Hydrological Simulation in a Rift-Bounded Lake System and Implication of Water Abstraction: Central Rift Valley Lakes Basin, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Hydrological Model Selection
2.3. SWAT Model Description
2.4. SWAT Model INPUT Parameters
2.4.1. Spatial Data
2.4.2. Hydro-Climate Data
2.4.3. Consumptive Water Use
2.5. SWAT Model Parametrization, Calibration, and Uncertainty Analysis
2.5.1. Model Setup and Configuration
2.5.2. Model Parametrization, Calibration, and Uncertainty Analysis
2.5.3. Model Performance Evaluation
3. Result and Discussion
3.1. Curent Irrigation and Urban Water Uses
3.2. Subbasin Discretization and HRU Definition
3.3. Sensitivity Analysis, Model Calibration, and Validation
3.4. Model Performance
3.5. Hydrology of Katar and Meki Subbasins
3.6. Spatial Variation of Water Balance Components
3.7. Temporal Variability of Water Balance
3.8. Trends of Annual and Monthly Discharge of Katar and Meki Subbasins
3.9. Basin-Scale Availability of Surface Water Potential and Impacts of Increasing Water Demands
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informal Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; Cai, M. Methodologies Guidelines: Vulnerability Assessment of Freshwater Resources; United Nation Eviromental Program: Nairobi, Kenya, 2009. [Google Scholar]
- Jansen, H.; Hengsdijk, H.; Dagnachew, L.; Tenalem, A.; Hellegers, P.; Spliethoff, P. Land and Water Resources Assessment in the Ethiopian Central Rift Valley; Alterra-Rapport 1587; Alterra: Wageningen, The Netherlands, 2007; ISSN 1566-7197. [Google Scholar]
- Adeba, D.; Kansal, M.L.; Sen, S. Assessment of Water Scarcity and Its Impacts on Sustainable Development in Awash Basin, Ethiopia. Sustain. Water Resour. Manag. 2015, 1, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Goshime, D.W.; Haile, A.T.; Rientjes, T.; Absi, R.; Ledésert, B.; Siegfried, T. Implications of Water Abstraction on the Interconnected Central Rift Valley Lakes Sub-Basin of Ethiopia Using WEAP. J. Hydrol. Reg. Stud. 2021, 38, 100969. [Google Scholar] [CrossRef]
- Ayenew, T.; Legesse, D. The Changing Face of the Ethiopian Rift Lakes and Their Environs: Call of the Time. Lakes Reserv. Res. Manag. 2007, 12, 149–165. [Google Scholar] [CrossRef]
- Desta, H.; Lemma, B.; Stellmacher, T.; Gebremariam, E. Water Use and Management of Lake Ziway and Its Watershed, Ethiopia: The Perception of Experts Vis-À-Vis the Latest State of Research. Environ. Dev. Sustain. 2019, 22, 3621–3640. [Google Scholar] [CrossRef]
- Zinabu, G.M.; Elizabeth, K.; Desta, Z. Long-Term Changes in Chemical Features of Waters of Seven Ethiopian Rift-Valley Lakes. Hydrobiologia 2002, 477, 81–91. [Google Scholar] [CrossRef]
- Meshesha, D.T.; Tsunekawa, A.; Tsubo, M. Continuing Land Degradation: Cause—Effect In Ethiopia’s Central Rift Valley. Land Degrad. Dev. 2012, 23, 130–143. [Google Scholar] [CrossRef]
- Hayal, D.; Brook, L. SWAT Based Hydrological Assessment and Characterization of Lake Ziway Sub-Watersheds, Ethiopia. J. Hydrol. Reg. Stud. 2017, 13, 122–137. [Google Scholar] [CrossRef]
- Pascual-Ferrer, J.; Pérez-Foguet, A.; Codony, J.; Raventós, E.; Candela, L. Assessment of Water Resources Management in the Ethiopian Central Rift Valley: Environmental Conservation And Poverty Reduction. Int. J. Water Resour. Dev. 2014, 30, 572–587. [Google Scholar] [CrossRef]
- Goshime, D.W.; Haile, A.T.; Absi, R.; Ledésert, B. Impact of Water Resource Development Plan on Water Abstraction and Water Balance of Lake Ziway, Ethiopia. Sustain. Water Resour. Manag. 2021, 7, 17. [Google Scholar] [CrossRef]
- Lemma, B. Ecological Changes in Two Ethiopian Lakes Cuased by Contrasting Human Intervation. Limnologica 2003, 53, 44–53. [Google Scholar] [CrossRef]
