | Taxonomy | AI Models Analysis | DAS and Sensors Analysis | DAS Evaluation |
---|---|---|---|---|---|---|---|
[18] | 2018 | Energy Efficiency for WSN | WSN only | No | No | No | No |
This Review | 2022 | Energy; Sensor and DAS integration | Any Architecture | Yes | Yes | Yes | Yes |
7.1. DAS Availability
7.2. Selecting the Best Machine Learning Technique
7.3. Assessment Method of DAS
8. Limitations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vikesland, P.J. Nanosensors for water quality monitoring. Nat. Nanotechnol. 2018, 13, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Han, D. Water quality monitoring in smart city: A pilot project. Autom. Constr. 2018, 89, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Ighalo, J.O.; Adeniyi, A.G. Mitigation of Diclofenac pollution in aqueous media by adsorption. ChemBioEng Rev. 2020, 7, 50–64. [Google Scholar] [CrossRef]
- Gehlot, A.; Singh, R.; Samkaria, R.; Choudhury, S.; De, A. Kamlesh, Air quality and water quality monitoring using XBee and internet of things. Int. J. Eng. Technol. 2018, 7, 24–27. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, S.N.; Asnawi, A.; Abdul Malik, N.; Mohd Azmin, N.; Jusoh, A.; Mohd Isa, F. Web based Water Turbidity Monitoring and Automated Filtration System: IoT Application in Water Management. Int. J. Electr. Comput. Eng. 2018, 8, 2503–2511. [Google Scholar] [CrossRef] [Green Version]
- Ighalo, J.O.; Adeniyi, A.G.; Marques, G. Internet of things for water quality monitoring and assessment: A comprehensive review. In Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications; Springer: Cham, Switzerland, 2021; pp. 245–259. [Google Scholar]
- Gao, G.; Xiao, K.; Chen, M. An intelligent IoT-based control and traceability system to forecast and maintain water quality in freshwater fish farms. Comput. Electron. Agric. 2019, 166, 105013. [Google Scholar] [CrossRef]
- Kanoun, O.; Lazarević-Pašti, T.; Pašti, I.; Nasraoui, S.; Talbi, M.; Brahem, A.; Adiraju, A.; Sheremet, E.; Rodriguez, R.D.; Ben Ali, M. A review of nanocomposite-modified electrochemical sensors for water quality monitoring. Sensors 2021, 21, 4131. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Song, L.; Liu, Y.; Yang, L.; Li, D. A review of the artificial neural network models for water quality prediction. Appl. Sci. 2020, 10, 5776. [Google Scholar] [CrossRef]
- Liu, Q. Intelligent water quality monitoring system based on multi-sensor data fusion technology. Int. J. Ambient. Comput. Intell. IJACI 2021, 12, 43–63. [Google Scholar] [CrossRef]
- El-Tohamy, W.S.; Azab, Y.A.; Abdel-Aziz, N. Evaluation of the Water Quality of Damietta Harbor: Using the Zooplankton Diversity and the Traditional Water Quality Parameters. Int. J. Ocean. Oceanogr. 2019, 13, 229–246. [Google Scholar]
- Das, B.; Jain, P. Real-time water quality monitoring system using Internet of Things. In Proceedings of the 2017 International Conference on Computer, Communications and Electronics (Comptelix 2017), Jaipur, India, 1–2 July 2017; pp. 78–82. [Google Scholar]
- Lalithadevi, B.; Yadav, A.; Pandey, A.; Adhikari, M. Iot based wsn ground water monitoring system with cloud-based monitoring as a service (maas) and prediction using machine learning. Int. J. Innov. Technol. Explor. Eng. Regul. Issue 2019, 9, 816–821. [Google Scholar]
- Thai-Nghe, N.; Thanh-Hai, N.; Chi Ngon, N. Deep learning approach for forecasting water quality in IoT systems. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 686–693. [Google Scholar] [CrossRef]
