Comprehensive Evaluation Model for Urban Water Security: A Case Study in Dongguan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. DPSIR Model
2.2.1. Indicator Selection
2.2.2. Data Source
2.3. Projection Pursuit Model
2.4. Gray Prediction Model
2.5. Decoupling Method
3. Results
3.1. Indicator System
3.2. The Weights of Each Indicator and Subsystem
3.3. WSI Comprehensive Evaluation Results
4. Discussion
4.1. Analysis of Changes in WSI System Indicators
4.2. Analysis of the WSI System
4.3. Policy Analysis
5. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falkenmark, M. Water resilience and human life support-global outlook for the next half century. Int. J. Water Resour. Dev. 2020, 36, 377–396. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.F.; He, W.J.; An, M.; Degefu, D.M.; Yuan, L.; Shen, J.Q.; Liao, Z.Y.; Wu, X. Water Security Assessment of China’s One Belt and One Road Region. Water 2019, 11, 607. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, Y.; Li, Z.; Fang, G.; Wang, Y. Development and utilization of water resources and assessment of water security in Central Asia. Agric. Water Manag. 2020, 240, 106297. [Google Scholar] [CrossRef]
- Voeroesmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.H.; Lei, X.H.; Qiao, Y.; Kang, A.Q.; Yan, P.R. The Water Status in China and an Adaptive Governance Frame for Water Management. Int. J. Environ. Res. Public Health 2020, 17, 2085. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.X.; Duan, W.L.; Chen, Y.N.; Dukhovny, V.A.; Sorokin, D.; Li, Y.P.; Wang, X.X. Comprehensive evaluation and sustainable development of water-energy-food-ecology systems in Central Asia. Renew. Sustain. Energy Rev. 2022, 157, 112061. [Google Scholar] [CrossRef]
- Zhang, X.H.; Lin, Z.K. Evaluation of Water Resource Utilization Efficiency in Provincial Areas of China Based on the Unexpected Output SBM Model. J. Environ. Public Health 2022, 2022, 9554730. [Google Scholar] [CrossRef]
- Gleick, P.H.; Cooley, H. Freshwater Scarcity. Annu. Rev. Environ. Resour. 2021, 46, 319–348. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Shi, M. Urban transformation optimization model: How to evaluate industrial structure under water resource constraints? J. Clean. Prod. 2018, 195, 1497–1504. [Google Scholar] [CrossRef]
- Zhang, C.J.; Zhao, Y.; Shi, C.F.; Chiu, Y.H. Can China achieve its water use peaking in 2030? A scenario analysis based on LMDI and Monte Carlo method. J. Clean. Prod. 2021, 278, 123214. [Google Scholar] [CrossRef]
- Xu, Z.C.; Cheng, L.; Liu, P.; Hou, Q.Y.; Cheng, S.J.; Qin, S.J.; Liu, L.; Xia, J. Investigating the spatial variability of water security risk and its driving mechanisms in China using machine learning. J. Clean. Prod. 2022, 362, 132303. [Google Scholar] [CrossRef]
- Su, Y.; Gao, W.J.; Guan, D.J.; Zuo, T.A. Achieving Urban Water Security: A Review of Water Management Approach from Technology Perspective. Water Resour. Manag. 2020, 34, 4163–4179. [Google Scholar] [CrossRef]
- Han, X.X.Q.; Hua, E.; Engel, B.A.; Guan, J.J.; Yin, J.L.; Wu, N.; Sun, S.K.; Wang, Y.B. Understanding implications of climate change and socio-economic development for the water-energy-food nexus: A meta-regression analysis. Agric. Water Manag. 2022, 269, 107693. [Google Scholar] [CrossRef]
- Liu, J.G.; Yang, W. Water Sustainability for China and Beyond. Science 2012, 337, 649–650. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.B.; Tu, Y.; Li, Z.M.; Nie, L. Regional water resources security grading evaluation considering both visible and virtual water: A case study on Hubei province, China. Environ. Sci. Pollut. Res. 2022, 29, 25824–25847. [Google Scholar] [CrossRef]
- Lu, M.T.; Wang, S.Y.; Wang, X.Y.; Liao, W.H.; Wang, C.; Lei, X.H.; Wang, H. An Assessment of Temporal and Spatial Dynamics of Regional Water Resources Security in the DPSIR Framework in Jiangxi Province, China. Int. J. Environ. Res. Public Health 2022, 19, 3650. [Google Scholar] [CrossRef]
- Mosaffaie, J.; Jam, A.S.; Tabatabaei, M.R.; Kousari, M.R. Trend assessment of the watershed health based on DPSIR framework. Land Use Policy 2021, 100, 104911. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Buurman, J.; van Ginkel, K.C.H. Urban water security: A review. Environ. Res. Lett. 2018, 13, 053002. [Google Scholar] [CrossRef] [Green Version]
- Marcal, J.; Antizar-Ladislao, B.; Hofman, J. Addressing Water Security: An Overview. Sustainability 2021, 13, 13702. [Google Scholar] [CrossRef]
- Partnership, G.W. Towards Water Security: A Framework for Action; GWP Secretariat: Stockholm, Sweden, 2000. [Google Scholar]
- Grey, D.; Sadoff, C.W. Sink or Swim? Water security for growth and development. Water Policy 2007, 9, 545–571. [Google Scholar] [CrossRef]
- United Nations ESCAP. Water Security & the Global Water Agenda: A UN-Water Analytical Brief; United Nations University (UNU): Hamilton, ON, Canada, 2013; ISBN 9280860380. [Google Scholar]
- UNESCO. “Water Security”. Available online: https://en.unesco.org/themes/water-security (accessed on 1 October 2022).
