Comparison of the Microbial Communities Affected by Different Environmental Factors in a Polluted River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. Physical and Chemical Parameters of Water
2.3. DNA Extraction and PCR Amplification
2.4. Illumina HiSeq 2500 Sequencing
2.5. Data Processing and Statistical Analysis
3. Results
3.1. Environmental Characteristics of the Water
3.2. Alpha Diversity of the Samples
3.3. Microbial Community Composition in the Water and Mud Samples
3.4. Correlation Analysis between Microbial Species and Environmental Factors
3.5. Predictive Analysis of the Genera Associated with Nitrogen Metabolism
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, D.R.; Zhang, J. Measurement and analysis of ecological pressure due to industrial development in the Yangtze River economic belt from 2010 to 2018. J. Clean. Prod. 2022, 353, 131614. [Google Scholar] [CrossRef]
- Yin, H.L.; Islam, M.S.; Ju, M.D. Urban river pollution in the densely populated city of Dhaka, Bangladesh: Big picture and rehabilitation experience from other developing countries. J. Clean. Prod. 2021, 321, 129040. [Google Scholar] [CrossRef]
- Huang, T.Y.; Wu, W.; Li, W.W. Identifying the major pollution sources and pollution loading status of Qiputang River in Taihu Lake basin of China. Desalination Water Treat. 2013, 51, 4736–4743. [Google Scholar] [CrossRef]
- Yang, J.F.; Lei, K.; Khu, S.; Meng, W.; Qiao, F. Assessment of water environmental carrying capacity for sustainable development using a coupled system dynamics approach applied to the Tieling of the Liao River Basin, China. Environ. Earth Sci. 2015, 73, 5173–5183. [Google Scholar] [CrossRef]
- Jarvie, H.P.; Neal, C.; Withers, P.J. Sewage-effluent phosphorus: A greater risk to river eutrophication than agricultural phosphorus? Sci. Total Environ. 2006, 360, 246–253. [Google Scholar] [CrossRef]
- Kaiser, K.; Canedo-Oropeza, M.; McMahon, R.; Amon, R.M. Origins and transformations of dissolved organic matter in large Arctic rivers. Sci. Rep. 2017, 7, 13064. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, R.; Gupta, A.; Garg, J. Impact of heavy metals on inhibitory concentration of Escherichia coli—a case study of river Yamuna system, Delhi, India. Environ. Monit. Assess. 2018, 190, 674. [Google Scholar] [CrossRef] [PubMed]
- McLellan, S.L.; Fisher, J.C.; Newton, R.J. The microbiome of urban waters. Int. Microbiol. 2015, 18, 141–149. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, J.; Wu, Y.; Ren, C.; Song, C.; Yang, J.; Yu, H.; Giesy, J.P.; Zhang, X. Using in situ bacterial communities to monitor contaminants in river sediments. Environ. Pollut. 2016, 212, 348–357. [Google Scholar] [CrossRef]
- Sun, W.; Xia, C.; Xu, M.; Guo, J.; Sun, G. Seasonality Affects the Diversity and Composition of Bacterioplankton Communities in Dongjiang River, a Drinking Water Source of Hong Kong. Front. Microbiol. 2017, 8, 1644. [Google Scholar] [CrossRef]