- Nadu, T. An Underground Pipeline Water Quality Monitoring Using Iot Devices. Eur. J. Mol. Clin. Med. 2020, 7, 2046–2054. [Google Scholar]
- Elijah, O.; Rahman, T.A.; Leow, C.; Yeen, H.; Sarijari, M.; Aris, A.; Salleh, J.; Chua, T. A concept paper on smart river monitoring system for sustainability in river. Int. J. Integr. Eng. 2018, 10, 130–139. [Google Scholar] [CrossRef]
- Pasika, S.; Gandla, S.T. Smart water quality monitoring system with cost-effective using IoT. Heliyon 2020, 6, e04096. [Google Scholar] [CrossRef]
- Olatinwo, S.O.; Joubert, T.-H. Energy efficient solutions in wireless sensor systems for water quality monitoring: A review. IEEE Sens. J. 2018, 19, 1596–1625. [Google Scholar] [CrossRef]
- Boonsong, W.; ISMAIL, W.; Shinohara, N.; Nameh, S.M.I.S.; Alifah, S.; Hafiz, K.; Kamaludin, T.A. Real-time water quality monitoring of aquaculture pond using wireless sensor network and internet of things. J. Theor. Appl. Inf. Technol. 2020, 98. [Google Scholar]
- Oztemel, E.; Gursev, S. Literature review of Industry 4.0 and related technologies. J. Intell. Manuf. 2020, 31, 127–182. [Google Scholar] [CrossRef]
- Moparthi, N.R.; Mukesh, C.; Sagar, P.V. Water quality monitoring system using IoT. In Proceedings of the 2018 4th International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB 2018), Chennai, India, 27–28 February 2018; pp. 1–5. [Google Scholar]
- Manavalan, E.; Jayakrishna, K. A review of Internet of Things (IoT) embedded sustainable supply chain for industry 4.0 requirements. Comput. Ind. Eng. 2019, 127, 925–953. [Google Scholar] [CrossRef]
- Haque, H.; Labeeb, K.; Riha, R.B.; Khan, M.N.R. IoT based water quality monitoring system by using Zigbee protocol. In Proceedings of the 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 5–7 March 2021; pp. 619–622. [Google Scholar]
- Poor, P.J.; Pessagno, K.L.; Paul, R.W. Exploring the hedonic value of ambient water quality: A local watershed-based study. Ecol. Econ. 2007, 60, 797–806. [Google Scholar] [CrossRef]
- Muehlenbachs, L.; Spiller, E.; Timmins, C. The housing market impacts of shale gas development. Am. Econ. Rev. 2015, 105, 3633–3659. [Google Scholar] [CrossRef] [Green Version]
- Nair, S.; de la Vara, J.L.; Sabetzadeh, M.; Briand, L. An extended systematic literature review on provision of evidence for safety certification. Inf. Softw. Technol. 2014, 56, 689–717. [Google Scholar] [CrossRef] [Green Version]
- Oviedo-Trespalacios, O.; Truelove, V.; Watson, B.; Hinton, J.A. The impact of road advertising signs on driver behaviour and implications for road safety: A critical systematic review. Transp. Res. Part A Policy Pract. 2019, 122, 85–98. [Google Scholar] [CrossRef]
- Martín-delosReyes, L.M.; Jiménez-Mejías, E.; Martínez-Ruiz, V.; Moreno-Roldán, E.; Molina-Soberanes, D.; Lardelli-Claret, P. Efficacy of training with driving simulators in improving safety in young novice or learner drivers: A systematic review. Transp. Res. Part F Traffic Psychol. Behav. 2019, 62, 58–65. [Google Scholar] [CrossRef]
- Vergina, S.A.; Kayalvizhi, S.; Bhavadharini, R.; Kalpana Devi, S. A real time water quality monitoring using machine learning algorithm. Eur. J. Mol. Clin. Med. 2020, 7, 2035–2041. [Google Scholar]
- Loyola, L.G.; Lacatan, L.L. Water Quality Evaluation System for Prawn (Penaeus monodon) Using IoT Device and Decision Tree Algorithm. J. Crit. Rev. 2020, 7, 983–988. [Google Scholar]
- Priya, S.K.; Shenbagalakshmi, G.; Revathi, T. Architecture of smart sensors for real time drinking water quality and contamination detection in water distributed mains. Sci. Technol. 2019, 22, 202–214. [Google Scholar]
