Modeling of Groundwater Nitrate Contamination Due to Agricultural Activities—A Systematic Review
Abstract
:1. Introduction
- What models have been used in literature to estimate nitrate contamination of groundwater?
- Which input variables are needed by the models to simulate groundwater nitrate contamination?
- What models have been commonly used worldwide in this area?
- What statistical/evaluation metrics have been used to evaluate the performance of models?
- What are the challenges faced in using models for estimating nitrate contamination of groundwater due to agricultural activities?
2. Methods
2.1. Identification
2.2. Screening
2.3. Eligibility Criteria
2.4. Full-Text Assessment
3. Results
3.1. Literature Selection and Distribution
3.2. Model Complexities and Inputs
3.3. Spatio-Temporal Model Distribution
3.4. Model Selection and Evaluation Metrics
3.5. Challenges of Modeling Groundwater Nitrate Contamination
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valin, H.; Sands, R.D.; van der Mensbrugghe, D.; Nelson, G.C.; Ahammad, H.; Blanc, E.; Bodirsky, B.; Fujimori, S.; Hasegawa, T.; Havlik, P.; et al. The future of food demand: Understanding differences in global economic models. Agric. Econ. 2014, 45, 51–67. [Google Scholar] [CrossRef]
- Alix, A.; Capri, E. Modern Agriculture in Europe and the Role of Pesticides. In Advances in Chemical Pollution, Environmental Management and Protection; Elsevier: Amsterdam, The Netherlands, 2018; Volume 2, pp. 1–22. ISBN 978-0-12-812866-4. [Google Scholar]
- Kc, K.B.; Dias, G.M.; Veeraman, A.; Swanton, C.J.; Fraser, D.; Steinke, D.; Lee, E.; Wittman, H.; Farber, J.M.; Dunfield, K.; et al. When too much isn’t enough: Does current food production meet global nutritional needs? PLoS ONE 2018, 13, e0205683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The United Nations World Water Development Report 2022: Groundwater: Making the Invisible Visible. 2022. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000380721 (accessed on 13 November 2022).
- Raven, J.A. Global aspects of C/N interactions determining plant-environment interactions. J. Exp. Bot. 2003, 55, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Chapter 6—Functions of Macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 135–189. ISBN 978-0-12-384905-2. [Google Scholar]
- Malyan, S.K.; Singh, R.; Rawat, M.; Kumar, M.; Pugazhendhi, A.; Kumar, A.; Kumar, V.; Kumar, S.S. An overview of carcinogenic pollutants in groundwater of India. Biocatal. Agric. Biotechnol. 2019, 21, 101288. [Google Scholar] [CrossRef]
- Mohammed, A.M.; Refaee, A.; El-Din, G.K.; Harb, S. Hydrochemical characteristics and quality assessment of shallow groundwater under intensive agriculture practices in arid region, Qena, Egypt. Appl. Water Sci. 2022, 12, 92. [Google Scholar] [CrossRef]
- UN World Water Development Report. 2015. Available online: https://www.unwater.org/publications/un-world-water-development-report-2015 (accessed on 13 November 2022).
- Shukla, S.; Saxena, A. Global Status of Nitrate Contamination in Groundwater: Its Occurrence, Health Impacts, and Mitigation Measures. In Handbook of Environmental Materials Management; Hussain, C.M., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 869–888. ISBN 978-3-319-73644-0. [Google Scholar]
- Rahmati, O.; Samani, A.N.; Mahmoodi, N.; Mahdavi, M. Assessment of the Contribution of N-Fertilizers to Nitrate Pollution of Groundwater in Western Iran (Case Study: Ghorveh–Dehgelan Aquifer). Water Qual. Expo. Health 2015, 7, 143–151. [Google Scholar] [CrossRef]
- Singh, K.; Singh, R.; Malyan, S.K.; Rawat, M.; Kumar, P.; Kumar, S.; Sharma, M.K.; Pandey, G. Health Risk Assessment of Drinking Water in Bathinda District, Punjab, India. J. Indian Water Resour. Soc. 2018, 38, 3. [Google Scholar]
- Schröder, J.J.; Scholefield, D.; Cabral, F.; Hofman, G. The effects of nutrient losses from agriculture on ground and surface water quality: The position of science in developing indicators for regulation. Environ. Sci. Policy 2004, 7, 15–23. [Google Scholar] [CrossRef]
- Rahaman, M.S.; Mise, N.; Ichihara, S. Arsenic contamination in food chain in Bangladesh: A review on health hazards, socioeconomic impacts and implications. Hyg. Environ. Health Adv. 2022, 2, 100004. [Google Scholar] [CrossRef]
- World Health Organization; Food and Agriculture Organization of the United Nations. Safety and Quality of Water Used in Food Production and Processing: Meeting Report; Microbiological Risk Assessment Series, 33; World Health Organization: Geneva, Switzerland, 2019; ISBN 978-92-4-151640-2. [Google Scholar]