- Catania, V.; Cappello, S.; Di Giorgi, V.; Santisi, S.; Di Maria, R.; Mazzola, A.; Vizzini, S.; Quatrini, P. Microbial communities of polluted sub-surface marine sediments. Mar. Pollut. Bull. 2018, 131, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Yang, R.; Cao, Q.; Dong, J.; Li, C.; Quan, Q.; Huang, M.; Liu, J. Differences of the microbial community structures and predicted metabolic potentials in the lake, river, and wetland sediments in Dongping Lake Basin. Environ. Sci. Pollut. Res. 2020, 27, 19661–19677. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Woodhouse, J.N.; Te, S.H.; Yew-Hoong Gin, K.; He, Y.; Xu, C.; Chen, L. Seasonal variation in the bacterial community composition of a large estuarine reservoir and response to cyanobacterial proliferation. Chemosphere 2018, 202, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Pham, V.H.; Kim, J. Cultivation of unculturable soil bacteria. Trends Biotechnol. 2012, 30, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Zwart, G.; Crump, B.C.; Agterveld, M.P.K.; Hagen, F.; Han, S.-K. Typical freshwater bacteria: An analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat. Microb. Ecol. 2002, 28, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Sun, Y.; Lu, B.; Zheng, D.; Xu, S. Change of abundance and correlation of Nitrospira inopinata-like comammox and populations in nitrogen cycle during different seasons. Chemosphere 2020, 241, 125098. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Li, H.; Yang, H.; Peng, C.; Peng, Z.; Lu, L. Shift in the microbial community composition of surface water and sediment along an urban river. Sci. Total Environ. 2018, 627, 600–612. [Google Scholar] [CrossRef]
- Markussen, T.; Happel, E.M.; Teikari, J.E.; Huchaiah, V.; Alneberg, J.; Andersson, A.F.; Sivonen, K.; Riemann, L.; Middelboe, M.; Kisand, V. Coupling biogeochemical process rates and metagenomic blueprints of coastal bacterial assemblages in the context of environmental change. Environ. Microbiol. 2018, 20, 3083–3099. [Google Scholar] [CrossRef]
- Kaevska, M.; Videnska, P.; Sedlar, K.; Slana, I. Seasonal changes in microbial community composition in river water studied using 454-pyrosequencing. SpringerPlus 2016, 5, 409. [Google Scholar] [CrossRef] [Green Version]
- Leff, L.G.; Brown, B.J.; Lemke, M.J. Spatial and Temporal Changes in Bacterial Assemblages of the Cuyahoga River. Ohio J. Sci. 1999, 99, 44–48. [Google Scholar]
- Bik, E.M.; Costello, E.K.; Switzer, A.D.; Callahan, B.J.; Holmes, S.P.; Wells, R.S.; Carlin, K.P.; Jensen, E.D.; Venn-Watson, S.; Relman, D.A. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat. Commun. 2016, 7, 10516. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Tang, Y.; Dang, M.; Wang, S.; Jin, H.; Liu, Y.; Jing, H.; Zheng, C.; Yi, S.; Cai, Z. Spatial-temporal distribution of microplastics in surface water and sediments of Maozhou River within Guangdong-Hong Kong-Macao Greater Bay Area. Sci. Total Environ. 2020, 717, 135187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, J.J.; Ni, H.G.; Zeng, H. Spatial-temporal and multi-media variations of polycyclic aromatic hydrocarbons in a highly urbanized river from South China. Sci. Total Environ. 2017, 581–582, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Sun, J.; Fang, M.; Luo, S.; Tian, Y.; Dong, P.; Xu, B.; Zheng, C. Occurrence of antibiotics in the main rivers of Shenzhen, China: Association with antibiotic resistance genes and microbial community. Sci. Total Environ. 2019, 653, 334–341. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA: Washington, DC, USA, 2005. [Google Scholar]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef] [Green Version]