- Alemayehu, T.; Furi, W.; Legesse, D. Impact of Water Overexploitation on Highland Lakes of Eastern Ethiopia. Environ. Geol. 2007, 52, 147–154. [Google Scholar] [CrossRef]
- Seyoum, W.M.; Milewski, A.M.; Durham, M.C. Understanding the Relative Impacts of Natural Processes and Human Activities On The Hydrology Of The Central Rift Valley Lakes, East Africa. Hydrol. Process. 2015, 29, 4312–4324. [Google Scholar] [CrossRef]
- Alemayehu, T.; Mccartney, M.; Kebede, S. The Water Resource Implications of Planned Development in the Lake Tana Catchment, Ethiopia. Ecohydrol. Hydrobiol. 2010, 10, 211–221. [Google Scholar] [CrossRef]
- Assefa, D. Causes And Effects Of Diminishing Water Volume in Lake Chelekleka, Bishoftu, Ethiopia and Strategy for Conservation; Addis Ababa University: Addis Ababa, Ethiopia, 2015. [Google Scholar]
- Lorenz, D.L.; Ziegeweid, J.R. Methods to Estimate Historical Daily Streamflow for Ungaged Stream Locations in Minnesota; U.S. Geological Survey Scientific Investigations Report 2015–5181; US Geological Survey: Reston, VA, USA, 2015; p. 18. [CrossRef]
- Aliye, M.A.; Aga, A.O.; Tadesse, T.; Yohannes, P. Evaluating the Performance of HEC-HMS and SWAT Hydrological Models in Simulating the Rainfall-Runoff Process for Data Scarce Region of Ethiopian Rift Valley Lake Basin. Open J. Mod. Hydrol. 2020, 10, 105–122. [Google Scholar] [CrossRef]
- Chimdesa, G. Climate Change Impacts and Adaptation Actions in Central Rift Valley of ethiopia. J. Nat. Sci. Res. 2016, 6, 84–93. [Google Scholar]
- Bonetto, S.M.R.; Caselle, C.; De Luca, D.A.; Lasagna, M. Groundwater Resources In The Main Ethiopian Rift Valley: An Overview For A Sustainable Development. Sustain. 2021, 13, 1347. [Google Scholar] [CrossRef]
- Martínek, K.; Verner, K.; Hroch, T.; Megerssa, L.A.; Kopačková, V.; Buriánek, D.; Muluneh, A.; Kalinová, R.; Yakob, M.; Kassa, M. Main Ethiopian Rift Landslides Formed in Contrasting Geological Settings and Climatic Conditions. Nat. Hazards Earth Syst. Sci. 2021, 21, 3465–3487. [Google Scholar] [CrossRef]
- Ayenew, T. Numerical Groundwater Flow Modeling of the Central Min Ethiopian Rift Lakes Basin. SINET Ethiop. J. Sci 2001, 24, 167–184. [Google Scholar]
- Taye, A.H.; Sisay, K.; Biniyam, Y.; Amare, B.; Adey, N. Review: Groundwater Research in the Ethiopian Rift Valley Lakes Region. Frontiers 2022, 1–18. [Google Scholar]
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Wagener, T.; Wheater, H.S.; Gupta, H.V. Rainfall-Runoff Modelling in Guaged And Ungauged Catchmnets; Imperial College Press: Londan, UK, 2004; ISBN 1860944663. [Google Scholar]
- Hosseini, M.; Amin, M.S.M.; Ghafouri, A.M.; Tabatabaei, M.R. Application of Soil and Water Assessment Tools Model for Runoff Estimation. Am. J. Appl. Sci. 2011, 8, 486–494. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A Continental-Scale Hydrology and Water Quality Model For Europe: Calibration and Uncertainty of A High-Resolution Large-Scale SWAT Model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidline For Systematic Quantification of Accuracy in Wateshed Simulations. Am. Soc. Agric. Biol. Eng. 2007, 50, 885–900. [Google Scholar]
- Sorooshian, S.; Hsu, K.-L.; Coppola, E.; Tomassetti, B.; Verdecchia, M.; Visconti, G. General Review of Rainfall-Runoff Modeling: Model Calibration, Data Assimilation and Uncertianity Analysis. In Hydrological Modelling And The Water Cycle: Coupling The Atmospheric And Hydrological Models; Sorooshian, S., Hsu, K.-L., Coppola, E., Tomassetti, B., Verdecchia, V., Visconti, G., Eds.; Springer Science and Business Media B.V.: New York, NY, USA, 2008; pp. 1–24. ISBN 9783540778424. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Al-Khafaji, M.S.; Al-Sweiti, F.H. Integrated Impact of Digital Elevation Model and Land Cover Resolutions On Simulated Runoff By SWAT Model. Hydrol. Earth Syst. Sci. 2017, 653, 1–26. [Google Scholar]