- Chiwetalu, U.F.U.; Asoiro, S.; Eslamian, E.A.; Echiegu, M.; Okechukwu, E.; Ndulue, I.O. Groundwater Quality Appraisal for Drinking and the Associated Health Implications: A Medical Hydrogeology Study of Enugu Metropolis, South-Eastern, Nigeria, Semantic Scholar. Int. J. Hydrol. Sci. 2022. [Google Scholar] [CrossRef]
- Power, J.F.; Schepers, J.S. Nitrate contamination of groundwater in North America. Agric. Ecosyst. Environ. 1989, 26, 165–187. [Google Scholar] [CrossRef]
- Karaman, M.R.; Saltali, K.; Ersahin, S.; Güleç, H.; Derici, M.R. Modeling nitrogen uptake and potential nitrate leaching under different irrigation programs in nitrogen-fertilized tomato using the computer program NLEAP. Environ. Monit. Assess 2005, 101, 249–259. [Google Scholar] [CrossRef]
- Almasri, M.N.; Kaluarachchi, J.J. Modeling nitrate contamination of groundwater in agricultural watersheds. J. Hydrol. 2007, 343, 211–229. [Google Scholar] [CrossRef]
- Radersma, S.; Smit, A.L. Assessing denitrification and N leaching in a field with organic amendments. NJAS Wagening. J. Life Sci. 2011, 58, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Zeng, L.; Qin, W.; Feng, J. Measures for reducing nitrate leaching in orchards:A review. Environ. Pollut. 2020, 263, 114553. [Google Scholar] [CrossRef]
- Stuart, M.E.; Gooddy, D.C.; Bloomfield, J.P.; Williams, A.T. A review of the impact of climate change on future nitrate concentrations in groundwater of the UK. Sci. Total Environ. 2011, 409, 2859–2873. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-H.; Li, S.-X. Nitrate N loss by leaching and surface runoff in agricultural land: A global issue (a review). In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2019; Volume 156, pp. 159–217. ISBN 978-0-12-817598-9. [Google Scholar]
- De Paz, J.M.; Ramos, C. Simulation of nitrate leaching for different nitrogen fertilization rates in a region of Valencia (Spain) using a GIS–GLEAMS system. Agric. Ecosyst. Environ. 2004, 103, 59–73. [Google Scholar] [CrossRef]
- Aschonitis, V.G.; Mastrocicco, M.; Colombani, N.; Salemi, E.; Kazakis, N.; Voudouris, K.; Castaldelli, G. Assessment of the Intrinsic Vulnerability of Agricultural Land to Water and Nitrogen Losses via Deterministic Approach and Regression Analysis. Water Air Soil Pollut. 2012, 223, 1605–1614. [Google Scholar] [CrossRef]
- Yang, R.; Tong, J.; Hu, B.X.; Li, J.; Wei, W. Simulating water and nitrogen loss from an irrigated paddy field under continuously flooded condition with Hydrus-1D model. Environ. Sci. Pollut. Res. 2017, 24, 15089–15106. [Google Scholar] [CrossRef]
- Shekofteh, H.; Afyuni, M.; Hajabbasi, M.A.; Iversen, B.V.; Nezamabadi-pour, H.; Abassi, F.; Sheikholeslam, F. Nitrate leaching from a potato field using adaptive network-based fuzzy inference system. J. Hydroinform. 2013, 15, 503–515. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, L.; Qiu, J.; Li, C.; Gao, M.; Gao, C. Calibration of DNDC model for nitrate leaching from an intensively cultivated region of Northern China. Geoderma 2014, 223–225, 108–118. [Google Scholar] [CrossRef]
- Xie, M.; Šimůnek, J.; Zhang, Z.; Zhang, P.; Xu, J.; Lin, Q. Nitrate subsurface transport and losses in response to its initial distributions in sloped soils: An experimental and modelling study. Hydrol. Process. 2019, 33, 3282–3296. [Google Scholar] [CrossRef]
- Rath, S.; Zamora-Re, M.; Graham, W.; Dukes, M.; Kaplan, D. Quantifying nitrate leaching to groundwater from a corn-peanut rotation under a variety of irrigation and nutrient management practices in the Suwannee River Basin, Florida. Agric. Water Manag. 2021, 246, 106634. [Google Scholar] [CrossRef]
- Wallis, K.J.; Candela, L.; Mateos, R.M.; Tamoh, K. Simulation of nitrate leaching under potato crops in a Mediterranean area. Influence of frost prevention irrigation on nitrogen transport. Agric. Water Manag. 2011, 98, 1629–1640. [Google Scholar] [CrossRef]
- Xu, L.; Niu, H.; Xu, J.; Wang, X. Nitrate-Nitrogen Leaching and Modeling in Intensive Agriculture Farmland in China. Sci. World J. 2013, 2013, 353086. [Google Scholar] [CrossRef] [Green Version]
- Moher, D. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264. [Google Scholar] [CrossRef] [Green Version]
- Microsoft Excel Spreadsheet Software, Microsoft 365. Available online: https://www.microsoft.com/en-us/microsoft-365/excel (accessed on 13 November 2022).