- Gerlak, A.K.; House-Peters, L.; Varady, R.G.; Albrecht, T.; Zuniga-Teran, A.; de Grenade, R.R.; Cook, C.; Scott, C.A. Water security: A review of place-based research. Environ. Sci. Policy 2018, 82, 79–89. [Google Scholar] [CrossRef]
- Li, X.; Bing, J.; Zhang, J.; Guo, L.; Deng, Z.; Wang, D.; Liu, L. Ecological risk assessment and sources identification of heavy metals in surface sediments of a river-reservoir system. Sci. Total Environ. 2022, 842, 156683. [Google Scholar] [CrossRef] [PubMed]
- Nong, X.; Shao, D.; Zhong, H.; Liang, J. Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Res. 2020, 178, 115781. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Jia, A.; Song, X.; Bai, Y. Suitability evaluation of carrying capacity and utilization patterns on tidal flats of Bohai Rim in China. J. Environ. Manag. 2022, 319, 115688. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wen, Z.; Cheng, M.; Xu, M. Evaluating the water quality characteristics and tracing the pollutant sources in the Yellow River Basin, China. Sci. Total Environ. 2022, 846, 157389. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.; Behzad, H.M.; Tahir, M.; Li, C. The impact of ecotourism on ecosystem functioning along main rivers and tributaries: Implications for management and policy changes. J. Environ. Manag. 2022, 320, 115849. [Google Scholar] [CrossRef] [PubMed]
- Keeler, L.W.; Wiek, A.; White, D.D.; Sampson, D.A. Linking stakeholder survey, scenario analysis, and simulation modeling to explore the long-term impacts of regional water governance regimes. Environ. Sci. Policy 2015, 48, 237–249. [Google Scholar] [CrossRef]
- Yu, H.; Kong, B.; He, Z.-W.; Wang, G.; Wang, Q. The potential of integrating landscape, geochemical and economical indices to analyze watershed ecological environment. J. Hydrol. 2020, 583, 124298. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Chen, Y.; Xu, J.; Jin, J.; Wang, G.; Shamseldin, A.; Guo, Y.; Cheng, L. Regional water security evaluation with risk control model and its application in Jiangsu Province, China. Environ. Sci. Pollut. Res. 2021, 28, 55700–55715. [Google Scholar] [CrossRef]
- Yang, B.; Ding, L.; Zhan, X.; Tao, X.; Peng, F. Evaluation and analysis of energy security in China based on the DPSIR model. Energy Rep. 2022, 8, 607–615. [Google Scholar] [CrossRef]
- Chen, H.Z.; Xu, J.F.; Zhang, K.; Guo, S.Z.; Lv, X.; Mu, X.Y.; Yang, L.; Song, Y.Y.; Hu, X.R.; Ma, Y.; et al. New insights into the DPSIR model: Revealing the dynamic feedback mechanism and efficiency of ecological civilization construction in China. J. Clean. Prod. 2022, 348, 131377. [Google Scholar] [CrossRef]
- Atkins, J.P.; Burdon, D.; Elliott, M.; Gregory, A.J. Management of the marine environment: Integrating ecosystem services and societal benefits with the DPSIR framework in a systems approach. Mar. Pollut. Bull. 2011, 62, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; He, X. An Integrated Approach to Evaluate Urban Adaptive Capacity to Climate Change. Sustainability 2018, 10, 1272. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.Q.; Bian, Y.J. Improving the ecological environmental performance to achieve carbon neutrality: The application of DPSIR-Improved matter-element extension cloud model. J. Environ. Manag. 2021, 293, 112887. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Qu, X.; Zhang, Q.; Tao, J. Predictive analysis of water resource carrying capacity based on system dynamics and improved fuzzy comprehensive evaluation method in Henan Province. Environ. Monit. Assess. 2022, 194, 500. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Hong, X. A theme evolution and knowledge trajectory study in AHP using science mapping and main path analysis. Expert Syst. Appl. 2022, 205, 117675. [Google Scholar] [CrossRef]