- Kannan, N.; White, S.; Worrall, F.; Whelan, M. Sensitivity Analysis and Identification of The Best Evapotranspiration And Runoff Options For Hydrological Modelling In SWAT-2000. J. Hydrol. 2007, 332, 456–466. [Google Scholar] [CrossRef]
- Tuo, Y.; Duan, Z.; Disse, M.; Chiogna, G. Science of The Total Environment Evaluation of Precipitation Input for SWAT Modeling in Alpine Catchment: A Case Study in the Adige River Basin (Italy). Sci. Total Environ. 2016, 573, 66–82. [Google Scholar] [CrossRef] [Green Version]
- Setegn, S.G.; Srinivasan, R.; Dargahi, B. Hydrological Modelling in The Lake Tana Basin, Ethiopia Using SWAT Model. Open Hydrol. J. 2008, 2, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Galata, A.W.; Tullu, K.T.; Guder, A.C. Evaluating Watershed Hydrological Responses to Climate Changes at Hangar Watershed, Ethiopia. J. Water Clim. Chang. 2021, 12, 2271–2287. [Google Scholar] [CrossRef]
- Dile, Y.; Ayana, E.K.; Tekleab, S.; Gebrehiwot, S.G. Advances In Water Resources Research in the Upper Blue Nile Basin and the Way Forward: A Review. J. Hydrol. 2018, 560, 407–423. [Google Scholar] [CrossRef]
- Chakilu, G.G.; Sándor, S.; Zoltán, T.; Phinzi, K. Climate Change and the Response of Streamflow of Watersheds under the High Emission Scenario in Lake Tana Sub-Basin, Upper Blue Nile Basin, Ethiopia. J. Hydrol. Reg. Stud. 2022, 42, 101175. [Google Scholar] [CrossRef]
- Tolera, M.B.; Chung, I.M. Integrated Hydrological Analysis of Little Akaki Watershed Using SWAT-MODFLOW. Appl. Sci. 2021, 11, 6011. [Google Scholar] [CrossRef]
- Jilo, N.B.; Gebremariam, B.; Harka, A.E.; Woldemariam, G.W.; Behulu, F. Evaluation of The Impacts of Climate Change on Sediment Yield From the Logiya Watershed, Lower Awash Basin, Ethiopia. Hydrology 2019, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Belihu, M.; Tekleab, S.; Abate, B.; Bewket, W. Hydrologic Response to Land Use Land Cover Change in the Upper Gidabo Watershed, Rift Valley Lakes Basin, Ethiopia. Hydroresearch 2020, 3, 85–94. [Google Scholar] [CrossRef]
- Aga, A.O.; Chane, B.; Melesse, A.M. Soil Erosion Modelling and Risk Assessment in Data Scarce Rift Valley Lake Regions, Ethiopia. Water 2018, 10, 1684. [Google Scholar] [CrossRef] [Green Version]
- Serur, A.B.; Adi, K.A. Multi-Site Calibration of Hydrological Model and The Response of Water Balance Components to Land Use Land Cover Change in A Rift Valley Lake Basin In Ethiopia. Sci. Afr. 2022, 15, e01093. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. Swat: Model Use, Calibration and Validation. Am. Soc. Agric. Biol. Eng. 2012, 55, 1491–1508. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil & Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute Technical Report No. 406; Texas A&M University System: College Station, TX, USA, 2011. [Google Scholar]
- Zhang, D.; Chen, X.; Yao, H.; Lin, B. Improved Calibration Scheme of SWAT By Separating Wet and Dry Seasons. Ecol. Modell. 2015, 301, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Gassman, P.P.W.; Reyes, M.M.R.; Green, C.C.H.; Arnold, J.J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Am. Soc. Agric. Biol. Eng. 2010, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Ayele, G.T.; Teshale, E.Z.; Yu, B.; Rutherfurd, I.D.; Jeong, J. Streamflow and sediment yield prediction for watershed prioritization in the Upper Blue Nile River Basin, Ethiopia. Water 2017, 9, 782. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil and Water Assessment Tool “SWAT” Input/Output Documentation Version 2012; Texas Water Resources Institute: College Station, TX, USA, 2012; ISBN 978-0-387-30858-6.