- Armenta-Medina, D.; Ramirez-Delreal, T.A.; Villanueva-Vásquez, D.; Mejia-Aguirre, C. Trends on Advanced Information and Communication Technologies for Improving Agricultural Productivities: A Bibliometric Analysis. Agronomy 2020, 10, 1989. [Google Scholar] [CrossRef]
- Zendehbad, M.; Cepuder, P.; Loiskandl, W.; Stumpp, C. Source identification of nitrate contamination in the urban aquifer of Mashhad, Iran. J. Hydrol. Reg. Stud. 2019, 25, 100618. [Google Scholar] [CrossRef]
- Opazo, T.; Aravena, R.; Parker, B. Nitrate distribution and potential attenuation mechanisms of a municipal water supply bedrock aquifer. Appl. Geochem. 2016, 73, 157–168. [Google Scholar] [CrossRef]
- Malki, M.; Bouchaou, L.; Hirich, A.; Ait Brahim, Y.; Choukr-Allah, R. Impact of agricultural practices on groundwater quality in intensive irrigated area of Chtouka-Massa, Morocco. Sci. Total Environ. 2017, 574, 760–770. [Google Scholar] [CrossRef]
- Czekaj, J.; Jakóbczyk-Karpierz, S.; Rubin, H.; Sitek, S.; Witkowski, A.J. Identification of nitrate sources in groundwater and potential impact on drinking water reservoir (Goczałkowice reservoir, Poland). Phys. Chem. Earth Parts A/B/C 2016, 94, 35–46. [Google Scholar] [CrossRef]
- Lasagna, M.; De Luca, D.A. Evaluation of sources and fate of nitrates in the western Po plain groundwater (Italy) using nitrogen and boron isotopes. Environ. Sci. Pollut. Res. 2017, 26, 2089–2104. [Google Scholar] [CrossRef]
- Ng, H.Y.F.; Drury, C.F.; Serem, V.K.; Tan, C.S.; Gaynor, J.D. Modeling and testing of the effect of tillage, cropping and water management practices on nitrate leaching in clay loam soil. Agric. Water Manag. 2000, 43, 111–131. [Google Scholar] [CrossRef]
- Hall, M.D.; Shaffer, M.J.; Waskom, R.M.; Delgado, J.A. Regional nitrate leaching variability: What makes a difference in northeastern colorado. J. Am. Water Resour. Assoc. 2001, 37, 139–150. [Google Scholar] [CrossRef]
- Shamrukh, M.; Corapcioglu, M.Y.; Hassona, F.A.A. Modeling the Effect of Chemical Fertilizers on Ground Water Quality in the Nile Valley Aquifer, Egypt. Groundwater 2001, 39, 59–67. [Google Scholar] [CrossRef]
- De Paz, J.M.; Ramos, C. Linkage of a geographical information system with the gleams model to assess nitrate leaching in agricultural areas. Environ. Pollut. 2002, 118, 249–258. [Google Scholar] [CrossRef]
- Saâdi, Z.; Maslouhi, A. Modeling nitrogen dynamics in unsaturated soils for evaluating nitrate contamination of the Mnasra groundwater. Adv. Environ. Res. 2003, 7, 803–823. [Google Scholar] [CrossRef]
- Babiker, I. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system. Environ. Int. 2004, 29, 1009–1017. [Google Scholar] [CrossRef]
- Elrashidi, M.A.; Mays, M.D.; Peaslee, S.D.; Hooper, D.G. A Technique to Estimate Nitrate–Nitrogen Loss by Runoff and Leaching for Agricultural Land, Lancaster County, Nebraska. Commun. Soil Sci. Plant Anal. 2004, 35, 2593–2615. [Google Scholar] [CrossRef]
- Wolf, J.; Broeke, M.J.D.H.; Rötter, R. Simulation of nitrogen leaching in sandy soils in The Netherlands with the ANIMO model and the integrated modelling system STONE. Agric. Ecosyst. Environ. 2005, 105, 523–540. [Google Scholar] [CrossRef]
- Lee, K.-H.; Jose, S. Nitrate leaching in cottonwood and loblolly pine biomass plantations along a nitrogen fertilization gradient. Agric. Ecosyst. Environ. 2005, 105, 615–623. [Google Scholar] [CrossRef]
- Hanson, B.R.; Šimůnek, J.; Hopmans, J.W. Evaluation of urea–ammonium–nitrate fertigation with drip irrigation using numerical modeling. Agric. Water Manag. 2006, 86, 102–113. [Google Scholar] [CrossRef]
- Köhler, K.; Duynisveld, W.H.M.; Böttcher, J. Nitrogen fertilization and nitrate leaching into groundwater on arable sandy soils. J. Plant Nutr. Soil Sci. 2006, 169, 185–195. [Google Scholar] [CrossRef]
- Ledoux, E.; Gomez, E.; Monget, J.M.; Viavattene, C.; Viennot, P.; Ducharne, A.; Benoit, M.; Mignolet, C.; Schott, C.; Mary, B. Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain. Sci. Total Environ. 2007, 375, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Kaown, D.; Hyun, Y.; Bae, G.-O.; Lee, K.-K. Factors Affecting the Spatial Pattern of Nitrate Contamination in Shallow Groundwater. J. Environ. Qual. 2007, 36, 1479–1487. [Google Scholar] [CrossRef]
- Candela, L.; Wallis, K.J.; Mateos, R.M. Non-point pollution of groundwater from agricultural activities in Mediterranean Spain: The Balearic Islands case study. Environ. Geol. 2008, 54, 587–595. [Google Scholar] [CrossRef]
