Factors Controlling Natural Background Levels of Ammonium and Iodide in Shallow Groundwater of Coastal Aquifers, South China
Abstract
:1. Introduction
2. Study Area
2.1. Geographical and Land-Use Conditions
2.2. Hydrogeological Conditions
3. Materials and Methods
3.1. Sampling and Analysis
3.2. NBL Assessment
3.3. Principal Components Analysis
4. Results
4.1. NBLs of Groundwater I− and NH4+ in the PRD
4.2. Hydrogeochemical Characteristics in Residual Datasets in Various Aquifers
4.3. Relationships between I−/NH4+ and Other Components in Groundwater Unit A in the Residual Datasets
4.4. Effectiveness of the Used Method
5. Discussion
5.1. Main Sources for NBLs-I−/NH4+ in Groundwater Unit A
5.2. Main Driving Forces for NBLs-I−/NH4+ in Groundwater Unit A
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martinez, M.L.; Intralawan, A.; Vazquez, G.; Pérez-Maqueo, O.; Sutton, P.; Landgrave, R. The coasts of our world: Ecological, economic and social importance. Ecol. Econ. 2007, 63, 254–272. [Google Scholar] [CrossRef]
- Khosravi, K.; Barzegar, R.; Golkarian, A.; Busico, G.; Cuoco, E.; Mastrocicco, M.; Colombani, N.; Tedesco, D.; Ntona, M.M.; Kazakis, N. Predictive modeling of selected trace elements in groundwater using hybrid algorithms of iterative classifier optimizer. J. Contam. Hydrol. 2021, 242, 103849. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.; Qi, C.; Wang, Z.; Li, C.; Liu, W.; Fu, Y.; Chen, G.; Su, Q.; Xu, X.; Yu, H. Hydrochemical characteristics and quality assessment of groundwater under the impact of seawater intrusion and anthropogenic activity in the coastal areas of Zhejiang and Fujian provinces, China. Lithosphere 2022, 2022, 1394857. [Google Scholar] [CrossRef]
- Ntona, M.M.; Busico, G.; Mastrocicco, M.; Kazakis, N. Modeling groundwater and surface water interaction: An overview of current status and future challenges. Sci. Total Environ. 2022, 846, 157355. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Han, D.; Song, J.; Li, L.; Pei, L. A sharp contrasting occurrence of iron-rich groundwater in the Pearl River Delta during the past dozen years (2006–2018): The genesis and mitigation effect. Sci. Total Environ. 2022, 829, 154676. [Google Scholar] [CrossRef]
- Zhang, F.; Huang, G.; Hou, Q.; Liu, C.; Zhang, Y.; Zhang, Q. Groundwater quality in the Pearl River Delta after the rapid expansion of industrialization and urbanization: Distributions, main impact indicators, and driving forces. J. Hydrol. 2019, 577, 124004. [Google Scholar] [CrossRef]
- Griffioen, J.; Passier, H.F.; Klein, J. Comparison of selection methods to deduce natural background levels for groundwater units. Environ. Sci. Technol. 2008, 42, 4863–4869. [Google Scholar] [CrossRef]
- Huang, G.; Pei, L.; Li, L.; Liu, C. Natural background levels in groundwater in the Pearl River Delta after the rapid expansion of urbanization: A new pre-selection method. Sci. Total Environ. 2022, 813, 151890. [Google Scholar] [CrossRef]
- Bi, P.; Huang, G.; Liu, C.; Li, L. Geochemical factors controlling natural background levels of phosphate in various groundwater units in a large-scale urbanized area. J. Hydrol. 2022, 608, 127594. [Google Scholar] [CrossRef]