- Halcrow, Rift Valley Lakes Basin Integrated Resources Development Master Plan Project Report Soils and Land Evaluation; Ministry of Water Resource (Mowr)—The Federal Democratic Republic Of Ethiopia: Addis Ababa, Ethiopia, 2007.
- Abbaspour, K.C.; Vaghefi, S.A.; Yang, H.; Srinivasan, R. Global Soil, Landuse, Evapotranspiration, Historical and Future Weather Databases for SWAT Applications. Sci. Data 2019, 6, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Wang, P.; Liu, J.; Sparrow, M.; Haginoya, S.; Zhou, X. Variation of Surface Albedo and Soil Thermal Parameters with Soil Moisture Content at a Semi-Desert Site on the Western Tibetan Plateau. Bound.-Layer Meteorol. 2005, 116, 117–129. [Google Scholar] [CrossRef]
- Post, W.M.; Kwon, K.C. Soil Carbon Sequestration and Land-Use Change: Processes and Potential. Glob. Chang. Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Saxton, K.E.; Rawls, W.J. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation With Stations—A New Environmental Record For Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Nogueira, S.M.C.; Moreira, M.A.; Volpato, M.M.L. Evaluating Precipitation Estimates From Eta, TRMM and CHRIPS Data in the South-Southeast Region Of Minas Gerais State-Brazil. Remote Sens. 2018, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Belay, A.S.; Fenta, A.A.; Yenehun, A.; Nigate, F.; Tilahun, S.A.; Moges, M.M.; Dessie, M.; Adgo, E.; Nyssen, J.; Chen, M.; et al. Evaluation and Application Of Multi-Source Satellite Rainfall Product CHIRPS To Assess Spatio-Temporal Rainfall Variability on Data-Sparse Western Margins of Ethiopian Highlands. Remote Sens. 2019, 11, 2688. [Google Scholar] [CrossRef] [Green Version]
- Geleta, C.D.; Deressa, T.A. Evaluation of Climate Hazards Group Infrared Precipitation Station (CHIRPS) Satellite-Based Rainfall Estimates over Finchaa And Neshe Watersheds, Ethiopia. Eng. Rep. 2021, 3, e12338. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration (Guidline for Computing Crop Water Requirements); Water Resources, Development and Management Service–FAO: Rome, Italy, 1998; Volume 56. [Google Scholar]
- Savva, A.P.; Frenken, K. Crop Water Requirements And Irrigation Scheduling. Irrigation Manual Module 4; FAO: Rome, Italy, 2002. [Google Scholar]
- Nash, J.E.; Sutcliffe, J. V River Flow Forcasting Throgh Conceptual Models Part I A Discussion Of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.P.; Bäse, F. Advances in Geosciences Comparison of Different Efficiency Criteria for Hydrological Model Assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water 2018, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Gourbesville, P.; Caignaert, G. Advances in Hydroinformatics SIMHYDRO 2012—New Frontiers of Simulation; Springer: Singapore, 2012; ISBN 9789814451413. [Google Scholar]
- Abbaspour, K.C. SWATCUP-2019 SWAT Calibration and Uncertainty Programs; Eawag, Swiss Federal Institute Of Aquatic Science And Technology: Dübendorf, Switzerland, 2019; p. 100. [Google Scholar]
- Song, X.; Zhang, J.; Zhan, C.; Xuan, Y.; Ye, M.; Xu, C. Global Sensitivity Analysis in Hydrological Modeling: Review of Concepts, Methods, Theoretical Framework, And Applications. J. Hydrol. 2015, 523, 739–757. [Google Scholar] [CrossRef] [Green Version]
- Khalid, K.; Ali, M.F.; Rahman, N.F.A.; Mispan, M.R.; Haron, S.H.; Othman, Z.; Bachok, M.F. Sensitivity Analysis in Watershed Model Using SUFI-2 Algorithm. Procedia Eng. 2016, 162, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J. Modelling Hydrology and Water Quality in the Pre-Alpine/Alpine Thur Watershed Using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Bos, M.G.; Keslik, R.A.L.; Allen, R.G.; Molden, D. Water Requirments for Irrigation and the Enviroment; Springer: Dordrecht, Switzerland, 2009; ISBN 978-1-4020-8947-3. [Google Scholar]
- Oromia Irrigation Potential Assessment Project List of Identified Scheme Inventary Report; OWWDSE: Addis Ababa, Ethiopia, 2018.