- Mori, H.; Maruyama, F.; Kato, H.; Toyoda, A.; Dozono, A.; Ohtsubo, Y.; Nagata, Y.; Fujiyama, A.; Tsuda, M.; Kurokawa, K. Design and Experimental Application of a Novel Non-Degenerate Universal Primer Set that Amplifies Prokaryotic 16S rRNA Genes with a Low Possibility to Amplify Eukaryotic rRNA Genes. DNA Res. 2014, 21, 217–227. [Google Scholar] [CrossRef]
- Liao, H.; Yu, K.; Duan, Y.; Ning, Z.; Li, B.; He, L.; Liu, C. Profiling microbial communities in a watershed undergoing intensive anthropogenic activities. Sci. Total Environ. 2019, 647, 1137–1147. [Google Scholar] [CrossRef]
- Diao, M.; Sinnige, R.; Kalbitz, K.; Huisman, J.; Muyzer, G. Succession of Bacterial Communities in a Seasonally Stratified Lake with an Anoxic and Sulfidic Hypolimnion. Front. Microbiol. 2017, 8, 2511. [Google Scholar] [CrossRef] [Green Version]
- Nyirabuhoro, P.; Liu, M.; Xiao, P.; Liu, L.; Yu, Z.; Wang, L.; Yang, J. Seasonal Variability of Conditionally Rare Taxa in the Water Column Bacterioplankton Community of Subtropical Reservoirs in China. Microb. Ecol. 2019, 80, 14–26. [Google Scholar] [CrossRef]
- Newton, R.J.; Jones, S.E.; Eiler, A.; McMahon, K.D.; Bertilsson, S. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 2011, 75, 14–49. [Google Scholar] [CrossRef] [Green Version]
- Sha, J.; Wu, J.; Bi, C.; Chen, C.; Su, Q.; Wang, S.; Wang, C.; Zhou, Y. Responses of microbial community to different concentration of perchlorate in the Qingyi River. 3 Biotech 2020, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Abia, A.L.K.; Alisoltani, A.; Keshri, J.; Ubomba-Jaswa, E. Metagenomic analysis of the bacterial communities and their functional profiles in water and sediments of the Apies River, South Africa, as a function of land use. Sci. Total Environ. 2018, 616–617, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Ghaju Shrestha, R.; Sherchan, S.P.; Kitajima, M.; Tanaka, Y.; Gerba, C.P.; Haramoto, E. Reduction of Arcobacter at Two Conventional Wastewater Treatment Plants in Southern Arizona, USA. Pathogens 2019, 8, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, S.; Nair, G.B.; Shinoda, S. Pathogenic vibrios in the natural aquatic environment. Rev. Environ. Health 1997, 12, 63–80. [Google Scholar] [CrossRef]
- Rubio-Portillo, E.; Gago, J.F.; Martinez-Garcia, M.; Vezzulli, L.; Rossello-Mora, R.; Anton, J.; Ramos-Espla, A.A. Vibrio communities in scleractinian corals differ according to health status and geographic location in the Mediterranean Sea. Syst. Appl. Microbiol. 2018, 41, 131–138. [Google Scholar] [CrossRef]
- Chen, X.; Lang, X.L.; Xu, A.-L.; Song, Z.-W.; Yang, J.; Guo, M.-Y. Seasonal Variability in the Microbial Community and Pathogens in Wastewater Final Effluents. Water 2019, 11, 2856. [Google Scholar] [CrossRef] [Green Version]
- Wever, H.D.; Cort, S.D.; Noots, I.; Verachtert, H. Isolation and characterization of Rhodococcus rhodochrous for the degradation of the wastewater component 2-hydroxybenzothiazole. Appl. Microbiol. Biotechnol. 1997, 47, 458–461. [Google Scholar] [CrossRef]
