Marine Heat Waves over Natural and Urban Coastal Environments of South Florida
Abstract
:1. Introduction
2. Materials and Methods
2.1. Remote Sensing
2.2. Field Observations
2.3. Meteorological Data
2.4. Hydrodynamic Simulations
2.5. Detection of Marine Heat Waves
3. Results
3.1. Evaluation of Satellite-Derived SST at Coastal Areas
3.2. Interannual Variability of SST
3.3. Spatial Variability of SST
3.4. Formation of Marine Heat Waves
3.4.1. Spatial Variability and General Trends
3.4.2. Variability of MHWs at Coastal and Urban Areas
4. Discussion
4.1. Effects of Atmospheric Conditions on SST Variability
4.2. Ocean Dynamics Impact on the Temperature and MHW Variability of the Coastal Zone
4.3. Implications of MHWs on the Sustainability of the Coastal Natural and Urban Environments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Hobday, A.J.; Oliver, E.C.; Gupta, A.S.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Holbrook, N.J.; Moore, P.J.; Thomsen, M.S.; Wernberg, T.; et al. Categorizing and naming marine heatwaves. Oceanography 2018, 31, 162–173. [Google Scholar] [CrossRef] [Green Version]
- Kent, E.C.; Taylor, P.K. Toward estimating climatic trends in SST. Part I: Methods of measurement. J. Atmos. Ocean. Technol. 2006, 23, 464–475. [Google Scholar] [CrossRef]
- Garrabou, J.; Coma, R.; Bensoussan, N.; Bally, M.; Chevaldonné, P.; Cigliano, M.; Díaz, D.; Harmelin, J.G.; Gambi, M.C.; Kersting, D.K.; et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Change Biol. 2009, 15, 1090–1103. [Google Scholar] [CrossRef]
- Pearce, A.F.; Feng, M. The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar. Syst. 2013, 111, 139–156. [Google Scholar] [CrossRef]
- Wernberg, T.; Smale, D.A.; Tuya, F.; Thomsen, M.S.; Langlois, T.J.; De Bettignies, T.; Bennett, S.; Rousseaux, C.S. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 2013, 3, 78–82. [Google Scholar] [CrossRef]
- Mills, K.E.; Pershing, A.J.; Brown, C.J.; Chen, Y.; Chiang, F.S.; Holland, D.S.; Lehuta, S.; Nye, J.A.; Sun, J.C.; Thomas, A.C.; et al. Fisheries management in a changing climate: Lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 2013, 26, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Di Lorenzo, E.; Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 2016, 6, 1042–1047. [Google Scholar] [CrossRef]
- Oliver, E.C.; Benthuysen, J.A.; Bindoff, N.L.; Hobday, A.J.; Holbrook, N.J.; Mundy, C.N.; Perkins-Kirkpatrick, S.E. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 2017, 8, 16101. [Google Scholar] [CrossRef] [Green Version]
- Darmaraki, S.; Somot, S.; Sevault, F.; Nabat, P. Past variability of Mediterranean Sea marine heatwaves. Geophys. Res. Lett. 2019, 46, 9813–9823. [Google Scholar] [CrossRef]
- Ibrahim, O.; Mohamed, B.; Nagy, H. Spatial variability and trends of marine heat waves in the eastern mediterranean sea over 39 years. J. Mar. Sci. Eng. 2021, 9, 643. [Google Scholar] [CrossRef]
- Androulidakis, Y.S.; Krestenitis, Y.N. Sea Surface Temperature Variability and Marine Heat Waves over the Aegean, Ionian, and Cretan Seas from 2008–2021. J. Mar. Sci. Eng. 2022, 10, 42. [Google Scholar] [CrossRef]
- Frölicher, T.L.; Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 2018, 9, 650. [Google Scholar] [CrossRef] [Green Version]
- Oliver, E.C.; Donat, M.G.; Burrows, M.T.; Moore, P.J.; Smale, D.A.; Alexander, L.V.; Benthuysen, J.A.; Feng, M.; Sen Gupta, A.; Hobday, A.J.; et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 2018, 9, 1324. [Google Scholar] [CrossRef] [Green Version]