- Huang, G.; Liu, C.; Li, L.; Zhang, F.; Chen, Z. Spatial distribution and origin of shallow groundwater iodide in a rapidly urbanized delta: A case study of the Pearl River Delta. J. Hydrol. 2020, 585, 124860. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, G.; Liu, C.; Zhang, Y.; Chen, Z.; Wang, J. Distributions and origins of nitrate, nitrite, and ammonium in various aquifers in an urbanized coastal area, South China. J. Hydrol. 2020, 582, 124528. [Google Scholar] [CrossRef]
- Sun, J.; Jing, J.; Huang, G.; Liu, J.; Chen, X.; Zhang, Y. Report on the investigation and assessment of groundwater contamination in the Pearl River delta area. In Chinese Academy of Geological Sciences; The Institute of Hydrogeology and Environmental Geology: Shijiazhuang, China, 2009. [Google Scholar]
- Huang, G.; Liu, C.; Sun, J.; Zhang, M.; Jing, J.; Li, L. A regional scale investigation on factors controlling the groundwater chemistry of various aquifers in a rapidly urbanized area: A case study of the Pearl River Delta. Sci. Total Environ. 2018, 625, 510–518. [Google Scholar] [CrossRef]
- Huang, G.; Song, J.; Han, D.; Liu, R.; Liu, C.; Hou, Q. Assessing natural background levels of geogenic contaminants in groundwater of an urbanized delta through removal of groundwaters impacted by anthropogenic inputs: New insights into driving factors. Sci. Total Environ. 2022, 857, 159527. [Google Scholar] [CrossRef]
- Zong, Y.; Yim, W.W.S.; Yu, F.; Huang, G. Late Quaternary environmental changes in the Pearl River mouth region, China. Quat. Int. 2009, 206, 35–45. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, M.; Liu, C.; Li, L.; Chen, Z. Heavy metal(loid)s and organic contaminants in groundwater in the Pearl River Delta that has undergone three decades of urbanization and industrialization: Distributions, sources, and driving forces. Sci. Total Environ. 2018, 635, 913–925. [Google Scholar] [CrossRef]
- Huang, G.; Liu, C.; Zhang, Y.; Chen, Z. Groundwater is important for the geochemical cycling of phosphorus in rapidly urbanized areas: A case study in the Pearl River Delta. Environ. Pollut. 2020, 260, 114079. [Google Scholar] [CrossRef]
- Huang, G.; Sun, J.; Zhang, Y.; Chen, Z.; Liu, F. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China. Sci. Total Environ. 2013, 463, 209–221. [Google Scholar] [CrossRef]
- Huang, G.; Chen, Z.; Liu, F.; Sun, J.; Wang, J. Impact of human activity and natural processes on groundwater arsenic in an urbanized area (South China) using multivariate statistical techniques. Environ. Sci. Pollut. Res. 2014, 21, 13043–13054. [Google Scholar] [CrossRef]
- Hou, Q.; Zhang, Q.; Huang, G.; Liu, C.; Zhang, Y. Elevated manganese concentrations in shallow groundwater of various aquifers in a rapidly urbanized delta, south China. Sci. Total Environ. 2020, 701, 134777. [Google Scholar] [CrossRef]
- Gao, Y.; Qian, H.; Huo, C.; Chen, J.; Wang, H. Assessing natural background levels in shallow groundwater in a large semiarid Drainage Basin. J. Hydrol. 2020, 584, 124638. [Google Scholar] [CrossRef]