- Selerio, E., Jr.; Caladcad, J.A.; Catamco, M.R.; Capinpin, E.M.; Ocampo, L. Emergency preparedness during the COVID-19 pandemic: Modelling the roles of social media with fuzzy DEMATEL and analytic network process. Socio-Econ. Plan. Sci. 2022, 82, 101217. [Google Scholar] [CrossRef]
- Zeng, P.; Wei, X.; Duan, Z. Coupling and coordination analysis in urban agglomerations of China: Urbanization and ecological security perspectives. J. Clean. Prod. 2022, 365, 132730. [Google Scholar] [CrossRef]
- Liu, L.P.; Tang, D.S.; Chen, T.L.; Ieee. Assessment on the Water Security of ZhangYe Based on the DPSIR Model. In Proceedings of the IEEE 5th International Conference on Advanced Computational Intelligence (ICACI), Nanjing, China, 18–20 October 2012; pp. 850–855. [Google Scholar]
- Ranji, A.; Parashkoohi, M.G.; Zamani, D.M.; Ghahderijani, M. Evaluation of agronomic, technical, economic, and environmental issues by analytic hierarchy process for rice weeding machine. Energy Rep. 2022, 8, 774–783. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, F.L.; Qin, X.S.; Wu, Z.; Wang, X.L.; He, Y.Y. Spatiotemporal assessment of water security in China: An integrated supply-demand coupling model. J. Clean. Prod. 2021, 321, 128955. [Google Scholar] [CrossRef]
- Xiang, J.Y.; Tan, S.; Tan, X.L.; Long, J.W.; Xiao, T.L.; Wang, W. Spatiotemporal assessment of water security in the Dongting Lake region: Insights from projection pursuit method and sparrow search algorithm. J. Clean. Prod. 2022, 378, 134447. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.B. Construction Risk Assessment of Deep Foundation Pit Projects Based on the Projection Pursuit Method and Improved Set Pair Analysis. Appl. Sci. 2022, 12, 1922. [Google Scholar] [CrossRef]
- Wang, Q.; Zhan, L. Assessing the sustainability of the shale gas industry by combining DPSIRM model and RAGA-PP techniques: An empirical analysis of Sichuan and Chongqing, China. Energy 2019, 176, 353–364. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, Q.; Wan, J.; Yang, S.; Wang, Y.; Fan, H. Occurrence and risk assessment of antibiotics in multifunctional reservoirs in Dongguan, China. Environ. Sci. Pollut. Res. 2020, 27, 13565–13574. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, X.; Wang, H.; Gong, D.; Yang, J.; Jiang, B.; Zhang, C.; Deng, X.; Zhou, L.; Wang, B. Rapidly alleviating particulate matter pollution while maintaining high-speed economic development in the “world’s factory”. J. Clean. Prod. 2020, 266, 121844. [Google Scholar] [CrossRef]
- Gao, L.-H.; Ning, J.; Bao, W.-L.-T.-Y.; Yan, A.; Yin, Q.-R. A study on the marine ecological security assessment of Guangdong-Hong Kong-Macao Great Bay Area. Mar. Pollut. Bull. 2022, 176, 113416. [Google Scholar] [CrossRef]
- Fan, C.; Liu, Y.; Liu, C.; Zhao, W.; Hao, N.; Guo, W.; Yuan, J.; Zhao, J. Water quality characteristics, sources, and assessment of surface water in an industrial mining city, southwest of China. Environ. Monit. Assess. 2022, 194, 259. [Google Scholar] [CrossRef]
- Matta, G.; Kumar, A.; Nayak, A.; Kumar, P.; Kumar, A.; Tiwari, A.K. Water quality and planktonic composition of river Henwal (India) using comprehensive pollution index and biotic-indices. Trans. Indian Natl. Acad. Eng. 2020, 5, 541–553. [Google Scholar] [CrossRef]
- Ihsane, O.; Zahra, E.; Sanae, R.; Mohammed, E.; Bourhia, M.; Ali, G.A.M.; Ouahmane, L.; Salamatullah, A.M.; Aboul-Soud, M.A.M.; Giesy, J.P.; et al. Physicochemical Characterization and Assessment of Magnitude of Pollution to Contribute to Water Sustainability. Sustainability 2022, 14, 6689. [Google Scholar] [CrossRef]
- Yuan, L.; Fang, L.; Wang, Y.; Mi, W.; Li, J.; Zhang, G.; Yang, P.; Chen, Z.; Bi, Y. Anthropogenic activities accelerated the evolution of river trophic status. Ecol. Indic. 2022, 136, 108584. [Google Scholar] [CrossRef]
- Li, N.; Li, M.; Zhou, F.; Ma, X.; Lyu, H. Spatio-temporal variations in water quality of urban landscape waters in the plain city. Environ. Pollut. Bioavailab. 2022, 34, 215–223. [Google Scholar] [CrossRef]