- Lirman, D.; Ault, J.S.; Fourqurean, J.W.; Lorenz, J.J. The coastal marine ecosystem of south Florida, United States. In World Seas: An Environmental Evaluation; Academic Press: Cambridge, MA, USA, 2019; pp. 427–444. [Google Scholar]
- Kuffner, I.B.; Lidz, B.H.; Hudson, J.H.; Anderson, J.S. A century of ocean warming on Florida Keys coral reefs: Historic in-situ observations. Estuaries Coasts 2015, 38, 1085–1096. [Google Scholar] [CrossRef] [Green Version]
- Carlson, D.F.; Yarbro, L.A.; Scolaro, S.; Poniatowski, M.; McGee-Absten, V.; Carlson, P.R., Jr. Sea surface temperatures and seagrass mortality in Florida Bay: Spatial and temporal patterns discerned from MODIS and AVHRR data. Remote Sens. Environ. 2018, 208, 171–188. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Measures; Charles Griffin: London, UK, 1975. [Google Scholar]
- Liu, Y.; Weisberg, R.H.; He, R. Sea surface temperature patterns on the West Florida Shelf using growing hierarchical self-organizing maps. J. Atmos. Ocean. Technol. 2006, 23, 325–338. [Google Scholar] [CrossRef] [Green Version]
- Soto, I.M.; Muller Karger, F.E.; Hallock, P.; Hu, C. Sea surface temperature variability in the Florida Keys and its relationship to coral cover. J. Mar. Biol. 2011, 2011, 981723. [Google Scholar] [CrossRef] [Green Version]
- Barnes, B.B.; Hu, C.; Muller-Karger, F. An improved high-resolution SST climatology to assess cold water events off Florida. IEEE Geosci. Remote Sens. Lett. 2011, 8, 769–773. [Google Scholar] [CrossRef]
- Colella, M.A.; Ruzicka, R.R.; Kidney, J.A.; Morrison, J.M.; Brinkhuis, V.B. Cold-water event of January 2010 results in catastrophic benthic mortality on patch reefs in the Florida Keys. Coral Reefs 2012, 31, 621–632. [Google Scholar] [CrossRef]
- Stith, B.M.; Slone, D.H.; De Wit, M.; Edwards, H.H.; Langtimm, C.A.; Swain, E.D.; Soderqvist, L.E.; Reid, J.P. Passive thermal refugia provided warm water for Florida manatees during the severe winter of 2009–2010. Mar. Ecol. Prog. Ser. 2012, 462, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Johns, W.E.; Schott, F. Meandering and transport variations of the Florida Current. J. Phys. Oceanogr. 1987, 17, 1128–1147. [Google Scholar] [CrossRef]
- Kourafalou, V.H.; Kang, H. Florida Current meandering and evolution of cyclonic eddies along the Florida Keys Reef Tract: Are they interconnected? J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef]
- Kourafalou, V.; Androulidakis, Y.; Le Hénaff, M.; Kang, H. The dynamics of Cuba anticyclones (CubANs) and interaction with the Loop Current/Florida Current system. J. Geophys. Res. Ocean. 2017, 122, 7897–7923. [Google Scholar] [CrossRef]
- Androulidakis, Y.; Kourafalou, V.; Le Hénaff, M.; Kang, H.; Ntaganou, N.; Hu, C. Gulf Stream evolution through the Straits of Florida: The role of eddies and upwelling near Cuba. Ocean. Dyn. 2020, 70, 1005–1032. [Google Scholar] [CrossRef]
- Lee, T.N.; Leaman, K.; Williams, E.; Berger, T.; Atkinson, L. Florida Current meanders and gyre formation in the southern Straits of Florida. J. Geophys. Res. 1995, 100, 8607–8620. [Google Scholar] [CrossRef] [Green Version]
- Kourafalou, V.H.; Androulidakis, Y.S.; Kang, H.; Smith, R.H.; Valle-Levinson, A. Physical connectivity between Pulley Ridge and Dry Tortugas coral reefs under the influence of the Loop Current/Florida Current system. Prog. Oceanogr. 2018, 165, 75–99. [Google Scholar] [CrossRef]
- Fratantoni, P.S.; Lee, T.N.; Podesta, G.P.; Muller-Karger, F. The influence of Loop Current perturbations on the formation and evolution of Tortugas eddies in the southern Straits of Florida. J. Geophys. Res. Ocean. 1998, 103, 24759–24779. [Google Scholar] [CrossRef] [Green Version]
