Comparison between Conventional Treatment Processes and Advanced Oxidation Processes in Treating Slaughterhouse Wastewater: A Review
Abstract
:1. Introduction
2. Parameters and Statistics
3. Conventional Treatment Processes Used in Treating SWW and Their Inherent Limitations
3.1. Preliminary Treatment
3.2. Land Application
3.3. Primary Treatment Methods
Physicochemical Treatment
3.4. Secondary Treatment Methods
Biological Treatment
4. Advanced Oxidation Processes (AOPs), Their Variants, Strengths, and Weaknesses
5. Incorporating Resource Recovery into Wastewater Treatment
6. Conclusions & Recommendations
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bustillo-Lecompte, C.; Mehrvar, M. Slaughterhouse Wastewater: Treatment, Management and Resource Recovery; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Barrera, M.; Mehrvar, M.; Gilbride, K.A.; McCarthy, L.H.; Laursen, A.E.; Bostan, V.; Pushchak, R. Photolytic Treatment of Organic Constituents and Bacterial Pathogens in Secondary Effluent of Synthetic Slaughterhouse Wastewater. Chem. Eng. Res. Des. 2012, 90, 1335–1350. [Google Scholar] [CrossRef]
- US EPA. Effluent Limitations Guidelines and New Source Performance Standards for the Meat and Poultry Products Point Source Category. U. S. Environ. Prot. Agency Fed. Regist. 2004, 69, 54475–54555. [Google Scholar]
- Kundu, P.; Debsarkar, A.; Mukherjee, S. Treatment of Slaughter House Wastewater in a Sequencing Batch Reactor: Perfor-mance Evaluation and Biodegradation Kinetics. Biomed Res. Int. 2013, 2013, 134872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babu, D.S.; Srivastava, V.; Nidheesh, P.V.; Kumar, M.S. Detoxification of Water and Wastewater by Advanced Oxidation Processes. Sci. Total Environ. 2019, 696, 133961. [Google Scholar] [CrossRef]
- Avery, L.M.; Killham, K.; Jones, D.L. Survival of E. Coli O157:H7 in Organic Wastes Destined for Land Application. J. Appl. Microbiol. 2005, 98, 814–822. [Google Scholar] [CrossRef]
- Ozturk, D.; Yilmaz, A.E. Treatment of Slaughterhouse Wastewater with the Electrochemical Oxidation Process: Role of Op-erating Parameters on Treatment Efficiency and Energy Consumption. J. Water Process Eng. 2019, 31, 100834. [Google Scholar] [CrossRef]
- Musa, M.A.; Idrus, S.; Man, H.C.; Daud, N.N.N. Performance Comparison of Conventional and Modified Upflow Anaerobic Sludge Blanket (UASB) Reactors Treating High-Strength Cattle Slaughterhouse Wastewater. Water 2019, 11, 806. [Google Scholar] [CrossRef] [Green Version]
- Bustillo-Lecompte, C.F.; Mehrvar, M.; Quiñones-Bolaños, E. Cost-Effectiveness Analysis of TOC Removal from Slaughter-house Wastewater Using Combined Anaerobic-Aerobic and UV/H2O2 Processes. J. Environ. Manag. 2014, 134, 145–152. [Google Scholar] [CrossRef]
- Valta, K.; Kosanovic, T.; Malamis, D.; Moustakas, K.; Loizidou, M. Overview of Water Usage and Wastewater Management in the Food and Beverage Industry. Desalin. Water Treat. 2015, 53, 3335–3347. [Google Scholar] [CrossRef]
- Alfonso-Muniozguren, P.; Lee, J.; Bussemaker, M.; Chadeesingh, R.; Jones, C.; Oakley, D.; Saroj, D. A Combined Activated Sludge-Filtration-Ozonation Process for Abattoir Wastewater Treatment. J. Water Process Eng. 2018, 25, 157–163. [Google Scholar] [CrossRef]
- Sneeringer, S. Does Animal Feeding Operation Pollution Hurt Public Health? A National Longitudinal Study of Health Ex-ternalities Identified by Geographic Shifts in Livestock Production. Am. J. Agric. Econ. 2009, 91, 124–137. [Google Scholar] [CrossRef]
- Abdelmoula, S.; Sorour, M.T.; Aly, S.A.A. Cost Analysis and Health Risk Assessment of Wastewater Reuse from Secondary and Tertiary Wastewater Treatment Plants. Sustainability 2021, 13, 13125. [Google Scholar] [CrossRef]
- Lyu, Y.; Ye, H.; Zhao, Z.; Tian, J.; Chen, L. Exploring the Cost of Wastewater Treatment in a Chemical Industrial Park: Model Development and Application. Resour. Conserv. Recycl. 2020, 155, 104663. [Google Scholar] [CrossRef]