- Liu, P.; Wang, J.; Sangaiah, A.K.; Xie, Y.; Yin, X. Analysis and prediction of water quality using LSTM deep neural networks in IoT environment. Sustainability 2019, 11, 2058. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, L.K.; Sankaranarayanan, S.; Rodrigues, J.J.; Kozlov, S. Water demand forecasting using deep learning in IoT enabled water distribution network. Int. J. Comput. Commun. Control. 2020, 15, 3977. [Google Scholar] [CrossRef]
- Olatinwo, S.O.; Joubert, T.-H. Energy efficiency maximization in a wireless powered IoT sensor network for water quality monitoring. Comput. Netw. 2020, 176, 107237. [Google Scholar] [CrossRef]
- Nie, X.; Fan, T.; Wang, B.; Li, Z.; Shankar, A.; Manickam, A. Big data analytics and IoT in operation safety management in under water management. Comput. Commun. 2020, 154, 188–196. [Google Scholar] [CrossRef]
- Zhang, J.; Sheng, Y.; Chen, W.; Lin, H.; Sun, G.; Guo, P. Design and analysis of a water quality monitoring data service platform. CMC Comput. Mater. Contin. 2021, 66, 389–405. [Google Scholar] [CrossRef]
- Miry, A.H.; Aramice, G.A. Water monitoring and analytic based ThingSpeak. Int. J. Electr. Comput. Eng. 2020, 10, 3588. [Google Scholar] [CrossRef]
- Bhagavan, K.; Krishna, R.V.; Gangadhar, A.C.L.; Arun, M. An efficient method in real time for water quality monitoring using internet of things. Int. J. Eng. Technol. 2018, 7, 170–173. [Google Scholar] [CrossRef]
- Amit Ganatra, N.D. An IoT Based Real Time Smart Water Quality Monitoring and Controlling System using Waspmote and ZigBee Module. Int. J. Adv. Sci. Technol. 2020, 29, 1147–1151. [Google Scholar]
- Esakki, B.; Ganesan, S.; Mathiyazhagan, S.; Ramasubramanian, K.; Gnanasekaran, B.; Son, B.; Park, S.W.; Choi, J.S. Design of amphibious vehicle for unmanned mission in water quality monitoring using internet of things. Sensors 2018, 18, 3318. [Google Scholar] [CrossRef] [Green Version]
- Ramya, A.; Rohini, R.; Ravi, S. Iot based smart monitoring system for fish farming. Int. J. Eng. Adv. Technol. 2019, 8, 420–424. [Google Scholar]
- Babu Loganathan, G.; Mohan, E.; Siva Kumar, R. IoT based water and soil quality monitoring system. Int. J. Mech. Eng. Technol. IJMET 2019, 10, 537–541. [Google Scholar]
- Bojja, P.; Kumari, P.; Preetha, P.; Raga, S.N.P.; Akhila, P. Portable drinking water quality measurement system for implementation of smart villages. Int. J. Recent Technol. Eng. 2019, 7, 764–767. [Google Scholar]
- Kamidi, P.; Sabbi, V.; Sanniti, R. IoT based smart water quality monitoring and prediction system. Int. J. Eng. Adv. Technol. 2019, 8, 484–489. [Google Scholar]
- Saravanan, K.; Anusuya, E.; Kumar, R.; Son, L.H. Real-time water quality monitoring using Internet of Things in SCADA. Environ. Monit. Assess. 2018, 190, 556. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Zambare, M.; Kulkarni, N.; Shaligram, A. Real-time water quality monitoring system analysis of Pashan lake, Maharashtra, India. Int. J. Eng. Adv. Technol. IJEAT 2019, 8, 1166–1171. [Google Scholar] [CrossRef]
- Mirzavand, R.; Honari, M.M.; Laribi, B.; Khorshidi, B.; Sadrzadeh, M.; Mousavi, P. An unpowered sensor node for real-time water quality assessment (humic acid detection). Electronics 2018, 7, 231. [Google Scholar] [CrossRef] [Green Version]
- Spandana, K.; Rao, V.S. Internet of things (Iot) based smart water quality monitoring system. Int. J. Eng. Technol. 2018, 7, 259–262. [Google Scholar] [CrossRef]