- Ashaolu, E.D.; Iroye, K.A. Rainfall and Potential Evapotranspiration Patterns and Their Effects on Climatic Water Balance in the Western Lithoral Hydrological Zone of Nigeria. Ruhuna J. Sci. 2018, 9, 92. [Google Scholar] [CrossRef]
- Abraham, T.; Nadew, B. impact Of Land Use Land Cover Dynamics on Water Balance, Lake Ziway Hydrology: Current Research Impact of Land Use Land Cover Dynamics on Water Balance, Lake Ziway. Hydrol. Curr. Res. 2018, 9, 2. [Google Scholar] [CrossRef]
- Girma, Z.; Chuyong, G.; Evangelista, P.; Mamo, Y. Vascular Plant Species Composition, Relative Abundance, Distribution, and Threats in Arsi Mountains National Park, Ethiopia. Mt. Res. Dev. 2018, 38, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Woldesenbet, A.B.; Wudmatas, S.D.; Denboba, M.A.; Gebremariam, A.G. Enset-Based Land Use Land Cover Change Detection and Its Impact on Soil Erosion In Meki River Watershed, Western Lake Ziway Sub-Basin, Central Rift Valley Of Ethiopia. Environ. Syst. Res. 2020, 9, 37. [Google Scholar] [CrossRef]
- Kasso, M.; Bekele, A. Seasonal Population Dynamics of Rodents of Mount Chilalo, Arsi, Ethiopia. SINET Ethiop. J. Sci. 2011, 34, 123–132. [Google Scholar]
- Kim, N.W.; Chung, I.M.; Won, Y.S.; Arnold, J.G. Development and Application of the Integrated SWAT—MODFLOW Model. J. Hydrol. 2008, 356, 1–16. [Google Scholar] [CrossRef]
- Strategic Plan For IWRM Ziway-Shalla Subbasin; Rift Valley Lakes Basin Office (RVLBO): Addis Ababa, Ethiopia, 2021.
- Vallet-Coulomb, C.; Legesse, D.; Gasse, F.; Travi, Y.; Chernet, T. Lake Evaporation Estimates in Tropical Africa (Lake Ziway, Ethiopia). J. Hydrol. 2001, 245, 1–18. [Google Scholar] [CrossRef]
- Goshime, D.W.; Absi, R.; Ledésert, B.; Dufour, F.; Haile, A.T. Impact of Water Abstraction on The Water Level of Lake Ziway, Ethiopia. Water Soc. 2019, 67, 67–78. [Google Scholar] [CrossRef]
Subbasins | Station Name | Latitude (0) | Longitude (0) | μRF | Variables |
---|---|---|---|---|---|
Katar | Arata | 7.97 | 39.05 | 766.46 | RF, Temp. |
Asella | 7.95 | 39.13 | 1053.98 | RF, Temp. | |
Dagaga | 7.43 | 38.84 | 1049.89 | RF, Temp. | |
Iteya | 8.13 | 39.33 | 1044.65 | RF, Temp. | |
Katar Genet | 7.83 | 39.10 | 801.38 | RF, Temp. | |
Kulumsa | 8.00 | 39.15 | 812.18 | RF, Temp. | |
Ogolcho | 8.05 | 39.00 | 710.68 | RF, Temp. | |
Sagure | 7.75 | 39.15 | 772.68 | RF, Temp. | |
Meki | Adami Tulu | 7.86 | 38.70 | 854.70 | RF, Temp. |
Alem Tena | 8.29 | 38.91 | 840.14 | RF, Temp. | |
Bui | 8.33 | 38.55 | 973.24 | RF, Temp. | |