- Musa, M.A.; Idrus, S. Physical and Biological Treatment Technologies of Slaughterhouse Wastewater: A Review. Sustainability 2021, 13, 4656. [Google Scholar] [CrossRef]
- Yaakob, M.A.; Mohamed, R.M.S.R.; Al-Gheethi, A.A.S.; Kassim, A.H.M. Characteristics of Chicken Slaughterhouse Wastewater. Chem. Eng. Trans. 2018, 63, 637–642. [Google Scholar] [CrossRef]
- Baker, B.R.; Mohamed, R.; Al-Gheethi, A.; Aziz, H.A. Advanced Technologies for Poultry Slaughterhouse Wastewater Treatment: A Systematic Review. J. Dispers. Sci. Technol. 2021, 42, 880–899. [Google Scholar] [CrossRef]
- Mittal, G.S. Treatment of Wastewater from Abattoirs before Land Application—A Review. Bioresour. Technol. 2006, 97, 1119–1135. [Google Scholar] [CrossRef]
- Cao, W.; Mehrvar, M. Slaughterhouse Wastewater Treatment by Combined Anaerobic Baffled Reactor and UV/H2O2 Pro-cesses. Chem. Eng. Res. Des. 2011, 89, 1136–1143. [Google Scholar] [CrossRef]
- Aziz, H.A.; Puat, N.N.A.; Alazaiza, M.Y.D.; Hung, Y.T. Poultry Slaughterhouse Wastewater Treatment Using Submerged Fibers in an Attached Growth Sequential Batch Reactor. Int. J. Environ. Res. Public Health 2018, 15, 1734. [Google Scholar] [CrossRef] [Green Version]
- Bustillo-Lecompte, C.F.; Mehrvar, M. Slaughterhouse Wastewater Characteristics, Treatment, and Management in the Meat Processing Industry: A Review on Trends and Advances. J. Environ. Manag. 2015, 161, 287–302. [Google Scholar] [CrossRef]
- Ratnayaka, D.D.; Brandt, M.J.; Johnson, K.M. Storage, Clarification and Chemical Treatment. Water Supply 2009, 267–314. [Google Scholar] [CrossRef]
- Brillas, E. A Review on the Photoelectro-Fenton Process as Efficient Electrochemical Advanced Oxidation for Wastewater Remediation. Treatment with UV Light, Sunlight, and Coupling with Conventional and Other Photo-Assisted Advanced Technologies. Chemosphere 2020, 250, 126198. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wei, J.; Ngo, H.H.; Guo, W.; Liu, H.; Du, B.; Wei, Q.; Wei, D. Characterization of Soluble Microbial Products in a Partial Nitrification Sequencing Batch Biofilm Reactor Treating High Ammonia Nitrogen Wastewater. Bioresour. Technol. 2018, 249, 241–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dadi, D.; Mengistie, E.; Terefe, G.; Getahun, T.; Haddis, A.; Birke, W.; Beyene, A.; Luis, P.; van der Bruggen, B. Assessment of the Effluent Quality of Wet Coffee Processing Wastewater and Its Influence on Downstream Water Quality. Ecohydrol. Hydrobiol. 2018, 18, 201–211. [Google Scholar] [CrossRef]
- Meiramkulova, K.; Zhumagulov, M.; Saspugayeva, G.; Jakupova, Z.; Mussimkhan, M. Treatment of Poultry Slaughterhouse Wastewater with Combined System. Potravin. Slovak J. Food Sci. 2019, 13, 706–712. [Google Scholar] [CrossRef] [Green Version]
- Del Nery, V.; Damianovic, M.H.Z.; Moura, R.B.; Pozzi, E.; Pires, E.C.; Foresti, E. Poultry Slaughterhouse Wastewater Treatment Plant for High Quality Effluent. Water Sci. Technol. 2016, 73, 309–316. [Google Scholar] [CrossRef]
- Ghatak, H.R. Advanced Oxidation Processes for the Treatment of Biorecalcitrant Organics in Wastewater. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1167–1219. [Google Scholar] [CrossRef]
- Bethi, B.; Sonawane, S.H.; Bhanvase, B.A.; Gumfekar, S.P. Nanomaterials-Based Advanced Oxidation Processes for Wastewater Treatment: A Review. Chem. Eng. Process. Process Intensif. 2016, 109, 178–189. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Rajan, R. Removal of Rhodamine B from a Water Medium Using Hydroxyl and Sulphate Radicals Generated by Iron Loaded Activated Carbon. RSC Adv. 2016, 6, 5330–5340. [Google Scholar] [CrossRef]
- de Sena, R.F.; Tambosi, J.L.; Genena, A.K.; Moreira, R.; de F.P.M. Moreria, R.; Schröder, H.F.; José, H.J. Treatment of Meat Industry Wastewater Using Dissolved Air Flotation and Advanced Oxidation Processes Monitored by GC-MS and LC-MS. Chem. Eng. J. 2009, 152, 151–157. [Google Scholar] [CrossRef]