- Jiang, Y.; Somers, G. Modeling effects of nitrate from non-point sources on groundwater quality in an agricultural watershed in Prince Edward Island, Canada. Hydrogeol. J. 2009, 17, 707–724. [Google Scholar] [CrossRef]
- Ulén, B.; Johansson, G. Long-term nutrient leaching from a Swedish arable field with intensified crop production against a background of climate change. Acta Agric. Scand. Sect. B Plant Soil Sci. 2009, 59, 157–169. [Google Scholar] [CrossRef]
- Chae, G.T.; Yun, S.T.; Mayer, B.; Choi, B.Y.; Kim, K.H.; Kwon, J.S.; Yu, S.Y. Hydrochemical and stable isotopic assessment of nitrate contamination in an alluvial aquifer underneath a riverside agricultural field. Agric. Water Manag. 2009, 96, 1819–1827. [Google Scholar] [CrossRef]
- Hajhamad, L.; Almasri, M.N. Assessment of nitrate contamination of groundwater using lumped-parameter models. Environ. Model. Softw. 2009, 24, 1073–1087. [Google Scholar] [CrossRef]
- Serhal, H.; Bernard, D.; Khattabi, J.E.; Sabine, B.-L.; Shahrour, I. Impact of fertilizer application and urban wastes on the quality of groundwater in the Cambrai Chalk aquifer, Northern France. Environ. Geol. 2009, 57, 1579–1592. [Google Scholar] [CrossRef]
- Akhavan, S.; Abedi-Koupai, J.; Mousavi, S.-F.; Afyuni, M.; Eslamian, S.-S.; Abbaspour, K.C. Application of SWAT model to investigate nitrate leaching in Hamadan–Bahar Watershed, Iran. Agric. Ecosyst. Environ. 2010, 139, 675–688. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Q.; Huang, L. Nitrogen leaching in a typical agricultural extensively cropped catchment, China: Experiments and modelling: N leaching in a typical agricultural catchment. Water Environ. J. 2009, 24, 97–106. [Google Scholar] [CrossRef]
- Hu, K.; Li, Y.; Chen, W.; Chen, D.; Wei, Y.; Edis, R.; Li, B.; Huang, Y.; Zhang, Y. Modeling Nitrate Leaching and Optimizing Water and Nitrogen Management under Irrigated Maize in Desert Oases in Northwestern China. J. Environ. Qual. 2010, 39, 667–677. [Google Scholar] [CrossRef]
- Kao, Y.H.; Liu, C.-W.; Jang, C.S.; Zanh, S.W.; Lin, K.H. Assessment of nitrogen contamination of groundwater in paddy and upland fields. Paddy Water Environ. 2011, 9, 301–307. [Google Scholar] [CrossRef]
- Huang, J.; Xu, J.; Liu, X.; Liu, J.; Wang, L. Spatial distribution pattern analysis of groundwater nitrate nitrogen pollution in Shandong intensive farming regions of China using neural network method. Math. Comput. Model. 2011, 54, 995–1004. [Google Scholar] [CrossRef]
- Qiu, J.; Li, H.; Wang, L.; Tang, H.; Li, C.; Van Ranst, E. GIS-model based estimation of nitrogen leaching from croplands of China. Nutr. Cycl. Agroecosyst. 2011, 90, 243–252. [Google Scholar] [CrossRef]
- Zhang, H.; Hiscock, K.M. Modelling the effect of forest cover in mitigating nitrate contamination of groundwater: A case study of the Sherwood Sandstone aquifer in the East Midlands, UK. J. Hydrol. 2011, 399, 212–225. [Google Scholar] [CrossRef]
- Jiang, Y.; Zebarth, B.; Love, J. Long-term simulations of nitrate leaching from potato production systems in Prince Edward Island, Canada. Nutr. Cycl. Agroecosyst. 2011, 91, 307–325. [Google Scholar] [CrossRef]
- Chen, S.; Wu, W.; Hu, K.; Li, W. The effects of land use change and irrigation water resource on nitrate contamination in shallow groundwater at county scale. Ecol. Complex. 2010, 7, 131–138. [Google Scholar] [CrossRef]
- Heumann, S.; Fier, A.; Haßdenteufel, M.; Höper, H.; Schäfer, W.; Eiler, T.; Böttcher, J. Minimizing nitrate leaching while maintaining crop yields: Insights by simulating net N mineralization. Nutr. Cycl. Agroecosyst. 2013, 95, 395–408. [Google Scholar] [CrossRef]
- Letey, J.; Vaughan, P. Soil type, crop and irrigation technique affect nitrogen leaching to groundwater. Calif. Agric. 2013, 67, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Shekofteh, H.; Afyuni, M.; Hajabbasi, M.A.; Iversen, B.V.; Nezamabadi-Pour, H.; Abassi, F.; Sheikholeslam, F.; Shirani, H. Modeling of Nitrate Leaching from a Potato Field using HYDRUS-2D. Commun. Soil Sci. Plant Anal. 2013, 44, 2917–2931. [Google Scholar] [CrossRef]
- Asada, K.; Eguchi, S.; Urakawa, R.; Itahashi, S.; Matsumaru, T.; Nagasawa, T.; Aoki, K.; Nakamura, K.; Katou, H. Modifying the LEACHM model for process-based prediction of nitrate leaching from cropped Andosols. Plant Soil 2013, 373, 609–625. [Google Scholar] [CrossRef]
- Kurtzman, D.; Shapira, R.H.; Bar-Tal, A.; Fine, P.; Russo, D. Nitrate fluxes to groundwater under citrus orchards in a Mediterranean climate: Observations, calibrated models, simulations and agro-hydrological conclusions. J. Contam. Hydrol. 2013, 151, 93–104. [Google Scholar] [CrossRef]