- Le Hénaff, M.; Kourafalou, V.H.; Morel, Y.; Srinivasan, A. Simulating the dynamics and intensification of cyclonic Loop Current frontal eddies in the Gulf of Mexico. J. Geophys. Res. 2012, 117, C02034. [Google Scholar] [CrossRef]
- Weisberg, R.H.; Li, Z.; Muller-Karger, F. West Florida shelf response to local wind forcing: April 1998. J. Geophys. Res. Ocean. 2001, 106, 31239–31262. [Google Scholar] [CrossRef] [Green Version]
- Weisberg, R.H.; He, R. Local and deep-ocean forcing contributions to anomalous water properties on the West Florida Shelf. J. Geophys. Res. Ocean. 2003, 108. [Google Scholar] [CrossRef]
- Weisberg, R.H.; Liu, Y.; Mayer, D.A. West Florida Shelf mean circulation observed with long-term moorings. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Weisberg, R.H.; Black, B.D.; Li, Z. An upwelling case study on Florida’s west coast. J. Geophys. Res. Ocean. 2000, 105, 11459–11469. [Google Scholar] [CrossRef]
- Weisberg, R.H.; Zheng, L.; Liu, Y. West Florida shelf upwelling: Origins and pathways. J. Geophys. Res. Ocean. 2016, 121, 5672–5681. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.B.; Stewart, H.B., Jr. Summer upwelling along the east coast of Florida. J. Geophys. Res. 1959, 64, 33–40. [Google Scholar] [CrossRef]
- Smith, N.P. Temporal and spatial characteristics of summer upwelling along Florida’s Atlantic shelf. J. Phys. Oceanogr. 1983, 13, 1709–1715. [Google Scholar] [CrossRef]
- Duever, M.J.; Meeder, J.F.; Meeder, L.C.; McCollom, J.M. The climate of south Florida and its role in shaping the Everglades ecosystem. In Everglades: The Ecosystem and Its Restoration; CRC Press: Boca Raton, FL, USA, 1994; pp. 225–248. [Google Scholar]
- Malmstadt, J.C.; Elsner, J.B.; Jagger, T.H. Risk of strong hurricane winds to Florida cities. J. Appl. Meteorol. Climatol. 2010, 49, 2121–2132. [Google Scholar] [CrossRef]
- Sponaugle, S.; Paris, C.; Walter, K.; Kourafalou, V.H.; Alessandro, E.D. Observed and modeled larval settlement of a reef fish to the Florida Keys. Mar. Ecol. Prog. Ser. 2012, 453, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Vaz, A.C.; Paris, C.B.; Olascoaga, M.J.; Kourafalou, V.H.; Kang, H. The perfect storm: Match-mismatch of bio-physical events drives larval reef fish connectivity between Pulley Ridge and the Florida Keys. Cont. Shelf Res. 2016, 125, 136–146. [Google Scholar] [CrossRef]
- Good, S.; Fiedler, E.; Mao, C.; Martin, M.J.; Maycock, A.; Reid, R.; Roberts-Jones, J.; Searle, T.; Waters, J.; While, J.; et al. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses. Remote Sens. 2020, 12, 720. [Google Scholar] [CrossRef] [Green Version]
- Nagy, H.; Mohamed, B.; Ibrahim, O. Variability of Heat and Water Fluxes in the Red Sea Using ERA5 Data (1981–2020). J. Mar. Sci. Eng. 2021, 9, 1276. [Google Scholar] [CrossRef]
- Bleck, R. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean. Model. 2002, 4, 55–88. [Google Scholar] [CrossRef]
- Chassignet, E.P.; Smith, L.T.; Halliwell, G.R.; Bleck, R. North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference pressure, and thermobaricity. J. Phys. Oceanogr. 2003, 33, 2504–2526. [Google Scholar] [CrossRef]
- Halliwell, G.R. Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM). Ocean. Model. 2004, 7, 285–322. [Google Scholar] [CrossRef]