- Bustillo-Lecompte, C.F.; Knight, M.; Mehrvar, M. Assessing the Performance of Uv/H2O2 as a Pretreatment Process in TOC Removal of an Actual Petroleum Refinery Wastewater and Its Inhibitory Effects on Activated Sludge. Can. J. Chem. Eng. 2015, 93, 798–807. [Google Scholar] [CrossRef]
- Alfonso-Muniozguren, P.; Cotillas, S.; Boaventura, R.A.R.; Moreira, F.C.; Lee, J.; Vilar, V.J.P. Single and Combined Electrochemical Oxidation Driven Processes for the Treatment of Slaughterhouse Wastewater. J. Clean. Prod. 2020, 270, 121858. [Google Scholar] [CrossRef]
- Paraskeva, P.; Graham, N.J.D. Treatment of a Secondary Municipal Effluent by Ozone, UV and Microfiltration: Microbial Reduction and Effect on Effluent Quality. Desalination 2005, 186, 47–56. [Google Scholar] [CrossRef]
- Oller, I.; Malato, S.; Sánchez-Pérez, J.A. Combination of Advanced Oxidation Processes and Biological Treatments for Wastewater Decontamination-A Review. Sci. Total Environ. 2011, 409, 4141–4166. [Google Scholar] [CrossRef] [PubMed]
- Gray, H.E.; Powell, T.; Choi, S.; Smith, D.S.; Parker, W.J. Organic Phosphorus Removal Using an Integrated Advanced Oxidation-Ultrafiltration Process. Water Res. 2020, 182, 115968. [Google Scholar] [CrossRef] [PubMed]
- Bustillo-Lecompte, C.F.; Mehrvar, M. Treatment of an Actual Slaughterhouse Wastewater by Integration of Biological and Advanced Oxidation Processes: Modeling, Optimization, and Cost-Effectiveness Analysis. J. Environ. Manag. 2016, 182, 651–666. [Google Scholar] [CrossRef]
- Besharati Fard, M.; Mirbagheri, S.A.; Pendashteh, A. Removal of TCOD and Phosphate from Slaughterhouse Wastewater Using Fenton as a Post-Treatment of an UASB Reactor. J. Environ. Health Sci. Eng. 2020, 18, 413–422. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Bellotindos, L.M.; Huang, Y.H.; Brillas, E.; Lu, M.C. Fluidized-Bed Fenton Process as Alternative Wastewater Treatment Technology—A Review. J. Taiwan Inst. Chem. Eng. 2016, 67, 211–225. [Google Scholar] [CrossRef]
- Zhang, Y.; Klamerth, N.; Chelme-ayala, P.; El-din, M.G. Comparison of classical fenton, nitrilotriacetic acid (NTA)-Fenton, UV-Fenton, UV photolysis of Fe-NTA, UV-NTA-Fenton, and UV-H2O2 for the degradation of cyclohexanoic acid. Chemosphere 2017, 175, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Cetinkaya, S.G.; Morcali, M.H.; Akarsu, S.; Ziba, C.A.; Dolaz, M. Comparison of Classic Fenton with Ultrasound Fenton Processes on Industrial Textile Wastewater. Sustain. Environ. Res. 2018, 28, 165–170. [Google Scholar] [CrossRef]
- Gümüş, D.; Akbal, F. Comparison of Fenton and Electro-Fenton Processes for Oxidation of Phenol. Process Saf. Environ. Prot. 2016, 103, 252–258. [Google Scholar] [CrossRef]
- Ghernaout, D.; Elboughdiri, N.; Ghareba, S. Fenton Technology for Wastewater Treatment: Dares and Trends. OALib 2020, 07, 1–26. [Google Scholar] [CrossRef]
- Divyapriya, G.; Nidheesh, P.V. Importance of Graphene in the Electro-Fenton Process. ACS Omega 2020, 5, 4725–4732. [Google Scholar] [CrossRef] [PubMed]
- Poza-Nogueiras, V.; Rosales, E.; Pazos, M.; Sanromán, M.Á. Current Advances and Trends in Electro-Fenton Process Using Heterogeneous Catalysts–A Review. Chemosphere 2018, 201, 399–416. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Zhou, Z. Electro-Fenton Process for Water and Wastewater Treatment. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2100–2131. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Zhou, M.; Martínez-Huitle, C.A. Heterogeneous Electro-Fenton and Photoelectro-Fenton Processes: A Critical Review of Fundamental Principles and Application for Water/Wastewater Treatment. Appl. Catal. B Environ. 2018, 235, 103–129. [Google Scholar] [CrossRef]
- Ebrahiem, E.E.; Al-Maghrabi, M.N.; Mobarki, A.R. Removal of Organic Pollutants from Industrial Wastewater by Applying Photo-Fenton Oxidation Technology. Arab. J. Chem. 2017, 10, S1674–S1679. [Google Scholar] [CrossRef]
- Giannakis, S.; López, M.I.P.; Spuhler, D.; Pérez, J.A.S.; Ibáñez, P.F.; Pulgarin, C. Solar Disinfection Is an Augmentable, in Situ-Generated Photo-Fenton Reaction-Part 2: A Review of the Applications for Drinking Water and Wastewater Disinfection. Appl. Catal. B Environ. 2016, 198, 431–446. [Google Scholar] [CrossRef]