- Yang, X.; Chen, X. Using a combined evaluation method to assess water resources sustainable utilization in Fujian Province, China. Environ. Dev. Sustain. 2021, 23, 8047–8061. [Google Scholar] [CrossRef]
- Wei, X.M.; Wang, J.Y.; Wu, S.G.; Xin, X.; Wang, Z.L.; Liu, W. Comprehensive evaluation model for water environment carrying capacity based on VPOSRM framework: A case study in Wuhan, China. Sustain. Cities Soc. 2019, 50, 101640. [Google Scholar] [CrossRef]
- Shuai, J.; Zhao, Y.; Wang, Y.; Cheng, J. Renewable energy product competitiveness: Evidence from the United States, China and India. Energy 2022, 249, 123614. [Google Scholar] [CrossRef]
- Suwal, N.; Huang, X.; Kuriqi, A.; Chen, Y.; Pandey, K.P.; Bhattarai, K.P. Optimisation of cascade reservoir operation considering environmental flows for different environmental management classes. Renew. Energy 2020, 158, 453–464. [Google Scholar] [CrossRef]
- Hu, F.; Hughes, K.J.; Ingham, D.B.; Ma, L.; Pourkashanian, M. Dynamic economic and emission dispatch model considering wind power under Energy Market Reform: A case study. Int. J. Electr. Power Energy Syst. 2019, 110, 184–196. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.Y.; Xia, J.; Zou, L.; Huo, R. Comprehensive quantitative evaluation of the water resource carrying capacity in Wuhan City based on the "human-water-city" framework: Past, present and future. J. Clean. Prod. 2022, 366, 132847. [Google Scholar] [CrossRef]
- Xing, Y.; Li, F.; Sun, K.; Wang, D.; Chen, T.Y.; Zhang, Z. Multi-type electric vehicle load prediction based on Monte Carlo simulation. Energy Rep. 2022, 8, 966–972. [Google Scholar] [CrossRef]
- Wang, T.; Li, K.Y.; Liu, D.F.; Yang, Y.; Wu, D. Estimating the Carbon Emission of Construction Waste Recycling Using Grey Model and Life Cycle Assessment: A Case Study of Shanghai. Int. J. Environ. Res. Public Health 2022, 19, 8507. [Google Scholar] [CrossRef]
- Liu, C.X.; Shu, T.; Chen, S.; Wang, S.Y.; Lai, K.K.; Gan, L. An improved grey neural network model for predicting transportation disruptions. Expert Syst. Appl. 2016, 45, 331–340. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.W. Moving to economic growth without water demand growth—A decomposition analysis of decoupling from economic growth and water use in 31 provinces of China. Sci. Total Environ. 2020, 726, 138362. [Google Scholar] [CrossRef]
- Liu, F.Q.; Kang, Y.X.; Guo, K. Is electricity consumption of Chinese counties decoupled from carbon emissions? A study based on Tapio decoupling index. Energy 2022, 251, 123879. [Google Scholar] [CrossRef]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Su, M.; Meng, F.; Liu, Y.; Cai, Y.; Zhou, Y.; Yang, Z. Analysis of urban carbon metabolism characteristics based on provincial input-output tables. J. Environ. Manag. 2020, 265, 110561. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Li, Y.; Tang, X.; Huang, H.; Wang, R. Assessing spatial-temporal evolution and key factors of urban livability in arid zone: The case study of the Loess Plateau, China. Ecol. Indic. 2022, 140, 108995. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, X.; Wang, L.; Zou, H. Spatial temporal patterns and driving factors of industrial pollution and structures in the Yangtze River Economic Belt. Chemosphere 2022, 303, 134996. [Google Scholar] [CrossRef] [PubMed]
- Rijsberman, F.R. Water scarcity: Fact or fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.; Xu, X.; Qi, M.; Sun, J.; Zhang, Y.; Zhang, W.; Wang, M.; Wang, X.; Zhang, Y. Lake warming intensifies the seasonal pattern of internal nutrient cycling in the eutrophic lake and potential impacts on algal blooms. Water Res. 2021, 188, 116570. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, C.; Zhang, L.; Wang, Y.; Wu, Z.; Niu, X. Ecological security assessment and countermeasures of water environment based on improved analytic hierarchy process: A case study of Xingtai city. Beijing Da Xue Xue Bao 2019, 55, 310–316. [Google Scholar]