- Mfumu Kihumba, A.; Ndembo Longo, J.; Vanclooster, M. Modelling nitrate pollution pressure using a multivariate statistical approach: The case of Kinshasa groundwater body, Democratic Republic of Congo. Hydrogeol. J. 2016, 24, 425–437. [Google Scholar] [CrossRef]
- Veizaga, E.A.; Rodríguez, L.; Ocampo, C.J. Investigating nitrate dynamics in a fine-textured soil affected by feedlot effluents. J. Contam. Hydrol. 2016, 193, 21–34. [Google Scholar] [CrossRef]
- Elasbah, R.; Selim, T.; Mirdan, A.; Berndtsson, R. Modeling of Fertilizer Transport for Various Fertigation Scenarios under Drip Irrigation. Water 2019, 11, 893. [Google Scholar] [CrossRef] [Green Version]
- Sidiropoulos, P.; Tziatzios, G.; Vasiliades, L.; Mylopoulos, N.; Loukas, A. Groundwater Nitrate Contamination Integrated Modeling for Climate and Water Resources Scenarios: The Case of Lake Karla Over-Exploited Aquifer. Water 2019, 11, 1201. [Google Scholar] [CrossRef] [Green Version]
- Nejatijahromi, Z.; Nassery, H.R.; Hosono, T.; Nakhaei, M.; Alijani, F.; Okumura, A. Groundwater nitrate contamination in an area using urban wastewaters for agricultural irrigation under arid climate condition, southeast of Tehran, Iran. Agric. Water Manag. 2019, 221, 397–414. [Google Scholar] [CrossRef]
- Kou, X.; Ding, J.; Li, Y.; Li, Q.; Mao, L.; Xu, C.; Zheng, Q.; Zhuang, S. Tracing nitrate sources in the groundwater of an intensive agricultural region. Agric. Water Manag. 2021, 250, 106826. [Google Scholar] [CrossRef]
- De Filippis, G.; Ercoli, L.; Rossetto, R. A Spatially Distributed, Physically-Based Modeling Approach for Estimating Agricultural Nitrate Leaching to Groundwater. Hydrology 2021, 8, 8. [Google Scholar] [CrossRef]
- Pasley, H.; Nichols, V.; Castellano, M.; Baum, M.; Kladivko, E.; Helmers, M.; Archontoulis, S. Rotating maize reduces the risk and rate of nitrate leaching. Environ. Res. Lett. 2021, 16, 064063. [Google Scholar] [CrossRef]
- Xu, S.; Wei, Y.; Laghari, A.H.; Yang, X.; Wang, T. Modelling effect of different irrigation methods on spring maize yield, water and nitrogen use efficiencies in the North China Plain. Math. Biosci. Eng. 2021, 18, 9651–9668. [Google Scholar] [CrossRef]
- Leghari, S.J.; Hu, K.; Wei, Y.; Wang, T.; Bhutto, T.A.; Buriro, M. Modelling water consumption, N fates and maize yield under different water-saving management practices in China and Pakistan. Agric. Water Manag. 2021, 255, 107033. [Google Scholar] [CrossRef]
- Eryiğit, M.; Engel, B. Spatiotemporal Modelling of Groundwater Flow and Nitrate Contamination in An Agriculture-Dominated Watershed. J. Environ. Inform. 2021, 39, 125–135. [Google Scholar] [CrossRef]
- Kaiwen, C.; Yu, S.; Ma, T.; Ding, J.; He, P.; Li, Y.; Dai, Y.; Zeng, G. Modeling the Water and Nitrogen Management Practices in Paddy Fields with Hydrus-1D. Agriculture 2022, 12, 924. [Google Scholar] [CrossRef]
- Fair, R.C. Chapter 33 Evaluating the predictive accuracy of models. Handb. Econ. 1986, 3, 1979–1995. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Chapagain, R.; Remenyi, T.A.; Harris, R.M.B.; Mohammed, C.L.; Huth, N.; Wallach, D.; Rezaei, E.E.; Ojeda, J.J. Decomposing crop model uncertainty: A systematic review. Field Crop. Res. 2022, 279, 108448. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P.; et al. An overview of the crop model stics. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar] [CrossRef]
- Van Diepen, C.A.; Wolf, J.; van Keulen, H.; Rappoldt, C. WOFOST: A simulation model of crop production. Soil Use Manag. 1989, 5, 16–24. [Google Scholar] [CrossRef]
- Stöckle, C.O.; Donatelli, M.; Nelson, R. CropSyst, a cropping systems simulation model. Eur. J. Agron. 2003, 18, 289–307. [Google Scholar] [CrossRef]
- Smith, M. CROPWAT: A Computer Program for Irrigation Planning and Management; Food & Agriculture Organization: Rome, Italy, 1992; ISBN 978-92-5-103106-3. [Google Scholar]
- Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Li, Y.; Babcock, R.W., Jr. Modeling Hydrologic Performance of a Green Roof System with HYDRUS-2D. J. Environ. Eng. 2015, 141, 04015036. [Google Scholar] [CrossRef]
- Autovino, D.; Rallo, G.; Provenzano, G. Predicting soil and plant water status dynamic in olive orchards under different irrigation systems with Hydrus-2D: Model performance and scenario analysis. Agric. Water Manag. 2018, 203, 225–235. [Google Scholar] [CrossRef]
- Haq, M.; Jilani, A.; Prabu, P. Deep Learning Based Modeling of Groundwater Storage Change. Comput. Mater. Contin. 2021, 70, 4599–4617. [Google Scholar] [CrossRef]
Year | Title | Model Used | References |
---|---|---|---|