- Narayanan, L.K.; Sankaranarayanan, S.; Rodrigues, J.J.; Lorenz, P. Multi-agent-based modeling for underground pipe health and water quality monitoring for supplying quality water. Int. J. Intell. Inf. Technol. IJIIT 2020, 16, 52–79. [Google Scholar] [CrossRef]
- Martínez, R.; Vela, N.; El Aatik, A.; Murray, E.; Roche, P.; Navarro, J.M. On the use of an IoT integrated system for water quality monitoring and management in wastewater treatment plants. Water 2020, 12, 1096. [Google Scholar] [CrossRef]
- Ramadhan, A.; Ali, A.; Kareem, H. Smart water-quality monitoring system based on enabled real-time internet of things. J. Eng. Sci. Technol. 2020, 15, 3514–3527. [Google Scholar]
- Saparudin, F.; Chee, T.; Ab Ghafar, A.; Majid, H.; Katiran, N. Wireless water quality monitoring system for high density aquaculture application. Indones. J. Electr. Eng. Comput. Sci. 2019, 13, 507–513. [Google Scholar] [CrossRef]
- Shareef, Z.; Reddy, S. Design, development and analysis of an IoT-based framework for monitoring aquaculture farms. Int. J. Mob. Netw. Des. Innov. 2019, 9, 183–191. [Google Scholar] [CrossRef]
- Dasig, D.D., Jr. Implementing Zigbee-based Wireless Sensor Network in the Design of Water Quality Monitoring System. Int. J. Recent Technol. Eng. 2019, 8, 6174–6179. [Google Scholar]
- Rahmadya, B.; Zaini, Z.; Muharam, M. Iot: A mobile application and multi-hop communication in wireless sensor network for water monitoring. Int. J. Interact. Mob. Technol. 2020, 14, 288–296. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Mukhtar, H.; Huang, K.-T.; Petway, J.R.; Lin, C.-M.; Chou, C.-F.; Liao, S.-W. Real-time identification of irrigation water pollution sources and pathways with a wireless sensor network and blockchain framework. Sensors 2020, 20, 3634. [Google Scholar] [CrossRef]
- Danh, L.V.Q.; Dung, D.V.M.; Danh, T.H.; Ngon, N.C. Design and deployment of an IoT-based water quality monitoring system for aquaculture in Mekong Delta. Int. J. Mech. Eng. Robot. Res. 2020, 9, 1170–1175. [Google Scholar] [CrossRef]
- Kumar, M.J.V.; Samalla, K. Design and development of water quality monitoring system in IoT. Int. J. Recent Technol. Eng. IJRTE 2019, 7, 527–533. [Google Scholar]
- Huan, J.; Li, H.; Wu, F.; Cao, W. Design of water quality monitoring system for aquaculture ponds based on NB-IoT. Aquac. Eng. 2020, 90, 102088. [Google Scholar] [CrossRef]
- Ab Aziz, M.A.; Abas, M.F.; Bashri, M.K.A.A.; Saad, N.M.; Ariff, M. Evaluating IoT based passive water catchment monitoring system data acquisition and analysis. Bull. Electr. Eng. Inform. 2019, 8, 1373–1382. [Google Scholar] [CrossRef]
- Lin, Y.-B.; Tseng, H.-C. FishTalk: An IoT-based mini aquarium system. IEEE Access 2019, 7, 35457–35469. [Google Scholar] [CrossRef]
- Kalpana, D.; Venkatesulu, S. Iot Based Public Watering System With Quality Measurement. Eur. J. Mol. Clin. Med. 2020, 7, 2360–2366. [Google Scholar]
- Amareshwar, E.; Jahan, S. Raspberry pi based water quality monitoring and flood alerting system using IoT. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 237–240. [Google Scholar]
- Angani, A.; Lee, J.C.; Shin, K.J. Vertical recycling aquatic system for internet-of-things-based smart fish farm. Sens. Mater. 2019, 31, 3987–3998. [Google Scholar] [CrossRef]
- Pantjawati, A.B.; Purnomo, R.; Mulyanti, B.; Fenjano, L.; Pawinanto, R.; Nandiyanto, A.B.D. Water quality monitoring in Citarum River (Indonesia) using IoT (internet of thing). J. Eng. Sci. Technol. 2020, 15, 3661–3672. [Google Scholar]
- Oommen, A.K.; Saji, A.; Joseph, S.; Kuriakose, B.P. Automated Water Quality Monitoring System for Aquaponics. Int. Res. J. Eng. Technol. 2019, 7832, 7832–7841. [Google Scholar]