Butajera | 8.15 | 38.37 | 1010.76 | RF, Temp. | |
Ejerse Lele | 8.24 | 38.69 | 862.13 | RF, Temp. | |
Koshe | 8.01 | 38.53 | 760.19 | RF, Temp. | |
Meki | 8.15 | 38.82 | 742.82 | RF, Temp. | |
Ziway | 7.93 | 38.70 | 743.92 | RF, Temp. |
NSE | BIAS | R2 | Classification |
---|---|---|---|
0.75 < ENS ≤ 1.00 | PBIAS ≤ ±10 | 0.75 < R2 ≤ 1.00 | Very good |
0.60 < ENS ≤ 0.75 | ±10 < PBIAS ≤ ±15 | 0.60 < R2 ≤ 0.75 | Good |
0.36 < ENS ≤ 0.60 | ±15 < PBIAS ≤ ±25 | 0.50 < R2 ≤ 0.60 | Satisfactory |
0.00 < ENS ≤ 0.36 | ±25 < PBIAS ≤ ±50 | 0.25 < R2 ≤ 0.50 | Unsatisfactory |
ENS ≤ 0.00 | ±50 ≤ PBIAS | R2 ≤ 0.25 | Inappropriate |
№ | Irrigation Names | SWAT Subbasins | Area (ha) | Irrigation Schedule | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Dec | Jan | Feb | Mar | Apr | May | Jun | ||||
1 | Gusha Timela | 57 | 150.00 | 7.13 | 24.43 | 40.68 | 40.92 | 25.50 | 10.39 | 0.00 |
2 | Katar 1, 2, and 3 | 43 | 602.71 | 28.61 | 97.99 | 163.3 | 164.2 | 103.0 | 42.72 | 0.87 |
3 | Arata Chufa | 18 | 100.00 | 4.74 | 16.24 | 27.08 | 27.25 | 17.10 | 6.94 | 0.00 |
4 | Bosha 1 and 2 | 22 | 168.28 | 7.97 | 27.31 | 45.56 | 45.85 | 28.77 | 11.66 | 0.00 |
5 | Shelled | 13 | 170.68 | 8.56 | 28.43 | 47.43 | 47.06 | 36.06 | 17.48 | 0.50 |
6 | Sotira Katar | 103 | 133.13 | 6.39 | 21.89 | 36.34 | 36.39 | 22.71 | 9.15 | 0.00 |
7 | Chemeri | 87 | 40.00 | 1.92 | 6.54 | 10.86 | 10.91 | 6.84 | 2.76 | 0.00 |
8 | Tita Waji | 69 | 97.54 | 2.42 | 15.07 | 24.42 | 25.95 | 17.46 | 7.91 | 1.12 |
9 | Jewara | 42 | 38.00 | 1.83 | 6.26 | 10.39 | 10.39 | 6.48 | 2.60 | 0.00 |
10 | Digelu Bora | 39 | 51.51 | 2.45 | 8.37 | 13.97 | 14.04 | 8.82 | 3.57 | 0.00 |
11 | Amrach | 41 | 52.57 | 2.48 | 8.53 | 14.22 | 14.32 | 8.97 | 3.63 | 0.00 |
12 | Dodicha | 58 | 69.00 | 3.29 | 11.22 | 18.70 | 18.82 | 11.79 | 4.90 | 0.09 |
13 | Teso Megertu | 19 | 55.00 | 2.60 | 8.93 | 14.90 | 14.97 | 9.39 | 3.91 | 0.09 |
14 | Melka Kofe | 23 | 5.50 | 0.25 | 0.90 | 1.48 | 1.49 | 0.93 | 0.40 | 0.00 |
Total | 1733.9 | 80.63 | 282.1 | 469.3 | 472.6 | 303.8 | 128.0 | 2.67 |
SWAT Model Parameter | Katar Subbasin | Meki Subbasin | ||||
---|---|---|---|---|---|---|
t-Stat | Rank | Fitted Value | t-Stat | Rank | Fitted Value | |
ALPHA_BF.gw | 6.666 | 1 | 0.470 | 2.230 | 8 | 0.147 |
CN2.mgt | 5.176 | 2 | −0.113 | 12.897 | 2 | −0.057 |
SOL_AWC (…).sol | 4.647 | 3 | 0.849 | 13.65 | 1 | 0.534 |
GWQMN.gw | 3.368 | 4 | 998.779 | 4.643 | 4 | 833.568 |
ESCO.hru | 2.505 | 5 | 0.640 | 4.381 | 5 | 0.079 |
GW_REVAP.gw | 1.820 | 6 | 0.110 | 1.033 | 11 | 0.031 |
CH_K2.rte | 1.628 | 7 | 6.572 | 3.089 | 6 | 17.307 |