- Yang, J.; Gu, W.; Wu, B.; Liu, B.; Zhang, B. Towards cost-effective total pollution control in Chinese industries. J. Environ. Manag. 2022, 320, 115744. [Google Scholar] [CrossRef]
- Zheng, J.; He, J.; Shao, X.; Liu, W. The employment effects of environmental regulation: Evidence from eleventh five-year plan in China. J. Environ. Manag. 2022, 316, 115197. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Andersson, H.; Zhang, S. Air Pollution Control Policies in China: A Retrospective and Prospects. Int. J. Environ. Res. Public Health 2016, 13, 1219. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.; Weng, L.F.; Yu, H.Z. Addressing policy challenges in implementing Sustainable Development Goals through an adaptive governance approach: A view from transitional China. Sustain. Dev. 2018, 26, 150–158. [Google Scholar] [CrossRef]
- Blal, A.E.; Davide, G.; Christian, A. Boundary work for implementing adaptive management: A water sector application. Sci. Total Environ. 2017, 593, 274–285. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V. A review on Environmental Kuznets Curve hypothesis using bibliometric and meta-analysis. Sci. Total Environ. 2019, 649, 128–145. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, R.; Li, R.R. Decoupling analysis of economic growth from water use in City: A case study of Beijing, Shanghai, and Guangzhou of China. Sustain. Cities Soc. 2018, 41, 86–94. [Google Scholar] [CrossRef]
- Li, P.Y.; Qian, H.; Wu, J.H.; Chen, J. Sensitivity analysis of TOPSIS method in water quality assessment: I. Sensitivity to the parameter weights. Environ. Monit. Assess. 2013, 185, 2453–2461. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; Khan, S. Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environ. Model. Softw. 2010, 25, 1582–1591. [Google Scholar] [CrossRef]
- Xu, E.Q.; Zhang, H.Q. Spatially-explicit sensitivity analysis for land suitability evaluation. Appl. Geogr. 2013, 45, 1–9. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, J.Z. Evaluation Model and Empirical Research on the Green Innovation Capability of Manufacturing Enterprises from the Perspective of Ecological Niche. Sustainability 2021, 13, 11710. [Google Scholar] [CrossRef]
- Song, Y.L.; Wang, Y.; Liu, F.; Zhang, Y.X. Development of a hybrid model to predict construction and demolition waste: China as a case study. Waste Manag. 2017, 59, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.Y.; Guan, D.J.; Yang, Q.W. Evaluation of Water Resource Security Based on an MIV-BP Model in a Karst Area. Water 2018, 10, 786. [Google Scholar] [CrossRef]
Reference | Definition |
---|---|
Global Water Partnership (2000) [20] | Water security, at any level from the household to the global, means that every person has access to enough safe water at affordable cost to lead a clean, healthy and productive life, while ensuring that the natural environment is protected and enhanced. |
Grey and Sadoff (2007) [21] | Water security is the availability of an acceptable quantity and quality of water for health, livelihoods, ecosystems and production, coupled with an acceptable level of water-related risks to people, environments and economies. |
UN-Water (2013) [22] | Water security is the capacity of a population to safeguard sustainable access to adequate quantities of and acceptable quality water for sustaining livelihoods, human well-being, and socio-economic development, for ensuring protection against water-borne pollution and water-related disasters, and for preserving ecosystems in a climate of peace and political stability. |
UNESCO (2016) [23] | Freshwater is the most important resource for humankind, cross-cutting all social, economic and environmental activities. It is a condition for all life on our planet, an enabling or limiting factor for any social and technological development, a possible source of welfare or misery, cooperation or conflict. |