- Bansal, P.; Verma, A.; Talwar, S. Detoxification of Real Pharmaceutical Wastewater by Integrating Photocatalysis and Photo-Fenton in Fixed-Mode. Chem. Eng. J. 2018, 349, 838–848. [Google Scholar] [CrossRef]
- Sreeja, P.H.; Sosamony, K.J. A Comparative Study of Homogeneous and Heterogeneous Photo-Fenton Process for Textile Wastewater Treatment. Procedia Technol. 2016, 24, 217–223. [Google Scholar] [CrossRef]
- Foteinis, S.; Monteagudo, J.M.; Durán, A.; Chatzisymeon, E. Environmental Sustainability of the Solar Photo-Fenton Process for Wastewater Treatment and Pharmaceuticals Mineralization at Semi-Industrial Scale. Sci. Total Environ. 2018, 612, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Hamad, H.; Bassyouni, D.; El-Ashtoukhy, E.S.; Amin, N.; Abd El-Latif, M. Electrocatalytic Degradation and Minimization of Specific Energy Consumption of Synthetic Azo Dye from Wastewater by Anodic Oxidation Process with an Emphasis on Enhancing Economic Efficiency and Reaction Mechanism. Ecotoxicol. Environ. Saf. 2018, 148, 501–512. [Google Scholar] [CrossRef]
- Ghanim, A.N.; Hamza, A.S. Evaluation of Direct Anodic Oxidation Process for the Treatment of Petroleum Refinery Wastewater. J. Environ. Eng. 2018, 144, 04018047. [Google Scholar] [CrossRef]
- El-Ashtoukhy, E.S.Z.; Amin, N.K.; Abd El-Latif, M.M.; Bassyouni, D.G.; Hamad, H.A. New Insights into the Anodic Oxidation and Electrocoagulation Using a Self-Gas Stirred Reactor: A Comparative Study for Synthetic C.I Reactive Violet 2 Wastewater. J. Clean. Prod. 2017, 167, 432–446. [Google Scholar] [CrossRef]
- Ahmed, S.N.; Haider, W. Heterogeneous Photocatalysis and Its Potential Applications in Water and Wastewater Treatment: A Review. Nanotechnology 2018, 29, 342001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Mamun, M.R.; Kader, S.; Islam, M.S.; Khan, M.Z.H. Photocatalytic Activity Improvement and Application of UV-TiO2 Photocatalysis in Textile Wastewater Treatment: A Review. J. Environ. Chem. Eng. 2019, 7. [Google Scholar] [CrossRef]
- Yu, M.; Wang, J.; Tang, L.; Feng, C.; Liu, H.; Zhang, H.; Peng, B.; Chen, Z.; Xie, Q. Intimate Coupling of Photocatalysis and Biodegradation for Wastewater Treatment: Mechanisms, Recent Advances and Environmental Applications. Water Res. 2020, 175, 115673. [Google Scholar] [CrossRef] [PubMed]
- Iervolino, G.; Zammit, I.; Vaiano, V.; Rizzo, L. Limitations and Prospects for Wastewater Treatment by UV and Visible-Light-Active Heterogeneous Photocatalysis: A Critical Review; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Volume 378. [Google Scholar] [CrossRef]
- Ameta, R.; Solanki, M.S.; Benjamin, S.; Ameta, S.C. Photocatalysis. In Advanced Oxidation Processes for Waste Water Treatment; Academic Press: Cambridge, MA, USA, 2018; pp. 135–175. [Google Scholar] [CrossRef]
- Borges, M.E.; Sierra, M.; Cuevas, E.; García, R.D.; Esparza, P. Photocatalysis with Solar Energy: Sunlight-Responsive Photocatalyst Based on TiO2 Loaded on a Natural Material for Wastewater Treatment. Sol. Energy 2016, 135, 527–535. [Google Scholar] [CrossRef]
- Chen, G.; Yu, Y.; Liang, L.; Duan, X.; Li, R.; Lu, X.; Yan, B.; Li, N.; Wang, S. Remediation of Antibiotic Wastewater by Coupled Photocatalytic and Persulfate Oxidation System: A Critical Review; Elsevier: Amsterdam, The Netherlands, 2021; Volume 408. [Google Scholar] [CrossRef]
- Wang, J.; Bai, Z. Fe-Based Catalysts for Heterogeneous Catalytic Ozonation of Emerging Contaminants in Water and Wastewater. Chem. Eng. J. 2017, 312, 79–98. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H. Catalytic Ozonation for Water and Wastewater Treatment: Recent Advances and Perspective. Sci. Total Environ. 2020, 704, 135249. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, H.; Wang, F.; Xiong, X.; Tian, K.; Sun, Y.; Yu, T. Application of Heterogeneous Catalytic Ozonation for Refractory Organics in Wastewater. Catalysts 2019, 9, 241. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, W.; Ma, L.; Huang, Y.; Wang, H. Characteristics and Mechanisms of Catalytic Ozonation with Fe-Shaving-Based Catalyst in Industrial Wastewater Advanced Treatment. J. Clean. Prod. 2019, 222, 174–181. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Ma, L.; Wang, H.; Fan, J. Industrial Wastewater Advanced Treatment via Catalytic Ozonation with an Fe-Based Catalyst. Chemosphere 2018, 195, 336–343. [Google Scholar] [CrossRef]