- Whyte, L.G.; Greer, C.W.; Inniss, W.E. Assessment of the biodegradation potential of psychrotrophic microorganisms. Can. J. Microbiol. 1996, 42, 99–106. [Google Scholar] [CrossRef]
- Shi, J.; Han, Y.; Xu, C.; Han, H. Enhanced biodegradation of coal gasification wastewater with anaerobic biofilm on polyurethane (PU), powdered activated carbon (PAC), and biochar. Bioresour. Technol. 2019, 289, 121487. [Google Scholar] [CrossRef]
- Jezberova, J.; Jezbera, J.; Znachor, P.; Nedoma, J.; Kasalicky, V.; Simek, K. The Limnohabitans Genus Harbors Generalistic and Opportunistic Subtypes: Evidence from Spatiotemporal Succession in a Canyon-Shaped Reservoir. Appl. Environ. Microbiol. 2017, 83, e01530-17. [Google Scholar] [CrossRef] [Green Version]
- Chai, M.; Li, R.; Ding, H.; Zan, Q. Occurrence and contamination of heavy metals in urban mangroves: A case study in Shenzhen, China. Chemosphere 2019, 219, 165–173. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, X.; Li, C.; Luo, X.; Wang, Y. Fluoride contributes to the shaping of microbial community in high fluoride groundwater in Qiji County, Yuncheng City, China. Sci. Rep. 2019, 9, 14488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, H.; Yen, J.Y.; Guan, Y.; Ke, D.; Liu, C. Differential responses of stream water and bed sediment microbial communities to watershed degradation. Environ. Int. 2020, 134, 105198. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.-Y.; Gao, J.-F.; Pan, K.-L.; Li, D.-C.; Dai, H.-H. Temporal dynamics of bacterial communities and predicted nitrogen metabolism genes in a full-scale wastewater treatment plant. RSV Adv. 2017, 7, 56317–56327. [Google Scholar] [CrossRef] [Green Version]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef] [PubMed]
Site | Sample | Transparency | Temperature | pH | DO | Ammonium | TP | TN | Cu | Zn | Ni | Mn | Fluoride |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(cm) | (°C) | (mg·L−1) | |||||||||||
GH | GHw-Jan | 62 | 16.8 | 6.97 | 5.4 | 1.87 | 0.27 | 15.98 | 0.072 | 0.094 | 0.13 | 0.256 | 0.77 |
GHw-Apr | 30 | 27.2 | 6.96 | 2.01 | 4.23 | 0.7 | 12.84 | 0.006 | 0.055 | 0.087 | 0.264 | 0.9 | |
GHw-Jul | 25 | 30.2 | 7.2 | 0.92 | 5.11 | 0.48 | 9.16 | 0.006 | 0.01 | 0.045 | 0.173 | 0.63 | |
GHw-Oct | 18 | 28.2 | 7.03 | 0.72 | 7.99 | 0.63 | 17.26 | 0.006 | 0.026 | 0.073 | 0.287 | 0.73 | |
YC | YCw-Jan | 25 | 15.8 | 7.32 | 8.21 | 0.44 | 0.32 | 11.13 | 0.011 | 0.036 | 0.035 | 0.014 | 0.45 |
YCw-Apr | 20 | 27.4 | 7.1 | 6.71 | 0.99 | 0.24 | 10.64 | 0.006 | 0.05 | 0.039 | 0.201 | 0.71 | |
YCw-Jul | 13 | 29.7 | 7.52 | 3.79 | 2.25 | 0.51 | 7.89 | 0.006 | 0.016 | 0.014 | 0.174 | 0.7 | |
YCw-Oct | 35 | 28.4 | 7.14 | 4.36 | 3.56 | 0.62 | 13.78 | 0.007 | 0.024 | 0.04 | 0.074 | 0.66 |
Transparency | Temperature | pH | DO | Ammonium | TP | TN | Cu | Zn | Ni | Mn | Fluoride | As | Pb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Transparency | −0.59 | −0.55 | 0.20 | −0.21 | −0.28 | 0.52 | 0.90 ** | 0.79 * | 0.80 * | 0.14 | 0.23 | −0.13 | −0.27 | |
Temperature | −0.59 | 0.12 | −0.68 | 0.55 | 0.60 | −0.29 | −0.66 | −0.65 | −0.44 | 0.27 | 0.35 | 0.52 | 0.22 | |