- Neal, C.; Neal, M.; Wickham, H.; Hill, L.; Harman, S. Dissolved iodine in rainfall, cloud, stream and groundwater in the Plynlimon area of mid-Wales. Hydrol. Earth Syst. Sci. 2007, 11, 283–293. [Google Scholar] [CrossRef]
- Liu, F.; Sun, J.; Wang, J.; Zhang, Y. Groundwater acidification in shallow aquifers in Pearl River Delta, China: Distribution, factors, and effects. Geochem. J. 2017, 51, 373–384. [Google Scholar] [CrossRef]
- Jiao, J.J.; Wang, Y.; Cherry, J.A.; Wang, X.; Zhi, B.; Du, H.; Wen, D. Abnormally high ammonium of natural origin in a coastal aquifer-aquitard system in the Pearl River Delta, China. Environ. Sci. Technol. 2010, 44, 7470–7475. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jiao, J.J.; Wang, Y.; Cherry, J.A.; Kuang, X.; Liu, K.; Lee, C.; Gong, Z. Accumulation and transport of ammonium in aquitards in the Pearl River Delta (China) in the last 10,000 years: Conceptual and numerical models. Hydrogeol. J. 2013, 21, 961–976. [Google Scholar] [CrossRef]
- Li, J.; Zhou, H.; Qian, K.; Xie, X.; Xue, X.; Yang, Y.; Wang, Y. Fluoride and iodine enrichment in groundwater of North China Plain: Evidences from speciation analysis and geochemical modeling. Sci. Total Environ. 2017, 598, 239–248. [Google Scholar] [CrossRef]
- Larsen, F.; Tran, L.V.; Van Hoang, H.; Tran, L.T.; Christiansen, A.V.; Pham, N.Q. Groundwater salinity influenced by Holocene seawater trapped in incised valleys in the Red River delta plain. Nat. Geosci. 2017, 10, 376–381. [Google Scholar] [CrossRef] [Green Version]
NBL Datasets | NH4+ | I− | |||||||
---|---|---|---|---|---|---|---|---|---|
Unit A | Unit B | Unit C | Unit D | Unit A | Unit B | Unit C | Unit D | ||
pH | 6.21 | 5.89 | 5.78 | 5.79 | 6.37 | 5.96 | 5.84 | 5.87 | |
Eh | mV | 70 | 92 | 91 | 103 | 67 | 86 | 83 | 92 |
DO | mg/L | 3.62 | 3.92 | 4.26 | 3.77 | 3.74 | 3.87 | 4.24 | 3.45 |
COD | 1.40 | 1.17 | 1.17 | 1.00 | 1.62 | 1.25 | 1.33 | 1.13 | |
TDS | 286 | 159 | 103 | 94 | 339 | 164 | 108 | 127 | |
K+ | 9.0 | 7.3 | 4.3 | 3.2 | 9.8 | 7.3 | 4.1 | 5.3 | |
Na+ | 22.2 | 10.5 | 6.2 | 5.5 | 22.5 | 11.0 | 6.2 | 7.0 | |
Ca2+ | 39.5 | 21.1 | 12.8 | 14.1 | 48.4 | 21.6 | 13.8 | 18.4 | |
Mg2+ | 6.2 | 2.9 | 1.7 | 1.8 | 7.6 | 2.9 | 1.8 | 2.6 | |
HCO3− | 134.2 | 65.4 | 41.5 | 36.0 | 176.5 | 69.6 | 44.5 | 55.9 | |
Cl− | 38.4 | 18.1 | 10.2 | 10.1 | 37.4 | 17.9 | 9.9 | 12.0 | |
SO42− | 16.5 | 6.8 | 2.9 | 6.6 | 16.1 | 6.3 | 3.5 | 7.4 | |
NO3− | 8.7 | 14.3 | 10.0 | 10.5 | 7.1 | 13.8 | 10.1 | 10.3 | |
NO2− | 0.11 | 0.01 | 0.01 | 0.02 | 0.38 | 0.04 | 0.02 | 0.02 | |
I− | 0.031 | 0.022 | 0.004 | 0.005 | 0.031 | 0.007 | 0.004 | 0.004 | |
PO43− | 0.55 | 0.07 | 0.06 | 0.13 | 0.54 | 0.11 | 0.07 | 0.11 | |
NH4+ | 0.05 | 0.02 | 0.02 | 0.02 | 0.66 | 0.11 | 0.10 | 0.03 | |
Fe | 0.24 | 0.10 | 0.11 | 0.06 | 0.60 | 0.15 | 0.22 | 0.07 | |
Mn | 0.30 | 0.08 | 0.04 | 0.03 | 0.50 | 0.10 | 0.07 | 0.06 | |
Pb | 0.001 | 0.002 | 0.002 | 0.001 | 0.001 | 0.002 | 0.003 | 0.006 |
NBL Datasets | I− | NH4+ | NBL Datasets | I− | NH4+ |
---|---|---|---|---|---|
pH | 0.283 | 0.334 | NO3− | −0.369 * | −0.371 |
DO | −0.412 * | −0.068 | PO43− | −0.001 | 0.043 |
Eh | −0.236 | −0.222 | Pb | −0.181 | −0.060 |
K+ | 0.173 | −0.049 | NO2− | −0.090 | 0.610 ** |
Na+ | 0.480 ** | 0.257 | COD | 0.309 | 0.356 |
Ca2+ | 0.518 ** | 0.305 | Fe | 0.386 * | 0.844 ** |