- Serna-Galvis, E.A.; Botero-Coy, A.M.; Martínez-Pachón, D.; Moncayo-Lasso, A.; Ibáñez, M.; Hernández, F.; Torres-Palma, R.A. Degradation of Seventeen Contaminants of Emerging Concern in Municipal Wastewater Effluents by Sonochemical Advanced Oxidation Processes. Water Res. 2019, 154, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Serna-Galvis, E.A.; Silva-Agredo, J.; Botero-Coy, A.M.; Moncayo-Lasso, A.; Hernández, F.; Torres-Palma, R.A. Effective Elimination of Fifteen Relevant Pharmaceuticals in Hospital Wastewater from Colombia by Combination of a Biological System with a Sonochemical Process. Sci. Total Environ. 2019, 670, 623–632. [Google Scholar] [CrossRef]
- Montoya-Rodríguez, D.M.; Serna-Galvis, E.A.; Ferraro, F.; Torres-Palma, R.A. Degradation of the Emerging Concern Pollutant Ampicillin in Aqueous Media by Sonochemical Advanced Oxidation Processes - Parameters Effect, Removal of Antimicrobial Activity and Pollutant Treatment in Hydrolyzed Urine. J. Environ. Manag. 2020, 261, 110224. [Google Scholar] [CrossRef] [PubMed]
- Serna-Galvis, E.A.; Isaza-Pineda, L.; Moncayo-Lasso, A.; Hernández, F.; Ibáñez, M.; Torres-Palma, R.A. Comparative Degradation of Two Highly Consumed Antihypertensives in Water by Sonochemical Process. Determination of the Reaction Zone, Primary Degradation Products and Theoretical Calculations on the Oxidative Process. Ultrason. Sonochem. 2019, 58. [Google Scholar] [CrossRef] [PubMed]
- González Labrada, K.; Alcorta Cuello, D.R.; Saborit Sánchez, I.; García Batle, M.; Manero, M.H.; Barthe, L.; Jáuregui-Haza, U.J. Optimization of Ciprofloxacin Degradation in Wastewater by Homogeneous Sono-Fenton Process at High Frequency. J. Environ. Sci. Health-Part A Toxic/Hazardous Subst. Environ. Eng. 2018, 53, 1139–1148. [Google Scholar] [CrossRef] [Green Version]
- Kakavandi, B.; Ahmadi, M. Efficient Treatment of Saline Recalcitrant Petrochemical Wastewater Using Heterogeneous UV-Assisted Sono-Fenton Process. Ultrason. Sonochem. 2019, 56, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Adityosulindro, S.; Barthe, L.; González-Labrada, K.; Jáuregui Haza, U.J.; Delmas, H.; Julcour, C. Sonolysis and Sono-Fenton Oxidation for Removal of Ibuprofen in (Waste) Water. Ultrason. Sonochem. 2017, 39, 889–896. [Google Scholar] [CrossRef] [Green Version]
- Qiao, J.; Luo, S.; Yang, P.; Jiao, W.; Liu, Y. Degradation of Nitrobenzene-Containing Wastewater by Ozone/Persulfate Oxidation Process in a Rotating Packed Bed. J. Taiwan Inst. Chem. Eng. 2019, 99, 1–8. [Google Scholar] [CrossRef]
- Li, K.; Li, H.; Xiao, T.; Zhang, G.; Long, J.; Luo, D.; Zhang, H.; Xiong, J.; Wang, Q. Removal of Thallium from Wastewater by a Combination of Persulfate Oxidation and Iron Coagulation. Process Saf. Environ. Prot. 2018, 119, 340–349. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Khatri, J.; Anantha Singh, T.S.; Gandhimathi, R.; Ramesh, S.T. Review of Zero-Valent Aluminium Based Water and Wastewater Treatment Methods; Elsevier B.V.: Amsterdam, The Netherlands, 2018; Volume 200. [Google Scholar] [CrossRef]
- Sun, Y.; Lei, C.; Khan, E.; Chen, S.S.; Tsang, D.C.W.; Ok, Y.S.; Lin, D.; Feng, Y.; Li, X. dong. Aging Effects on Chemical Transformation and Metal(Loid) Removal by Entrapped Nanoscale Zero-Valent Iron for Hydraulic Fracturing Wastewater Treatment. Sci. Total Environ. 2018, 615, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, C.; Hou, J.; Wang, P.; You, G.; Miao, L.; Lv, B.; Yang, Y.; Zhang, F. Application of Zero Valent Iron Coupling with Biological Process for Wastewater Treatment: A Review. Rev. Environ. Sci. Biotechnol. 2017, 16, 667–693. [Google Scholar] [CrossRef]