- Kourafalou, V.H.; Peng, G.; Kang, H.; Hogan, P.J.; Smedstad, O.M.; Weisberg, R.H. Evaluation of Global Ocean Data Assimilation Experiment products on South Florida nested simulations with the Hybrid Coordinate Ocean Model. Ocean. Dyn. 2009, 59, 47–66. [Google Scholar] [CrossRef]
- Metzger, E.J.; Wallcraft, A.J.; Posey, P.G.; Smedstad, O.M.; Franklin, D.S. The Switchover from NOGAPS to NAVGEM 1.1 Atmospheric Forcing in GOFS and ACNFS; Naval Research Lab Stennis Detachment Stennis Space Center Ms Oceanography Div: Washington, DC, USA, 2013. [Google Scholar]
- Kourafalou, V.H.; De Mey, P.; Le Hénaff, M.; Charria, G.; Edwards, C.A.; He, R.; Herzfeld, M.; Pascual, A.; Stanev, E.V.; Tintoré, J.; et al. Coastal Ocean Forecasting: System integration and evaluation. J. Oper. Oceanogr. 2015, 8 (Suppl. 1), s127–s146. [Google Scholar] [CrossRef] [Green Version]
- Holbrook, N.J.; Scannell, H.A.; Sen Gupta, A.; Benthuysen, J.A.; Feng, M.; Oliver, E.C.; Alexander, L.V.; Burrows, M.T.; Donat, M.G.; Hobday, A.J.; et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 2019, 10, 2624. [Google Scholar] [CrossRef] [Green Version]
- Sanford, E.; Sones, J.L.; García-Reyes, M.; Goddard, J.H.; Largier, J.L. Widespread shifts in the coastal biota of northern California during the 2014–2016 marine heatwaves. Sci. Rep. 2019, 9, 4216. [Google Scholar] [CrossRef] [Green Version]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. As 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Manzello, D.P. Rapid recent warming of coral reefs in the Florida Keys. Sci. Rep. 2015, 5, 16762. [Google Scholar] [CrossRef] [Green Version]
- He, R.; Weisberg, R.H. A Loop Current intrusion case study on the West Florida Shelf. J. Phys. Oceanogr. 2003, 33, 465–477. [Google Scholar] [CrossRef]
- Perkins, S.E. A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res. 2015, 164, 242–267. [Google Scholar] [CrossRef]
- Breshears, D.D.; Fontaine, J.B.; Ruthrof, K.X.; Field, J.P.; Feng, X.; Burger, J.R.; Law, D.J.; Kala, J.; Hardy, G.E.S.J. Underappreciated plant vulnerabilities to heat waves. New Phytol. 2021, 231, 32–39. [Google Scholar] [CrossRef]
- Florida Oceans and Coastal Council. The Effects of Climate Change on Florida’s Ocean and Coastal Resources; Report; Florida Oceans and Coastal Council: Tallahassee, FL, USA, 2009. [Google Scholar]
- Oliver, J.K.; Berkelmans, R.; Eakin, C.M. Coral bleaching in space and time. In Coral Bleaching; Springer: Cham, Switzerland, 2018; pp. 27–49. [Google Scholar]
- Hughes, T.P.; Kerry, J.T.; Álvarez-Noriega, M.; Álvarez-Romero, J.G.; Anderson, K.D.; Baird, A.H.; Babcock, R.C.; Beger, M.; Bellwood, D.R.; Berkelmans, R.; et al. Global warming and recurrent mass bleaching of corals. Nature 2017, 543, 373–377. [Google Scholar] [CrossRef]
- Barnes, B.B.; Hallock, P.; Hu, C.; Muller-Karger, F.; Palandro, D.; Walter, C.; Zepp, R. Prediction of coral bleaching in the Florida Keys using remotely sensed data. Coral Reefs 2015, 34, 491–503. [Google Scholar] [CrossRef]
- Precht, W.F.; Gintert, B.E.; Robbart, M.L.; Fura, R.; Van Woesik, R. Unprecedented disease-related coral mortality in Southeastern Florida. Sci. Rep. 2016, 6, 31374. [Google Scholar] [CrossRef] [Green Version]
- Manzello, D.P.; Enochs, I.C.; Kolodziej, G.; Carlton, R.; Valentino, L. Resilience in carbonate production despite three coral bleaching events in 5 years on an inshore patch reef in the Florida Keys. Mar. Biol. 2018, 165, 99. [Google Scholar] [CrossRef] [Green Version]
- Harvell, D.; Kim, K.; Quirolo, C.; Weir, J.; Smith, G. Coral bleaching and disease: Contributors to 1998 mass mortality in Briareum asbestinum (Octocorallia, Gorgonacea). Hydrobiologia 2001, 460, 97–104. [Google Scholar] [CrossRef]
