Flood Scenario Simulation, Based on the Hydrological and Hydrodynamic Model in the Puyang River Catchment
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Hydrological-Hydrodynamic Model
3.2. Xin’anjiang Model in the Upstream Mountainous Area
3.3. 1D Unsteady Flow Model
3.4. 2D Overland Model
4. Results and Discussions
4.1. Model Simulation Results
4.2. Scenario 1: Combination of Floods and Tides
4.3. Scenario 2: Historical Flood Events
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meli, M.; Romagnoli, C. Evidence and Implications of Hydrological and Climatic Change in the Reno and Lamone River Basins and Related Coastal Areas (Emilia-Romagna, Northern Italy) over the Last Century. Water 2022, 14, 2650. [Google Scholar] [CrossRef]
- van Vliet, M.T.; Franssen, W.H.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P. Global river discharge and water temperature under climate change. Glob. Environ. Chang. 2013, 23, 450–464. [Google Scholar] [CrossRef]
- Guerriero, L.; Ruzza, G.; Calcaterra, D.; Di Martire, D.; Guadagno, F.M.; Revellino, P. Modelling Prospective Flood Hazard in a Changing Climate, Benevento Province, Southern Italy. Water 2020, 12, 2405. [Google Scholar] [CrossRef]
- Gigović, L.; Pamučar, D.; Bajić, Z.; Drobnjak, S. Application of GIS-Interval Rough AHP Methodology for Flood Hazard Mapping in Urban Areas. Water 2017, 9, 360. [Google Scholar] [CrossRef] [Green Version]
- Cea, L.; Costabile, P. Flood Risk in Urban Areas: Modelling, Management and Adaptation to Climate Change. A Review. Hydrology 2022, 9, 50. [Google Scholar] [CrossRef]
- Jiménez Cisneros, B.E.; Oki, T.; Arnell, N.W.; Benito, G. Freshwater resources. In Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects; Field, C.B., Barros, V., Dokken, D., Mach, K., Eds.; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Kanae, S.; Emori, S.; Oki, T.; Kimoto, M. Global projections of changing risks of floods and droughts in a changing climate. Hydrol. Sci. J. 2008, 53, 754–772. [Google Scholar] [CrossRef]
- Zhao, R.J. The Xin’anjiang model applied in China. J. Hydrol. 1992, 135, 371–381. [Google Scholar]
- Ikeuchi, H.; Hirabayashi, Y.; Yamazaki, D.; Kiguchi, M.; Koirala, S.; Nagano, T.; Kotera, A.; Kanae, S. Modeling complex flow dynamics of fluvial floods exacerbated by sea level rise in the Ganges–Brahmaputra–Meghna Delta. Environ. Res. Lett. 2015, 10, 124011. [Google Scholar] [CrossRef]
- David, A.; Schmalz, B. Flood hazard analysis in small catchments: Comparison of hydrological and hydrodynamic approaches by the use of direct rainfall. J. Flood Risk Manag. 2020, 13, e12639. [Google Scholar] [CrossRef]
- Chomba, I.C.; Banda, K.E.; Winsemius, H.C.; Chomba, M.J.; Mataa, M.; Ngwenya, V.; Sichingabula, H.M.; Nyambe, I.A.; Ellender, B. A review of coupled hydrologic-hydraulic models for floodplain assessments in Africa: Opportunities and challenges for floodplain wet-land management. Hydrology 2021, 8, 44. [Google Scholar] [CrossRef]
- Zeng, Z.Q.; Yang, M.X.; Lei, X.H.; Liang, J.; Yuan, X.H.; Pan, C. A review of hydrological-hydrodynamic coupling models for river-basin systems. China Rural. Water Hydropower 2017, 9, 72–76. [Google Scholar]
- Zhang, Y.; Zhou, J.; Lu, C. Integrated Hydrologic and Hydrodynamic Models to Improve Flood Simulation Capa-bility in the Data-Scarce Three Gorges Reservoir Region. Water 2020, 12, 1462. [Google Scholar] [CrossRef]
- Jha, M.K.; Afreen, S. Flooding Urban Landscapes: Analysis Using Combined Hydrodynamic and Hydrologic Modeling Approaches. Water 2020, 12, 1986. [Google Scholar] [CrossRef]