- Khatri, J.; Nidheesh, P.V.; Anantha Singh, T.S.; Suresh Kumar, M. Advanced Oxidation Processes Based on Zero-Valent Aluminium for Treating Textile Wastewater. Chem. Eng. J. 2018, 348, 67–73. [Google Scholar] [CrossRef]
- Vollprecht, D.; Krois, L.M.; Sedlazeck, K.P.; Müller, P.; Mischitz, R.; Olbrich, T.; Pomberger, R. Removal of Critical Metals from Waste Water by Zero-Valent Iron. J. Clean. Prod. 2019, 208, 1409–1420. [Google Scholar] [CrossRef]
- Sun, Y.; Lei, C.; Khan, E.; Chen, S.S.; Tsang, D.C.W.; Ok, Y.S.; Lin, D.; Feng, Y.; Li, X. dong. Nanoscale Zero-Valent Iron for Metal/Metalloid Removal from Model Hydraulic Fracturing Wastewater. Chemosphere 2017, 176, 315–323. [Google Scholar] [CrossRef]
- Hülsen, T.; Batstone, D.J.; Keller, J. Phototrophic Bacteria for Nutrient Recovery from Domestic Wastewater. Water Res. 2014, 50, 18–26. [Google Scholar] [CrossRef]
- Zhou, W.; Min, M.; Li, Y.; Hu, B.; Ma, X.; Cheng, Y.; Liu, Y.; Chen, P.; Ruan, R. A Hetero-Photoautotrophic Two-Stage Cultivation Process to Improve Wastewater Nutrient Removal and Enhance Algal Lipid Accumulation. Bioresour. Technol. 2012, 110, 448–455. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.F.; Chen, P.; Min, M.; Zhou, W.; Martinez, B.; Zhu, J.; Ruan, R. Characterization of a Microalga Chlorella Sp. Well Adapted to Highly Concentrated Municipal Wastewater for Nutrient Removal and Biodiesel Production. Bioresour. Technol. 2011, 102, 5138–5144. [Google Scholar] [CrossRef]
- Mulbry, W.; Kondrad, S.; Pizarro, C.; Kebede-Westhead, E. Treatment of Dairy Manure Effluent Using Freshwater Algae: Algal Productivity and Recovery of Manure Nutrients Using Pilot-Scale Algal Turf Scrubbers. Bioresour. Technol. 2008, 99, 8137–8142. [Google Scholar] [CrossRef] [PubMed]
- Chisti, Y. Biodiesel from Microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial Applications of Microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, T.; Park, S.Y.; Li, Y. Nutrient Recovery from Wastewater Streams by Microalgae: Status and Prospects. Renew. Sustain. Energy Rev. 2013, 19, 360–369. [Google Scholar] [CrossRef]
- Barampouti, E.M.; Mai, S.; Malamis, D.; Moustakas, K.; Loizidou, M. Exploring Technological Alternatives of Nutrient Recovery from Digestate as a Secondary Resource. Renew. Sustain. Energy Rev. 2020, 134, 110379. [Google Scholar] [CrossRef]
- Weber, E.A.; Koller, W.D.; Graeff, S.; Hermann, W.; Merkt, N.; Claupein, W. Impact of Different Nitrogen Fertilizers and an Additional Sulfur Supply on Grain Yield, Quality, and the Potential of Acrylamide Formation in Winter Wheat. J. Plant Nutr. Soil Sci. 2008, 171, 643–655. [Google Scholar] [CrossRef]
- Brennan, B.; Lawler, J.; Regan, F. Recovery of Viable Ammonia-Nitrogen Products from Agricultural Slaughterhouse Wastewater by Membrane Contactors: A Review. Environ. Sci. Water Res. Technol. 2021, 7, 259–273. [Google Scholar] [CrossRef]
- Batstone, D.J.; Hülsen, T.; Mehta, C.M.; Keller, J. Platforms for Energy and Nutrient Recovery from Domestic Wastewater: A Review. Chemosphere 2015, 140, 2–11. [Google Scholar] [CrossRef]
- Liu, W.; He, L.; Wang, M.; Wei, L.; Xu, L.; Zhou, Z.; Ren, Z. Effective Removal of Ammonia from Wastewater Using Hollow Fiber Renewal Liquid Membrane. Asia-Pacific J. Chem. Eng. 2018, 13, 1–10. [Google Scholar] [CrossRef]
- Brennan, B.; Briciu-Burghina, C.; Hickey, S.; Abadie, T.; Al Ma Awali, S.M.; Delaure, Y.; Durkan, J.; Holland, L.; Quilty, B.; Tajparast, M.; et al. Pilot Scale Study: First Demonstration of Hydrophobic Membranes for the Removal of Ammonia Molecules from Rendering Condensate Wastewater. Int. J. Mol. Sci. 2020, 21, 3914. [Google Scholar] [CrossRef]
- Kocherginsky, N.M.; Yang, Q.; Seelam, L. Recent Advances in Supported Liquid Membrane Technology. Sep. Purif. Technol. 2007, 53, 171–177. [Google Scholar] [CrossRef]