pH | −0.55 | 0.12 | 0.24 | −0.35 | −0.12 | −0.76 * | −0.37 | −0.61 | −0.81 * | −0.58 | −0.59 | −0.49 | −0.25 | |
DO | 0.20 | −0.68 | 0.24 | −0.91 ** | −0.75 * | −0.17 | 0.26 | 0.38 | −0.16 | −0.59 | −0.50 | −0.84 ** | 0.27 | |
Ammonium | −0.21 | 0.55 | −0.35 | −0.91 ** | 0.73 * | 0.44 | −0.27 | −0.37 | 0.19 | 0.52 | 0.35 | 0.72 * | −0.21 | |
TP | −0.28 | 0.60 | −0.12 | −0.75 * | 0.73 * | 0.19 | −0.49 | −0.44 | −0.05 | 0.21 | 0.41 | 0.69 | −0.35 | |
TN | 0.52 | −0.29 | −0.76 * | −0.17 | 0.44 | 0.19 | 0.45 | 0.49 | 0.74 * | 0.42 | 0.33 | 0.20 | −0.07 | |
Cu | 0.90 ** | −0.66 | −0.37 | 0.26 | −0.27 | −0.49 | 0.45 | 0.82 * | 0.77 * | 0.26 | 0.18 | −0.24 | −0.24 | |
Zn | 0.79 * | −0.65 | −0.61 | 0.38 | −0.37 | −0.44 | 0.49 | 0.82 * | 0.82 * | 0.37 | 0.42 | −0.05 | 0.16 | |
Ni | 0.80 * | −0.44 | −0.81 * | −0.16 | 0.19 | −0.05 | 0.74 * | 0.77 * | 0.82 * | 0.62 | 0.56 | 0.34 | −0.14 | |
Mn | 0.14 | 0.27 | −0.58 | −0.59 | 0.52 | 0.21 | 0.42 | 0.26 | 0.37 | 0.62 | 0.84 ** | 0.71 * | 0.21 | |
Fluoride | 0.23 | 0.35 | −0.59 | −0.50 | 0.35 | 0.41 | 0.33 | 0.18 | 0.42 | 0.56 | 0.84 ** | 0.74 * | 0.19 | |
As | −0.13 | 0.52 | −0.49 | −0.84 ** | 0.72 * | 0.69 | 0.20 | −0.24 | −0.05 | 0.34 | 0.71 * | 0.74 * | −0.01 | |
Pb | −0.27 | 0.22 | −0.25 | 0.27 | −0.21 | −0.35 | −0.07 | −0.24 | 0.16 | −0.14 | 0.21 | 0.19 | −0.01 |
Sample ID | Total Tags | OTUs | Shannon | Chao 1 | Observed Species |
---|---|---|---|---|---|
GHw-Jan | 50,577 | 1180 | 5.84 | 1109.95 | 895 |
GHw-Apr | 54,099 | 1600 | 7.08 | 1412.93 | 1127 |
GHw-Jul | 44,143 | 1431 | 6.35 | 1608.23 | 1084 |
GHw-Oct | 147,186 | 1700 | 5.33 | 1246.58 | 796 |
GHs-Jan | 54,625 | 3965 | 9.91 | 3869.16 | 3075 |
GHs-Apr | 30,309 | 3055 | 9.88 | 3057.23 | 2637 |
GHs-Jul | 56,693 | 3938 | 9.62 | 3723.96 | 2924 |
GHs-Oct | 73,603 | 3540 | 9.46 | 3597.09 | 2597 |
YCw-Jan | 36,991 | 1453 | 7.55 | 1491.31 | 1280 |
YCw-Apr | 37,399 | 1370 | 6.79 | 1419.25 | 1046 |
YCw-Jul | 43,415 | 1766 | 6.84 | 1803.79 | 1312 |
YCw-Oct | 103,871 | 1658 | 6.03 | 1340.58 | 914 |
YCs-Jan | 45,662 | 2009 | 9.12 | 2059.23 | 1865 |
YCs-Apr | 47,229 | 2673 | 9.49 | 2888.29 | 2281 |
YCs-Jul | 35,880 | 1773 | 7.40 | 1917.98 | 1444 |
YCs-Oct | 71,423 | 2732 | 8.64 | 2728.06 | 2009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, L.; Liu, X.; Chen, H.; Yang, X.; Li, S.; Li, S. Comparison of the Microbial Communities Affected by Different Environmental Factors in a Polluted River. Water 2022, 14, 3844. https://doi.org/10.3390/w14233844
Ouyang L, Liu X, Chen H, Yang X, Li S, Li S. Comparison of the Microbial Communities Affected by Different Environmental Factors in a Polluted River. Water. 2022; 14(23):3844. https://doi.org/10.3390/w14233844
Chicago/Turabian StyleOuyang, Liao, Xinyue Liu, Huirong Chen, Xuewei Yang, Shaofeng Li, and Shuangfei Li. 2022. "Comparison of the Microbial Communities Affected by Different Environmental Factors in a Polluted River" Water 14, no. 23: 3844. https://doi.org/10.3390/w14233844
APA StyleOuyang, L., Liu, X., Chen, H., Yang, X., Li, S., & Li, S. (2022). Comparison of the Microbial Communities Affected by Different Environmental Factors in a Polluted River. Water, 14(23), 3844. https://doi.org/10.3390/w14233844