SURLAG.bsn | 1.438 | 8 | 6.674 | 0.003 | 16 | 0.183 |
CH_N2.rte | 1.238 | 9 | 0.237 | 0.251 | 14 | 0.100 |
RCHRG_DP.gw | 1.089 | 10 | 0.278 | 1.182 | 9 | 0.022 |
SOL_K (…).sol | 0.987 | 11 | 0.865 | 0.594 | 12 | 0.000 |
GW_DELAY.gw | 0.945 | 12 | 448.517 | 0.052 | 15 | 37.685 |
OV_N.hru | 0.717 | 13 | 18.605 | 2.618 | 7 | 2.586 |
EPCO.hru | 0.607 | 14 | 0.838 | 11.52 | 3 | 0.358 |
SLSUBBSN.hru | 0.510 | 15 | 0.072 | 1.097 | 10 | 0.001 |
REVAPMN.gw | 0.435 | 16 | 399.481 | 0.496 | 13 | 35.457 |
Performance Measuring Metrics | Katar Subbasin | Meki Subbasin | ||
---|---|---|---|---|
Calibration | Validation | Calibration | Validation | |
NSE | 0.68 | 0.67 | 0.83 | 0.75 |
R2 | 0.73 | 0.72 | 0.85 | 0.75 |
PBIAS | −17.5 | −22.7 | −1.6 | −1.9 |
P-factor | 0.81 | 0.92 | 0.67 | 0.69 |
R-factor | 0.90 | 1.31 | 1.41 | 1.15 |
Rations | Katar Subbasin | Meki Subbasin |
---|---|---|
Stream flow/precipitation | 0.3 | 0.29 |
Base flow/total flow | 0.49 | 0.51 |
Surface runoff/total flow | 0.51 | 0.49 |
Percolation/precipitation | 0.17 | 0.10 |
Deep recharge/precipitation | 0.01 | 0.01 |
ET/precipitation | 0.60 | 0.67 |
Name | PCP | ET | PERC | Qs | Qgw | WYLD | Change |
---|---|---|---|---|---|---|---|
Katar subbasin | 939.36 | 743.45 | 70.97 | 1.69 | 4.03 | 140.00 | +23.78 |
Meki subbasin | 929.11 | 796.09 | 25.36 | 23.26 | 6.08 | 111.14 | +33.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balcha, S.K.; Awass, A.A.; Hulluka, T.A.; Ayele, G.T.; Bantider, A. Hydrological Simulation in a Rift-Bounded Lake System and Implication of Water Abstraction: Central Rift Valley Lakes Basin, Ethiopia. Water 2022, 14, 3929. https://doi.org/10.3390/w14233929
Balcha SK, Awass AA, Hulluka TA, Ayele GT, Bantider A. Hydrological Simulation in a Rift-Bounded Lake System and Implication of Water Abstraction: Central Rift Valley Lakes Basin, Ethiopia. Water. 2022; 14(23):3929. https://doi.org/10.3390/w14233929
Chicago/Turabian StyleBalcha, Sisay Kebede, Adane Abebe Awass, Taye Alemayehu Hulluka, Gebiaw T. Ayele, and Amare Bantider. 2022. "Hydrological Simulation in a Rift-Bounded Lake System and Implication of Water Abstraction: Central Rift Valley Lakes Basin, Ethiopia" Water 14, no. 23: 3929. https://doi.org/10.3390/w14233929
APA StyleBalcha, S. K., Awass, A. A., Hulluka, T. A., Ayele, G. T., & Bantider, A. (2022). Hydrological Simulation in a Rift-Bounded Lake System and Implication of Water Abstraction: Central Rift Valley Lakes Basin, Ethiopia. Water, 14(23), 3929. https://doi.org/10.3390/w14233929