2000 | Modeling and testing of the effect of tillage, cropping and water management practices on nitrate leaching in clay loam soil | LEACHM and statistical | [41] |
2001 | Regional nitrate leaching variability: what makes a difference in northeastern Colorado | NLEAP | [42] |
2001 | Modeling the effect of chemical fertilizers on ground water quality in the Nile Valley aquifer, Egypt | GWS-3D | [43] |
2002 | Linkage of a geographical information system with the gleams model to assess nitrate leaching in agricultural areas | GLEAMS + PC-Arc/Cad GIS | [44] |
2003 | Modeling nitrogen dynamics in unsaturated soils for evaluating nitrate contamination of the Mnasra groundwater | Mathematical model | [45] |
2003 | Simulation of nitrate leaching for different nitrogen fertilization rates in a region of Valencia (Spain) using a GIS-GLEAMS system | GIS-GLEAMS | [24] |
2004 | Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system | GIS | [46] |
2005 | A technique to estimate nitrate nitrogen loss by runoff and leaching for agricultural land, Lancaster County, Nebraska | NRCS-CN model | [47] |
2005 | Simulation of nitrogen leaching in sandy soils in The Netherlands with the ANIMO model and the integrated modelling system STONE | ANIMO, and STONE | [48] |
2005 | Modeling nitrogen uptake and potential nitrate leaching under different irrigation programs in nitrogen-fertilized tomato using the computer program NLEAP | NLEAP | [18] |
2005 | Nitrate leaching in cottonwood and loblolly pine biomass plantations along a nitrogen fertilization gradient | LEACHMN | [49] |
2006 | Evaluation of urea-ammonium-nitrate fertigation with drip irrigation using numerical modeling | HYDRUS-2D | [50] |
2006 | Nitrogen fertilization and nitrate leaching into groundwater on arable sandy soils | Numerical model | [51] |
2007 | Modeling nitrate contamination of groundwater in agricultural watersheds | MODFLOW and MT3DMS | [19] |
2007 | Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain | STICS-MODCOU-NEWSAM | [52] |
2007 | Factors Affecting the Spatial Pattern of Nitrate Contamination in Shallow Groundwater | Multivariate Tobit model | [53] |
2008 | Non-point pollution of groundwater from agricultural activities in Mediterranean Spain: the Balearic Islands case study | GIS-simulation model | [54] |
2008 | Modeling effects of nitrate from non-point sources on groundwater quality in an agricultural watershed in Prince Edward Island, Canada | 3-D two layer Numerical model (MT3DMS) | [55] |
2009 | Long-term nutrient leaching from a Swedish arable field with intensified crop production against a background of climate change | SOILN-DB | [56] |
2009 | Hydrochemical and stable isotopic assessment of nitrate contamination in an alluvial aquifer underneath a riverside agricultural field | Geochemical mass balance modeling | [57] |
2009 | Assessment of nitrate contamination of groundwater using lumped-parameter models | LPM | [58] |
2009 | Impact of fertilizer application and urban wastes on the quality of groundwater in the Cambrai Chalk aquifer, Northern France | Agri Flux, VS2DT-WHIUNSAT, MODFLOW | [59] |
2010 | Application of SWAT model to investigate nitrate leaching in Hamadan-Bahar Watershed, Iran | SWAT | [60] |
2010 | Nitrogen leaching in a typical agricultural extensively cropped catchment, China: experiments and modelling | LEACHMN | [61] |
2010 | Modeling Nitrate Leaching and Optimizing Water and Nitrogen Management under Irrigated Maize in Desert Oases in Northwestern China | WNMM | [62] |
2010 | Assessment of nitrogen contamination of groundwater in paddy and upland fields | PHREEQC and FEMWATER | [63] |
2011 | Spatial distribution pattern analysis of groundwater nitrate nitrogen pollution in Shandong intensive farming regions of China using neural network method | BPNN | [64] |
2011 | GIS-model based estimation of nitrogen leaching from croplands of China | DNDC Model–GIS | [65] |
2011 | Modelling the effect of forest cover in mitigating nitrate contamination of groundwater: A case study of the Sherwood Sandstone aquifer in the East Midlands, UK | MODFLOW–MT3DMS | [66] |
2011 | Long-term simulations of nitrate leaching from potato production systems in Prince Edward Island, Canada | LEACHM-MODFLOW | [67] |
2011 | Simulation of nitrate leaching under potato crops in a Mediterranean area. Influence of frost prevention irrigation on nitrogen transport | GLEAMS | [31] |
2011 | The effects of land use change and irrigation water resource on nitrate contamination in shallow groundwater at county scale | Semi variance models | [68] |