- Lirman, D.; Cropper, W.P. The influence of salinity on seagrass growth, survivorship, and distribution within Biscayne Bay, Florida: Field, experimental, and modeling studies. Estuaries 2003, 26, 131–141. [Google Scholar] [CrossRef]
- Collier, C.; Ruzicka, R.; Banks, K.; Barbieri, L.; Beal, J.; Bingham, D.; Bohnsack, J.A.; Brooke, S.; Craig, N.; Fisher, L.E.; et al. The State of Coral Reef Ecosystems of Southeast Florida; Nova Southeastern University: Davie, FL, USA, 2008. [Google Scholar]
- Duke, N.; Ball, M.; Ellison, J. Factors influencing biodiversity and distributional gradients in mangroves. Glob. Ecol. Biogeogr. Lett. 1998, 7, 27–47. [Google Scholar] [CrossRef] [Green Version]
- Quisthoudt, K.; Schmitz, N.; Randin, C.F.; Dahdouh-Guebas, F.; Robert, E.M.; Koedam, N. Temperature variation among mangrove latitudinal range limits worldwide. Trees 2012, 26, 1919–1931. [Google Scholar] [CrossRef]
- Wilkinson, C.R. Global change and coral reefs: Impacts on reefs, economies and human cultures. Glob. Change Biol. 1996, 2, 547–558. [Google Scholar] [CrossRef]
- Birkeland, C. Life and Death of Coral Reefs; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Chen, P.Y.; Chen, C.C.; Chu, L.; McCarl, B. Evaluating the economic damage of climate change on global coral reefs. Glob. Environ. Change 2015, 30, 12–20. [Google Scholar] [CrossRef]
- Pearce, A.; Jackson, G.; Moore, J.; Feng, M.; Gaughan, D.J. The “Marine Heat Wave” off Western Australia during the Summer of 2010/11; Report Fisheries Research Report No. 221; Government of Western Australia Department of Fisheries: Perth, Australia, 2011.
- Holbrook, N.J.; Sen Gupta, A.; Oliver, E.C.; Hobday, A.J.; Benthuysen, J.A.; Scannell, H.A.; Smale, D.A.; Wernberg, T. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 2020, 1, 482–493. [Google Scholar] [CrossRef]
- Sheppard, C.; Dixon, D.J.; Gourlay, M.; Sheppard, A.; Payet, R. Coral mortality increases wave energy reaching shores protected by reef flats: Examples from the Seychelles. Estuar. Coast. Shelf Sci. 2005, 64, 223–234. [Google Scholar] [CrossRef]
- Pennings, S.C.; Glazner, R.M.; Hughes, Z.J.; Kominoski, J.S.; Armitage, A.R. Effects of mangrove cover on coastal erosion during a hurricane in Texas, USA. Ecology 2021, 102, e03309. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, K.; Li, Y.; Xie, L. Numerical study of the sensitivity of mangroves in reducing storm surge and flooding to hurricane characteristics in southern Florida. Cont. Shelf Res. 2013, 64, 51–65. [Google Scholar] [CrossRef]
- Del Valle, A.; Eriksson, M.; Ishizawa, O.A.; Miranda, J.J. Mangroves protect coastal economic activity from hurricanes. Proc. Natl. Acad. Sci. USA 2020, 117, 265–270. [Google Scholar] [CrossRef]
- Raju, R.D.; Arockiasamy, M. Coastal Protection Using Integration of Mangroves with Floating Barges: An Innovative Concept. J. Mar. Sci. Eng. 2022, 10, 612. [Google Scholar] [CrossRef]
- Ferrario, F.; Beck, M.W.; Storlazzi, C.D.; Micheli, F.; Shepard, C.C.; Airoldi, L. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 2014, 5, 3794. [Google Scholar] [CrossRef] [Green Version]
- Harney, J.N.; Grossman, E.E.; Richmond, B.M.; Fletcher Iii, C.H. Age and composition of carbonate shoreface sediments, Kailua Bay, Oahu, Hawaii. Coral Reefs 2000, 19, 141–154. [Google Scholar] [CrossRef]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. 2012; 582p. Available online: http://ipcc-wg2.gov/SREX/ (accessed on 10 October 2022).