- Di Luccio, D.; Riccio, A.; Galletti, A.; Laccetti, G.; Lapegna, M.; Marcellino, L.; Kosta, S.; Montella, R. Coastal marine data crowdsourcing using the Internet of Floating Things: Improving the results of a water quality model. IEEE Access 2020, 8, 101209–101223. [Google Scholar] [CrossRef]
- Wang, Y.; Rajib, S.S.M.; Collins, C.; Grieve, B. Low-cost turbidity sensor for low-power wireless monitoring of fresh-water courses. IEEE Sens. J. 2018, 18, 4689–4696. [Google Scholar] [CrossRef] [Green Version]
- Talal, M.; Ramli, K.N.; Zaidan, A.A.; Zaidan, B.B.; Jumaa, F. Review on car-following sensor based and data-generation mapping for safety and traffic management and road map toward ITS. Veh. Commun. 2020, 25, 100280. [Google Scholar] [CrossRef]
- Abdulwahid, S.N.; Mahmoud, M.A.; Zaidan, B.B.; Alamoodi, A.H.; Garfan, S.; Talal, M.; Zaidan, A.A. A comprehensive review on the behaviour of motorcyclists: Motivations, issues, challenges, substantial analysis and recommendations. Int. J. Environ. Res. Public Health 2022, 19, 3552. [Google Scholar] [CrossRef]
- Zaidan, R.; Alamoodi, A.; Zaidan, B.; Zaidan, A.; Albahri, O.; Talal, M.; Garfan, S.; Sulaiman, S.; Mohammed, A.; Kareem, Z. Comprehensive driver behaviour review: Taxonomy, issues and challenges, motivations and research direction towards achieving a smart transportation environment. Eng. Appl. Artif. Intell. 2022, 111, 104745. [Google Scholar] [CrossRef]
- Fathoni, H.; Miao, H.-Y.; Chen, C.-Y.; Yang, C.-T. A Monitoring System of Water Quality Tunghai Lake Using LoRaWAN. In Proceedings of the 2020 International Conference on Pervasive Artificial Intelligence (ICPAI), Taipei, Taiwan, 3–5 December 2020; pp. 281–283. [Google Scholar]
- Sithole, M.P.P.; Nwulu, N.I.; Dogo, E.M. Dataset for a wireless sensor network based drinking-water quality monitoring and notification system. Data Brief 2019, 27, 104813. [Google Scholar] [CrossRef]
- Mahmoud, U.S.; Albahri, A.S.; AlSattar, H.A.; Zaidan, A.A.; Talal, M.; Mohammed, R.T.; Albahri, O.S.; Zaidan, B.B.; Alamoodi, A.H.; Qahtan, S. DAS benchmarking methodology based on FWZIC II and FDOSM II to support industrial community characteristics in the design and implementation of advanced driver assistance systems in vehicles. J. Ambient. Intell. Humaniz. Comput. 2022, 1–28. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zulkifli, C.Z.; Garfan, S.; Talal, M.; Alamoodi, A.H.; Alamleh, A.; Ahmaro, I.Y.Y.; Sulaiman, S.; Ibrahim, A.B.; Zaidan, B.B.; Ismail, A.R.; et al. IoT-Based Water Monitoring Systems: A Systematic Review. Water 2022, 14, 3621. https://doi.org/10.3390/w14223621
Zulkifli CZ, Garfan S, Talal M, Alamoodi AH, Alamleh A, Ahmaro IYY, Sulaiman S, Ibrahim AB, Zaidan BB, Ismail AR, et al. IoT-Based Water Monitoring Systems: A Systematic Review. Water. 2022; 14(22):3621. https://doi.org/10.3390/w14223621
Chicago/Turabian StyleZulkifli, Che Zalina, Salem Garfan, Mohammed Talal, A. H. Alamoodi, Amneh Alamleh, Ibraheem Y. Y. Ahmaro, Suliana Sulaiman, Abu Bakar Ibrahim, B. B. Zaidan, Amelia Ritahani Ismail, and et al. 2022. "IoT-Based Water Monitoring Systems: A Systematic Review" Water 14, no. 22: 3621. https://doi.org/10.3390/w14223621
APA StyleZulkifli, C. Z., Garfan, S., Talal, M., Alamoodi, A. H., Alamleh, A., Ahmaro, I. Y. Y., Sulaiman, S., Ibrahim, A. B., Zaidan, B. B., Ismail, A. R., Albahri, O. S., Albahri, A. S., Soon, C. F., Harun, N. H., & Chiang, H. H. (2022). IoT-Based Water Monitoring Systems: A Systematic Review. Water, 14(22), 3621. https://doi.org/10.3390/w14223621