2012 | Assessment of the Intrinsic Vulnerability of Agricultural Land to Water and Nitrogen Losses via Deterministic Approach and Regression Analysis | GLEAMS and Multiple Regression | [25] |
2013 | Minimizing nitrate leaching while maintaining crop yields: insights by simulating net N mineralization | BOWAB | [69] |
2013 | Soil type, crop and irrigation technique affect nitrogen leaching to groundwater | ENVIRO-GRO (E-G) | [70] |
2013 | Nitrate leaching from a potato field using adaptive network-based fuzzy inference system | HYDRUS-2D and ANFIS | [27] |
2013 | Modeling of Nitrate Leaching from a Potato Field using HYDRUS-2D | HYDRUS-2D | [71] |
2013 | Modifying the LEACHM model for process-based prediction of nitrate leaching from cropped Andosols | LEACHM v/s LEACHM–RothC model | [72] |
2013 | Nitrate fluxes to groundwater under citrus orchards in a Mediterranean climate: Observations, calibrated models, simulations and agro-hydrological conclusions | Transient model | [73] |
2013 | Nitrate-Nitrogen Leaching and Modeling in Intensive Agriculture Farmland in China | LEACHM | [32] |
2014 | Calibration of DNDC model for nitrate leaching from an intensively cultivated region of Northern China | DNDC model | [28] |
2015 | Modelling nitrate pollution pressure using a multivariate statistical approach: the case of Kinshasa groundwater body, Democratic Republic of Congo | Multiple Linear Regression model | [74] |
2016 | Investigating nitrate dynamics in a fine-textured soil affected by feedlot effluents | HYDRUS-1D | [75] |
2017 | Simulating water and nitrogen loss from an irrigated paddy field under continuously flooded condition with Hydrus-1D model | HYDRUS 1D | [26] |
2019 | Modeling of Fertilizer Transport for Various Fertigation Scenarios under Drip Irrigation | HYDRUS-2D/3D | [76] |
2019 | Nitrate subsurface transport and losses in response to its initial distributions in sloped soils: An experimental and modelling study | HYDRUS-2D | [29] |
2019 | Groundwater Nitrate Contamination Integrated Modeling for Climate and Water Resources Scenarios: The Case of Lake Karla Over-Exploited Aquifer | MODFLOW | [77] |
2019 | Groundwater nitrate contamination in an area using urban wastewaters for agricultural irrigation under arid climate condition, southeast of Tehran, Iran | Simple Regression model | [78] |
2020 | Tracing nitrate sources in the groundwater of an intensive agricultural region | SIAR | [79] |
2021 | Quantifying nitrate leaching to groundwater from a corn-peanut rotation under a variety of irrigation and nutrient management practices in the Suwannee River Basin, Florida | SWAT | [30] |
2021 | A Spatially Distributed, Physically Based Modeling Approach for Estimating Agricultural Nitrate Leaching to Groundwater | FREEWAT | [80] |
2021 | Rotating maize reduces the risk and rate of nitrate leaching | APSIM | [81] |
2021 | Modelling effect of different irrigation methods on spring maize yield, water and nitrogen use efficiencies in the North China Plain. | WHCNS | [82] |
2021 | Modelling water consumption, N fates and maize yield under different water-saving management practices in China and Pakistan | WHCNS | [83] |
2022 | Spatiotemporal Modelling of Groundwater Flow and Nitrate Contamination in An Agriculture-Dominated Watershed. | MODFLOW-MT3DMS | [84] |
2022 | Modeling the water and nitrogen management practices in paddy fields with HYDRUS-1D | HYDRUS-1D | [85] |
Variables | Descriptions |
---|---|
S | Soil Properties |
CV | Climate Variables |
MI | Management Information (i.e., planting date, fertilizer, irrigation, herbicides, organic amendment, etc.) |
C | Crop Type |
L | Land use |
SH | Soil Hydraulic Properties (hydraulic conductivity, porosity, hydraulic head, groundwater level, permeability, etc.) |
GD | Groundwater Data (Ca, Mg, Cl, NO3−, N, pH, EC, etc.) |
GL | GIS Layer (Geological map, topographical map, shapefiles, soil map, other maps, etc.) |
CN | Curve Number |
VE | Percentage of vegetable fields |
OR | Percentage of orchards |
BA | Percentage of barns |
SD | Soil dispersive and decomposition parameters (i.e., soil diffusivity, dispersivity, fecal decomposition rate, litter decomposition rate, humus mineralization, etc.) |
F | Fertilizer |
G | Geology |
Location | Model Used | Model Type | Input Variable (s) | References |
---|---|---|---|---|
Canada | LEACHM and statistical | Integrated | S + CV + MI + C + SD + SH | [41] |
USA | NLEAP | Process | S + CV + MI + C | [42] |
Egypt | GWS-3D | Process | SH + SD + G + F + CV | [43] |