Rule Layer | Index Layer | Unit | Identifier (Type) | Statistical Methods | |
---|---|---|---|---|---|
Driving force (D) | GDP per capita | Chinese Yuan | D1 (+) | Gross regional product/Resident population | |
Total agricultural output | hundred million Chinese Yuan | D2 (+) | Gross output value of farming, forestry, animal husbandry and fishery | ||
Value added by industry | hundred million Chinese Yuan | D3 (+) | - | ||
Population density | person/km2 | D4 (−) | Number of resident population/Area | ||
Pressure (P) | Industrial sources | Water consumption of ten thousand Yuan industrial value added | m3 | P1 (−) | Industrial water consumption/Industrial value added |
Industrial wastewater emissions of ten thousand Chinese Yuan GDP | m3/ten thousand Chinese Yuan | P2 (−) | Industrial wastewater discharge/Secondary industry output | ||
Agricultural sources | Water consumption for agricultural irrigation | m3/ha | P3 (−) | Agricultural water consumption/Farmland area | |
Fertilizer application per unit sown area | kg/ha | P4 (−) | Annual fertilizer use/Sown area | ||
Domestic sources | Per capita water consumption for residential use | L/d | P5 (−) | Daily domestic water consumption/Resident population | |
Annual per capita domestic sewage discharge | m3/person | P6 (−) | Annual domestic sewage discharge/Resident population | ||
State (S) | Water resources per capita | m3/person | S1 (+) | Total water resources/Resident population | |
Dongjiang water resources development and utilization rate | % | S2 (−) | - | ||
River water quality conditions | - | S3 (−) | Comprehensive pollution index method | ||
Reservoir water quality conditions | - | S4 (−) | Comprehensive trophic level index method | ||
Annual precipitation | mm | S5 (+) | - | ||
Impact (I) | Greenery coverage rate | % | I1 (+) | - | |
Industrial waste gas emissions | one hundred million m3 | I2 (−) | - | ||
Industrial solid waste generation | ten thousand tons | I3 (−) | - | ||
Ecological index | - | I4 (+) | Eco-environmental status evaluation method | ||
Response (R) | Centralized treatment rate of sewage plants | % | R1 (+) | - | |
Ecological water use ratio | % | R2 (+) | Ecological water consumption/Total water consumption | ||
Comprehensive utilization rate of industrial solid waste | % | R3 (+) | - | ||
Leakage rate of water supply network | % | R4 (+) | - |
Standard | Average Relative Percentage Error * | Variance Ratio * | Minor Probability * |
---|---|---|---|
Excellent | <0.01 | <0.35 | >0.95 |
Good | <0.05 | <0.5 | >0.8 |
Qualified | <0.10 | <0.65 | >0.7 |
Unqualified | ≥0.20 | ≥0.65 | ≤0.7 |
Standard | Average Relative Percentage Error Φ | Variance Ratio C | Minor Probability p |
---|---|---|---|
Predicted value error | 0.0110 (Good) | 0.1825 (Excellent) | 1 (Excellent) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Yan, Z.; Wan, J.; Wang, Y.; Ye, G.; Long, Y.; Xie, Q. Comprehensive Evaluation Model for Urban Water Security: A Case Study in Dongguan, China. Water 2022, 14, 3957. https://doi.org/10.3390/w14233957
Cao J, Yan Z, Wan J, Wang Y, Ye G, Long Y, Xie Q. Comprehensive Evaluation Model for Urban Water Security: A Case Study in Dongguan, China. Water. 2022; 14(23):3957. https://doi.org/10.3390/w14233957
Chicago/Turabian StyleCao, Jianye, Zhicheng Yan, Jinquan Wan, Yan Wang, Gang Ye, Yingping Long, and Quanmo Xie. 2022. "Comprehensive Evaluation Model for Urban Water Security: A Case Study in Dongguan, China" Water 14, no. 23: 3957. https://doi.org/10.3390/w14233957
APA StyleCao, J., Yan, Z., Wan, J., Wang, Y., Ye, G., Long, Y., & Xie, Q. (2022). Comprehensive Evaluation Model for Urban Water Security: A Case Study in Dongguan, China. Water, 14(23), 3957. https://doi.org/10.3390/w14233957