Mg2+ | 0.566 ** | 0.362 | TDS | 0.588 ** | 0.314 |
HCO3− | 0.561 ** | 0.288 | Mn | 0.388 * | 0.042 |
Cl− | 0.471 ** | 0.251 | NH4+ | 0.514 ** | 1 |
SO42− | 0.078 | 0.367 | I− | 1 | 0.064 |
Physicochemical Parameters | PCs—Residual Dataset for I− | Physicochemical Parameters | PCs—Residual Dataset for NH4+ | |||||||
---|---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | PC1 | PC2 | PC3 | PC4 | ||
Cl− | 0.974 | 0.052 | −0.024 | 0.018 | 0.014 | Cl− | 0.969 | 0.097 | 0.052 | 0.082 |
Na+ | 0.973 | 0.129 | −0.030 | 0.012 | 0.011 | Na+ | 0.965 | 0.150 | 0.046 | 0.029 |
Mg2+ | 0.840 | 0.458 | 0.088 | 0.182 | −0.034 | Mg2+ | 0.856 | 0.424 | 0.152 | 0.000 |
COD | 0.820 | 0.214 | −0.012 | 0.102 | 0.318 | COD | 0.851 | 0.347 | 0.181 | 0.146 |
TDS | 0.720 | 0.616 | 0.149 | 0.181 | 0.133 | TDS | 0.721 | 0.671 | 0.072 | −0.001 |
Ca2+ | 0.417 | 0.807 | 0.159 | 0.253 | 0.101 | I− | 0.567 | −0.035 | −0.062 | −0.074 |
SO42− | 0.035 | 0.791 | −0.277 | −0.109 | 0.341 | DO | −0.482 | −0.370 | 0.036 | 0.419 |
Eh | −0.172 | −0.767 | −0.067 | 0.353 | 0.343 | SO42− | −0.042 | 0.876 | 0.217 | −0.139 |
HCO3− | 0.504 | 0.738 | 0.238 | 0.245 | 0.110 | pH | 0.119 | 0.871 | 0.222 | 0.086 |
pH | 0.137 | 0.714 | 0.038 | 0.424 | 0.304 | Ca2+ | 0.395 | 0.862 | 0.093 | −0.064 |
NO3− | −0.152 | −0.484 | −0.351 | −0.168 | −0.065 | HCO3− | 0.507 | 0.815 | 0.074 | −0.051 |
DO | −0.455 | −0.472 | −0.353 | 0.348 | −0.178 | K+ | 0.135 | 0.691 | −0.204 | 0.430 |
NH4+ | −0.040 | 0.026 | 0.955 | 0.130 | 0.048 | NO3− | −0.161 | −0.431 | −0.415 | 0.069 |
Fe | −0.069 | 0.020 | 0.925 | −0.012 | 0.207 | Fe | −0.101 | 0.059 | 0.939 | 0.026 |
I− | 0.476 | 0.250 | 0.573 | 0.211 | −0.188 | NH4+ | 0.187 | 0.149 | 0.932 | −0.041 |
Mn | 0.189 | 0.143 | 0.197 | 0.902 | 0.010 | Mn | 0.205 | 0.283 | 0.009 | 0.829 |
K+ | 0.173 | 0.225 | 0.219 | 0.021 | 0.868 | Eh | −0.186 | −0.515 | −0.055 | 0.732 |
Eigenvalue | 4.80 | 4.17 | 2.63 | 1.54 | 1.34 | 5.00 | 4.89 | 2.15 | 1.66 | |
Explained variance (%) | 28.23 | 24.51 | 15.46 | 9.07 | 7.87 | 29.40 | 28.75 | 12.64 | 9.76 | |
Cumulative % of variance | 28.23 | 52.75 | 68.21 | 77.28 | 85.15 | 29.40 | 58.15 | 70.79 | 80.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, L.; Lu, X.; Li, X.; Zhang, M.; Wu, H. Factors Controlling Natural Background Levels of Ammonium and Iodide in Shallow Groundwater of Coastal Aquifers, South China. Water 2022, 14, 3737. https://doi.org/10.3390/w14223737
Pei L, Lu X, Li X, Zhang M, Wu H. Factors Controlling Natural Background Levels of Ammonium and Iodide in Shallow Groundwater of Coastal Aquifers, South China. Water. 2022; 14(22):3737. https://doi.org/10.3390/w14223737
Chicago/Turabian StylePei, Lixin, Xin Lu, Xiwen Li, Ming Zhang, and Heqiu Wu. 2022. "Factors Controlling Natural Background Levels of Ammonium and Iodide in Shallow Groundwater of Coastal Aquifers, South China" Water 14, no. 22: 3737. https://doi.org/10.3390/w14223737
APA StylePei, L., Lu, X., Li, X., Zhang, M., & Wu, H. (2022). Factors Controlling Natural Background Levels of Ammonium and Iodide in Shallow Groundwater of Coastal Aquifers, South China. Water, 14(22), 3737. https://doi.org/10.3390/w14223737