- Vecino, X.; Reig, M.; Bhushan, B.; Gibert, O.; Valderrama, C.; Cortina, J.L. Liquid Fertilizer Production by Ammonia Recovery from Treated Ammonia-Rich Regenerated Streams Using Liquid-Liquid Membrane Contactors. Chem. Eng. J. 2019, 360, 890–899. [Google Scholar] [CrossRef]
- Sreyvich, S.; Petrus, H.T.B.M.; Purnomo, C.W. Nutrient Recovery from Slaughterhouse Wastewater. IOP Conf. Ser. Mater. Sci. Eng. 2020, 778. [Google Scholar] [CrossRef]
- Martí-Herrero, J.; Alvarez, R.; Flores, T. Evaluation of the Low Technology Tubular Digesters in the Production of Biogas from Slaughterhouse Wastewater Treatment. J. Clean. Prod. 2018, 199, 633–642. [Google Scholar] [CrossRef]
- Aslam, A.; Khan, S.J.; Shahzad, H.M.A. Anaerobic Membrane Bioreactors (AnMBRs) for Municipal Wastewater Treatment- Potential Benefits, Constraints, and Future Perspectives: An Updated Review. Sci. Total Environ. 2022, 802. [Google Scholar] [CrossRef]
- Qadir, M.; Drechsel, P.; Jiménez Cisneros, B.; Kim, Y.; Pramanik, A.; Mehta, P.; Olaniyan, O. Global and Regional Potential of Wastewater as a Water, Nutrient and Energy Source. Nat. Resour. Forum 2020, 44, 40–51. [Google Scholar] [CrossRef]
Parameter | Source 1 (Typical) [1] | Source 2 (Actual, Location: Parit Raja, Malaysia) [16] | Source 3 (Actual, Location: Jelutong, Malaysia) [20] | |||
---|---|---|---|---|---|---|
Range | Mean | Range | Mean | Range | Mean | |
BOD (mg/L) | 150 to 8500 | 3000 | 1341 to 1821 | 1602 | 573 to 1177 | 875 |
COD (mg/L) | 500 to 16,000 | 5000 | 3154 to 7719 | 5423 | 777 to 1825 | 1301 |
TOC (mg/L) | 50 to 1750 | 850 | 195 to 652 | 419 | NR | NR |
TN (mg/L) | 50 to 850 | 450 | 163 to 564 | 361 | 154.6 to 362.4 | 258.5 |
TP (mg/L) | 25 to 200 | 50 | NR | NR | NR | NR |
TSS (mg/L) | 0.1 to 10,000 | 3000 | 378 to 5462 | 3438 | 395 to 783 | 589 |
K (mg/L) | 0.01 to 100 | 50 | NR | NR | NR | NR |
Color (mg/L Pt Scale) | 175 to 400 | 300 | NR | NR | NR | NR |
Turbidity (FAU) | 200 to 300 | 275 | NR | NR | NR | NR |
pH | 4.8 to 8.1 | 6.5 | 7.3–8.6 | 8.02 | 6.3 to 6.9 | 6.6 |
Parameter | ||||
---|---|---|---|---|
BOD5 (mg/L) | COD (mg/L) | TSS (mg/L) | TN (mg/L) | |
WB Standards | 30.00 | 125.00 | 50.00 | 10.00 |
EU Standards | 25.00 | 125.00 | 35.00 | 10.00 |
US Standards | 26.00 | NR | 30.00 | 8.00 |
CA Standards | 5.00–30.00 * | NR | 5.00–30.00 * | 1.00 |
AU Standards | 6.00–10.00 | 3 * BOD5 | 10.00–15.00 | 0.10–10.00 |
MY Standards | 20.00 | 120.00 | 50.00 | NR |
Category | Process | Limitations |
---|---|---|
Physicochemical | Dissolved Air Floatation |
|
Coagulation- Flocculation |
| |
Electro- coagulation |
| |
Membrane technologies |
| |
Biological | Aerobic |
|
Anaerobic |
|
No. | AOP Variant | Description | Reaction Details and Equations | Relevant Articles Published in the Recent 5 Years (2016–2021) |
---|---|---|---|---|
1 | Classical Fenton | One of the oldest AOP processes. This process generates hydroxyl radicals from the reaction between iron (II) ions and hydrogen peroxide at pH = 3. The efficiency of this process is highly affected by pH. | Fenton Process Fe2+ + H2O2 → Fe3+ + OH− + •OH Regeneration of iron (ii) ions Fe3+ + H2O2 ⟶ Fe2+ + H+ + •HO2 | [39,40,41,42,43] |
2 | Electro- Fenton | A variant of Classical Fenton where H2O2 is generated in situ in the electrolyte by supplying oxygen at the surface of the cathode under an acidic medium. | In-situ generation of hydrogen peroxide: O2 + 2 H+ + 2e− ⟶ H2O2 Regeneration of iron (ii) ion by the cathodic reduction of iron (iii) ion: Fe 3+ + e− → Fe 2+ | [42,44,45,46,47] |
3 | Photo- Fenton | An improved version of Classical Fenton in which hydroxyl radicals are produced from both the Fenton process as well as from the degradation of hydrogen peroxide in the presence of UV light (photolysis). | Photolysis: H2O2 + hν ⟶ 2 •OH (λ < 300 nm) Regeneration of iron (ii) ion: Fe(OH)2+ + hν ⟶ Fe2+ + •OH (λ < 450 nm) | [47,48,49,50,51,52] |
4 | Anodic Oxidation | Hydroxyl radicals are generated by the oxidation of water in the presence of high-O2-evolution overvoltage anodes | Water oxidation at the anode surface: M + H2O⟶ M (•OH) + H+ + e− M: Anode | [53,54,55] |