- Chen, Y.-M.; Liu, C.-H.; Shih, H.-J.; Chang, C.-H.; Chen, W.-B.; Yu, Y.-C.; Su, W.-R.; Lin, L.-Y. An Operational Forecasting System for Flash Floods in Mountainous Areas in Taiwan. Water 2019, 11, 2100. [Google Scholar] [CrossRef] [Green Version]
- Hoch, J.M.; Eilander, D.; Ikeuchi, H.; Baart, F.; Winsemius, H.C. Evaluating the impact of model complexity on flood wave propagation and inundation extent with a hydrologic–hydrodynamic model coupling framework. Nat. Hazards Earth Syst. Sci. 2019, 19, 1723–1735. [Google Scholar] [CrossRef] [Green Version]
- Brandmeyer, J.E.; Karimi, H.A. Coupling methodologies for environmental models. Environ. Model. Softw. 2000, 15, 479–488. [Google Scholar] [CrossRef]
- Chang, L.; Liu, K.L.; Yao, C. Real-time flood forecasting system for complicated river channels: A case study from Wangjiaba to Xiaoliuxiang section in the Huaihe River basin. J. Lake Sci. 2013, 25, 422–427. [Google Scholar]
- Ruan, S.; Li, G.C. Hydrologic-hydraulic coupling model and its application. China Rural. Water Hydropower 2013, 2013, 9–11+15. [Google Scholar]
- Han, C.; Mei, Q.; Liu, S.G. Research and application on a coupled hydrological and hydrodynamic model in plain tidal river network. Chin. J. Hydrodyn. 2014, 29, 706–712. [Google Scholar]
- Liu, L.; Xu, Z.X. Hydro-dynamic simulation of flood in the Taihu Basin. J. Beijing Norm. Univ. (Nat. Sci.) 2012, 48, 530–536. [Google Scholar]
- Dong, P. Analysis of drainage modulus in drainage area of Hunhe river basin based on hydrohydrodynamic coupling model. Tech. Superv. Water Resour. 2018, 2018, 145–148. [Google Scholar]
- Luo, W.B.; Wang, X.G.; Qiao, W. Effects of land-use change on drainage modulus in plain lake area based on a coupled hydrological and hydrodynamic model. J. Yangtze River Sci. Res. Inst. 2018, 35, 76–81. [Google Scholar]
- Yin, Z.E.; Yin, J.; Xu, S.; Wen, J. Community-based scenario modelling and disaster risk assessment of urban rain-storm waterlogging. J. Geogr. Sci. 2011, 21, 274–284. [Google Scholar] [CrossRef]
- Nogherotto, R.; Fantini, A.; Raffaele, F.; Di Sante, F.; Dottori, F.; Coppola, E.; Giorgi, F. A combined hydrological and hydraulic modelling approach for the flood hazard mapping of the Po river basin. J. Flood Risk Manag 2021, 15, e12755. [Google Scholar] [CrossRef]
- Yu, H.J.; Ma, J.M.; Zhang, D.W.; Mu, J. Application of IFMS Urban software in urban flood risk mapping. China Flood Drought Manag. 2018, 28, 13–17. [Google Scholar]
- The People’s Government of Zhuji. Flood Prevention and Drought Control Manual in Zhuji; The People’s Government of Zhuji: Zhuji, China, 2018.
- Wang, Z.L.; Geng, Y.F.; Jin, S. The two-dimensional flood routing simulation. Chin. J. Comput. Mech. 2007, 2007, 533–538. [Google Scholar]
- The People’s Government of Zhejiang Province. Flood Control Plan of Puyang River Catchment; The People’s Government of Zhejiang Province: Hangzhou, China, 2019.
No. | Sub-Catchment | Control Point | Area/km2 |
---|---|---|---|
1 | Anhua Reservoir | Reservoir | 640 |
2 | Dachengjiang River | Longtan | 264 |
3 | Anhua Reservoir—Yajiayang | / | 217.3 |
4 | Kaihuajiang River | Jieting | 584 |
5 | Wuxiejiang River | Shuimotou | 225 |
6 | Fengqiaojiang River | Luojiaqiao | 330 |
7 | Huangtongjiang River | / | 167.2 |
8 | Yongxing River | / | 99.63 |
Parameter Value | K | WM | WUM | WLM | C | B | SM | EX |
1 | 160 | 20 | 80 | 0.16 | 0.28 | 15 | 1 | |
Parameter Value | KI | KG | CS | CI | CG | KE | XE | |
0.45 | 0.2 | 0.5 | 0.88 | 0.995 | 2.7 | 0.1 |
Parameter Value | K | WM | WUM | WLM | C | B | SM | EX |
1.1 | 150 | 20 | 80 | 0.16 | 0.4 | 16 | 1 | |
Parameter Value | KI | KG | CS | CI | CG | KE | XE | |
0.5 | 0.2 | 0.5 | 0.85 | 0.998 | 2.55 | 0.1 |