Spain | GLEAMS + PC-Arc/Cad GIS | Integrated | S + CV + MI + C + L | [44] |
Morocco | Mathematical model | Numerical | S + SH + CV | [45] |
Spain | GIS-GLEAMS | Integrated | S + CV + MI + C + L | [24] |
Japan | GIS | GIS | GD + GL | [46] |
USA | NRCS CN model | Mathematical | S + CN | [47] |
Netherland | ANIMO, and STONE | Integrated | L + MI + S+CV | [48] |
Turkey | NLEAP | Process | S + CV + MI + C | [18] |
USA | LEACHMN | Process | S + CV + MI + C | [49] |
USA | HYDRUS-2D | Process | SH + S+CV | [50] |
Germany | Numerical model | Numerical | S + SH + CV | [51] |
USA | MODFLOW and MT3DMS | Integrated | L + GL + S + CV + SH | [19] |
France | STICS-MODCOU-NEWSAM modelling chain | Integrated | S + CV + MI + C+GD + L+GL | [52] |
Korea | Multivariate Tobit model | Statistical | VE + OR + BA + GD | [53] |
Spain | GIS-simulation model | GIS | GD + GL | [54] |
Canada | 3-D two layer Numerical model (MT3DMS) | Numerical | L + GL + S + CV + SH | [55] |
Sweden | SOILN-DB | Process | CV + MI + SD | [56] |
Korea | Geochemical mass balance modeling | Hydro-geochemical | GD + GL | [57] |
Palestine | LPM | Process | GL + SH | [58] |
France | Agri Flux, VS2DT-WHIUNSAT, MODFLOW | Integrated | L + GL + S + CV + SH | [59] |
Iran | SWAT | Process | S + C + CV + MI + GL + SH | [60] |
China | LEACHMN | Process | S + CV + MI + C + SD + SH | [61] |
China | WNMM | Process | SH + S + CV + MI + SD | [62] |
Taiwan | PHREEQC and FEMWATER | Numerical | S + SH + SD | [63] |
China | BPNN | Statistical | S + GD + F | [64] |
China | DNDC-GIS | Integrated | GL + S + C + MI + CV | [65] |
UK | MODFLOW-MT3DMS | Integrated | L + GL + S + CV + SH | [66] |
Canada | LEACHM-MODFLOW | Integrated | S + CV + MI + C + SD + SH + GL + L | [67] |
Spain | GLEAMS | Process | S + CV + MI + C | [31] |
China | Semi-variance models | Statistical | GD + GL | [68] |
USA, Italy, Greece | GLEAMS and Multiple regression | Integrated | S + CV + MI + C + GD + L + GL + CN + SH | [25] |
Germany | BOWAB | Process | S + C + CV + MI | [69] |
USA | ENVIRO-GRO (E-G) | Process | S + C + CV + MI | [70] |
Iran | HYDRUS-2D and ANFIS | Integrated | SH + S + CV | [27] |
Iran | HYDRUS-2D | Process | SH + S + CV | [71] |
Japan | LEACHM v/s LEACHM-RothC model | Integrated | S + CV + MI + C + SD + SH | [72] |
Israel | Transient model | Numerical | CV + S + SH + GD | [73] |
China | LEACHM | Process | S + CV + MI + C | [32] |
China | DNDC model | Process | GL + S + C + MI + CV | [28] |
Congo | Multiple Linear Regression model | Statistical | SH + G + GL + L + GD | [74] |
Argentina | HYDRUS-1D | Process | SH + S + CV | [75] |
China | HYDRUS-1D | Process | SH + S + CV | [26] |
Egypt | HYDRUS-2D/3D | Process | SH + S + CV | [76] |
Greece | MODFLOW | Numerical | L + GL + S + CV + SH | [29] |
Iran | Simple regression model | Geostatistical | GD + GL | [77] |
China | HYDRUS 2D | Process | SH + S + CV | [78] |
China | SIAR | Statistical | GD | [79] |
USA | SWAT | Process | CV + MI + C + GL + G + SH + L | [30] |
Italy | FREEWAT | Integrated | L + MI + S + CV | [80] |
USA | APSIM | Process | S + C + CV + MI | [81] |
China | WHCNS | Process | S + C + CV + MI | [82] |
China and Pakistan | WHCNS | Process | S + C + CV + MI | [83] |
USA | MODFLOW and MT3DMS | Integrated | L + GL + S + CV + SH | [84] |
China | HYDRUS-1D | Process | SH + S + CV | [85] |
Key | Evaluation Metrics | Number of Times Used |
---|---|---|
RMSE | Root mean square error | 19 |
r | Correlation coefficient | 14 |
Coefficient of Determination | 9 | |
MAE | Mean absolute error | 5 |
NSE | Nash-Sutcliffe modeling efficiency | 4 |
E | Coefficient of efficiency | 3 |
d | Index of agreement | 3 |
RMS | Root mean squared | 1 |
MAPE | Mean absolute percentage error | 1 |
MED | Mean error difference | 1 |
CRM | Coefficient of residual mass | 1 |
ME | Mean error | 1 |
RE | Relative error | 1 |
PBIAS | Percent bias | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rawat, M.; Sen, R.; Onyekwelu, I.; Wiederstein, T.; Sharda, V. Modeling of Groundwater Nitrate Contamination Due to Agricultural Activities—A Systematic Review. Water 2022, 14, 4008. https://doi.org/10.3390/w14244008
Rawat M, Sen R, Onyekwelu I, Wiederstein T, Sharda V. Modeling of Groundwater Nitrate Contamination Due to Agricultural Activities—A Systematic Review. Water. 2022; 14(24):4008. https://doi.org/10.3390/w14244008
Chicago/Turabian StyleRawat, Meenakshi, Rintu Sen, Ikenna Onyekwelu, Travis Wiederstein, and Vaishali Sharda. 2022. "Modeling of Groundwater Nitrate Contamination Due to Agricultural Activities—A Systematic Review" Water 14, no. 24: 4008. https://doi.org/10.3390/w14244008