5 | Photo- catalysis | Generation of hydroxyl radicals and other reactive oxygenated species by shining UV light over catalysts such as TiO2, ZnO, and ZnS. | Photoexcitation: Cat + hν ⟶ Cat (e− + h+) Production of hydroxyl radicals from external oxidants (H2O2) H2O2 + Cat (e−) ⟶ OH− + •OH | [56,57,58,59,60,61,62] |
6 | Ozonation and catalytic ozonation | Organic waste can be eliminated either via the direct attack of ozone or via the hydroxyl radicals generated under alkaline conditions, which promotes the decomposition of ozone. Catalytic ozonation incorporates a catalyst which allows the decomposition of ozone even at lower pH. | Catalytic Ozonation: Fe2+ + O3 + H2O → Fe3+ + OH−+ •OH + O2 | [63,64,65,66,67] |
7 | Sonochemical/ Ultrasound processes | Ultrasonic irradiation leads to the cavitation phenomena, which is the formation, growth, and subsequent aggressive collapse of microbubbles or cavities, generating extremely high temperatures and pressures in the process. The violent collapse of the cavities then promotes the formation of reactive hydroxyl radicals via the dissociation of the water molecule. | Thermal dissociation of H2O in the presence of ultrasound: H2O +))) → •OH + H• | [68,69,70,71] |
8 | Sono-Fenton | An improved version of Classical Fenton in which hydroxyl radicals are produced from both the Fenton process as well as from the cavitation process in the presence of ultrasound (sonolysis). | Fenton Process Fe2+ + H2O2 → Fe3+ + OH− + •OH Regeneration of iron (ii) ions Fe3+ + H2O2 ⟶ Fe2+ + H+ + •HO2 Thermal dissociation of H2O in the presence of ultrasound: H2O +))) → •OH + H• | [72,73,74] |
9 | Persulfate/ Peroxymono -sulfate oxidation | Production of reactive sulphate radicals via the decomposition of persulfates or peroxymonosulfates. This process can be accelerated by catalysts such as heavy metal, UV, ultrasound, or heat. | Persulfate activation by iron S2O82− + Fe2+ ⟶ Fe3+ + SO42− + •SO4− | [62,75,76] |
10 | Zero valent metal (ZVM)/H+/O2 | Under the acidic condition, zero-valent metals, such as iron and aluminium, undergo corrosion and generate hydrogen peroxide, which then further decomposes in the presence of zero-valent metal to generate hydroxyl radicals. | Corrosion of zero valent metal: 2 Al0 + 3 O2 + 6 H+ ⟶ 2 Al3+ + 3 H2O2 Decomposition of hydrogen peroxide in the presence of ZVM: Al0 + 3 H2O2 ⟶ Al3+ + 3 OH− + 3 •OH | [77,78,79,80,81,82] |
AOP Variants | Strengths | Weaknesses |
---|---|---|
Classical-Fenton |
|
|
Electro-Fenton |
|
|
Photo-Fenton |
|
|
Anodic Oxidation |
|
|
Photocatalysis |
|
|
Ozonation and catalytic ozonation |
|
|
Sonochemical/ Ultrasound processes |
|
|
Sono-Fenton |
|
|
Persulfate/ Peroxymonosulfate Oxidation |
|
|
Zero valent metal (ZVM)/H+/O2 |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeoh, J.X.; Md. Jamil, S.N.A.; Syukri, F.; Koyama, M.; Nourouzi Mobarekeh, M. Comparison between Conventional Treatment Processes and Advanced Oxidation Processes in Treating Slaughterhouse Wastewater: A Review. Water 2022, 14, 3778. https://doi.org/10.3390/w14223778
Yeoh JX, Md. Jamil SNA, Syukri F, Koyama M, Nourouzi Mobarekeh M. Comparison between Conventional Treatment Processes and Advanced Oxidation Processes in Treating Slaughterhouse Wastewater: A Review. Water. 2022; 14(22):3778. https://doi.org/10.3390/w14223778
Chicago/Turabian StyleYeoh, Jen Xen, Siti Nurul Ain Md. Jamil, Fadhil Syukri, Mitsuhiko Koyama, and Mohsen Nourouzi Mobarekeh. 2022. "Comparison between Conventional Treatment Processes and Advanced Oxidation Processes in Treating Slaughterhouse Wastewater: A Review" Water 14, no. 22: 3778. https://doi.org/10.3390/w14223778
APA StyleYeoh, J. X., Md. Jamil, S. N. A., Syukri, F., Koyama, M., & Nourouzi Mobarekeh, M. (2022). Comparison between Conventional Treatment Processes and Advanced Oxidation Processes in Treating Slaughterhouse Wastewater: A Review. Water, 14(22), 3778. https://doi.org/10.3390/w14223778