Parameter | Type | Res. | Step | Period | Area | Source |
---|---|---|---|---|---|---|
SST | Satellite | 0.05° | Daily | 1982–2021 | Florida Straits, South Florida, and Florida Keys | Copernicus System |
Air temperature (2 m) | ECMWF Reanalysis (ERA5) | 0.25° | Hourly | 1982–2021 | Florida Straits, South Florida, and Florida Keys | Copernicus System |
Wind Components (10 m) | ECMWF Reanalysis (ERA5) | 0.25° | Hourly | 1982–2021 | Florida Straits, South Florida, and Florida Keys | Copernicus System |
Radiations (Shortwave, Longwave, Sensible, Latent) | ECMWF Reanalysis (ERA5) | 0.25° | Hourly | 1982–2021 | Florida Straits, South Florida, and Florida Keys | Copernicus System |
SST | In Situ | Buoy | Hourly | 2005 2005–2010 2005–2007 | Key West Key Largo Biscayne Bay | NOAA/NDBC |
Air Temperature | In Situ | Buoy | Hourly | 2012–2020 | Biscayne Bay | NOAA/NDBC |
Temperature and Currents | Hydrodynamic Modeling | 0.01° | 6-hourly | 2012–2020 | Florida Straits, South Florida, and Florida Keys | University of Miami |
Coastal Area | Mean Annual Duration | Mean Annual Number MHW | Mean Annual SST | |||
---|---|---|---|---|---|---|
Sen’s Slope | pvalue | Sen’s Slope | pvalue | Sen’s Slope | pvalue | |
West Palm Beach | 5.6 | 0.0005 | 0.7 | 0.0002 | 0.14 | 0.001 |
Miami Beach | 10 | <0.0001 | 1.1 | 0.0001 | 0.15 | 0.0005 |
Biscayne Bay | 7.2 | 0.0002 | 0.9 | <0.0001 | 0.1 | 0.021 |
Key Largo | 7.9 | 0.0002 | 0.9 | <0.0001 | 0.16 | 0.0002 |
Marathon | 9.3 | 0.0007 | 1.0 | 0.0007 | 0.18 | 0.0002 |
North Key West | 4.6 | 0.0486 | 0.6 | 0.022 | 0.14 | 0.036 |
South Key West | 7.5 | 0.0007 | 0.8 | 0.0008 | 0.18 | <0.0001 |
Dry Tortugas | 7.6 | 0.0011 | 0.8 | 0.0011 | 0.18 | <0.0001 |
Fort Myers | 4.6 | 0.0088 | 0.5 | 0.0053 | 0.14 | 0.045 |
Tampa | 4.9 | 0.0006 | 0.5 | 0.0003 | 0.12 | 0.021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Androulidakis, Y.S.; Kourafalou, V. Marine Heat Waves over Natural and Urban Coastal Environments of South Florida. Water 2022, 14, 3840. https://doi.org/10.3390/w14233840
Androulidakis YS, Kourafalou V. Marine Heat Waves over Natural and Urban Coastal Environments of South Florida. Water. 2022; 14(23):3840. https://doi.org/10.3390/w14233840
Chicago/Turabian StyleAndroulidakis, Yannis S., and Vassiliki Kourafalou. 2022. "Marine Heat Waves over Natural and Urban Coastal Environments of South Florida" Water 14, no. 23: 3840. https://doi.org/10.3390/w14233840
APA StyleAndroulidakis, Y. S., & Kourafalou, V. (2022). Marine Heat Waves over Natural and Urban Coastal Environments of South Florida. Water, 14(23), 3840. https://doi.org/10.3390/w14233840