No. | River Reach | Roughness |
---|---|---|
1 | Puyang River (Anhua Reservoir—Zhuji hydro-station) | 0.035 |
2 | Dachengjiang River | 0.035 |
3 | Kaihuajiang River | 0.035 |
4 | Fengqiaojiang River, Wuxiejiang River, Puyang River (Zhuji hydro-station—Meichi hydro-station) | 0.03 |
5 | Puyang River (Meichi hydro-station—Wenjiayan) | 0.0275 |
Sub-Catchment | Flood No. | Measured Runoff/m | Calculated Runoff/m | Relative Error/% | Measured Flow/(m3/s) | Calculated Flow/(m3/s) | Relative Error/% | Deterministic Coefficient |
---|---|---|---|---|---|---|---|---|
Anhua Reservoir | 20071007 | 54.8 | 63 | 14.86 | 300 | 300 | 0 | 0.898 |
20110613 | 230.9 | 228.9 | −0.86 | 799 | 719 | 10 | 0.917 | |
20130626 | 81.7 | 95.4 | 16.88 | 355 | 360 | 1.4 | 0.845 | |
20140818 | 98.19 | 111.83 | 13.89 | 464 | 452 | 2.6 | 0.906 | |
Zhuji Hydro Station | 20071007 | 152.8 | 137.9 | −9.75 | 833 | 768 | −7.80 | 0.871 |
20110613 | 392.3 | 381 | −2.88 | 1050 | 1070 | 1.90 | 0.574 | |
20130626 | 165.6 | 167.8 | 1.33 | 702 | 633 | −9.83 | 0.727 | |
20140818 | 174 | 170.9 | −1.78 | 913 | 819 | −10.30 | 0.916 |
Station | Item | Observed Value | Calculated Value | Absolute Error | Relative Error/% |
---|---|---|---|---|---|
Zhuji | Water Level/m | 12.49 | 12.43 | −0.06 | / |
Discharge/(m3/s) | 1040 | 1200 | 160 | 10 | |
Meichi | Water Level/m | 10.22 | 10.2 | −0.02 | / |
No. | Scenario | Control Point |
---|---|---|
1 | Combination of floods and tides | Design storm T = 5 years, high tides at Wenjiayan, no flood diversion at Gao Lake |
2 | Design storm T = 10 years, high tides at Wenjiayan, no flood diversion at Gao Lake | |
3 | Design storm T = 20 years, high tides at Wenjiayan, flood diversion at Gao Lake | |
4 | Design storm T = 50 years, No. 970709 tide at Wenjiayan, flood diversion at Gao Lake | |
5 | Design storm T = 100 years, No. 970709 tide at Wenjiayan, flood diversion at Gao Lake | |
6 | Historical flood events | No.19970709 flood event, analysis on the actual flood inundation after the dyke breach |
7 | No. 19970709 flood event, simulation of the flood inundation under current conditions | |
8 | No. 20110613 flood event, analysis on the actual flood inundation after the dyke breach | |
9 | No. 20110613 flood event, simulation of the flood inundation under the current conditions |
No. | Inundation Area/km2 | Max. Flood Depth/m |
---|---|---|
1 | 0 | 0 |
2 | 0.47 | 2.22 |
3 | 2.08 | 6.86 |
4 | 26.95 | 7.76 |
5 | 65.94 | 8.04 |
No. | Inundation Area/km2 | Max. Flood Depth/m |
---|---|---|
6 | 13.76 | 7 |
7 | 1.07 | 1.5 |
8 | 4.80 | 10.5 |
9 | 0.3 | 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, H.; Zhang, B.; Ma, T.; Qi, X.; Wang, X.; Shang, H.; Qu, S.; Fang, W. Flood Scenario Simulation, Based on the Hydrological and Hydrodynamic Model in the Puyang River Catchment. Water 2022, 14, 3873. https://doi.org/10.3390/w14233873
Zhong H, Zhang B, Ma T, Qi X, Wang X, Shang H, Qu S, Fang W. Flood Scenario Simulation, Based on the Hydrological and Hydrodynamic Model in the Puyang River Catchment. Water. 2022; 14(23):3873. https://doi.org/10.3390/w14233873
Chicago/Turabian StyleZhong, Hua, Bing Zhang, Ting Ma, Xinlong Qi, Xuying Wang, Hualing Shang, Simin Qu, and Weihua Fang. 2022. "Flood Scenario Simulation, Based on the Hydrological and Hydrodynamic Model in the Puyang River Catchment" Water 14, no. 23: 3873. https://doi.org/10.3390/w14233873
APA StyleZhong, H., Zhang, B., Ma, T., Qi, X., Wang, X., Shang, H., Qu, S., & Fang, W. (2022). Flood Scenario Simulation, Based on the Hydrological and Hydrodynamic Model in the Puyang River Catchment. Water, 14(23), 3873. https://doi.org/10.3390/w14233873