Temporal–Spatial Variability of Dissolved Carbon in the Tributary Streams of the Lower Yangtze River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Field Investigation and Sampling
2.3. The Analyses of Variables
2.4. Calculation and Statistical Analysis
3. Results
3.1. Physical-Chemical Characteristics
3.2. Dissolved Organic and Inorganic Carbon Concentrations
3.3. Greenhouse Gases Concentrations
4. Discussion
4.1. Seasonal and Spatial Variability in Dissolved Carbon
4.2. Effects of Anthropogenic Activity on Dissolved Carbon
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sawicka, K.; Monteith, D.T.; Vanguelova, E.I.; Wade, A.J.; Clark, J.M. Fine-scale temporal characterization of trends in soil water organic carbon and potential drivers. Ecol. Indic. 2016, 68, 36–51. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.; Prairie, Y.; Caraco, N.; McDowell, W.; Tranvik, L.; Striegl, R.; Duarte, C.; Kortelainen, P.; Downing, J.; Middelburg, J.; et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 2007, 10, 172–185. [Google Scholar] [CrossRef] [Green Version]
- Wallin, M.B.; Grabs, T.; Buffam, I.; Laudon, H.; Agren, A.; Oquist, M.G.; Bishop, K. Evasion of CO2 from streams—The dominant component of the carbon export through the aquatic conduit in a boreal landscape. Glob. Chang. Biol. 2013, 19, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Atkins, M.L.; Santos, I.R.; Maher, D.T. Seasonal exports and drivers of dissolved inorganic and organic carbon, carbon dioxide, methane and δ13C signatures in a subtropical river network. Sci. Total Environ. 2017, 575, 545–563. [Google Scholar] [CrossRef]
- Stanley, E.H.; Casson, N.J.; Christel, S.T.; Crawford, J.T.; Loken, L.C.; Oliver, S.K. The ecology of methane in streams and rivers: Patterns, controls, and global significance. Ecol. Monogr. 2016, 86, 146–171. [Google Scholar] [CrossRef]
- Santos, I.R.; Beck, M.; Brumsack, H.J.; Maher, D.T.; Dittmar, T.; Waska, H.; Schnetger, B. Porewater exchange as a driver of carbon dynamics across a terrestrial-marine transect: Insights from coupled 222Rn and pCO2 observations in the German Wadden Sea. Mar. Chem. 2015, 171, 10–20. [Google Scholar] [CrossRef]
- Huntington, T.G.; Aiken, G.R. Export of dissolved organic carbon from the Penobscot River basin in north-central Maine. J. Hydrol. 2013, 476, 244–256. [Google Scholar] [CrossRef]
- Heinz, M.; Zak, D. Storage effects on quantity and composition of dissolved organic carbon and nitrogen of lake water, leaf leachate and peat soil water. Water Res. 2018, 130, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Brooks, E.; Freeman, C.; Gough, R.; Holliman, P.J. Tracing dissolved organic carbon and trihalomethane formation potential between source water and finished drinking water at a lowland and an upland UK catchment. Sci. Total Environ. 2015, 537, 203–212. [Google Scholar] [CrossRef]
- Preston, M.D.; Eimers, M.C.; Watmough, S.A. Effect of moisture and temperature variation on DOC release from a peatland: Conflicting results from laboratory, field and historical data analysis. Sci. Total Environ. 2011, 409, 1235–1242. [Google Scholar] [CrossRef]
- Obernosterer, I.; Benner, R. Competition between biological and photochemical processes in the mineralisation of dissolved organic carbon. Limnol. Oceanogr. 2004, 49, 117–124. [Google Scholar] [CrossRef]
- Hu, H.Y. The distribution of population in China, with statistics and maps. Acta Geogr. Sin. 1935, 2, 33–74, (In Chinese with English abstract). [Google Scholar]
- Jia, S.W. Carbon storage distribution and its dynamic changes of forest vegetation in Yangtze River basin based on continuous forest resources inventory. J. Ecol. Rural. Environ. 2018, 34, 997–1002. (In Chinese) [Google Scholar]
- Wang, X.; Ma, H.; Li, R.; Song, Z.; Wu, J. Seasonal fluxes and source variation of organic carbon transported by two major Chinese rivers: The Yellow River and Changjiang (Yangtze) River. Glob. Biogeochem. Cycles 2012, 26, GB2025. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Fang, H.W.; Huang, L.; Cui, Z.H. Particulate organic carbon dynamics with sediment transport in the upper Yangtze River. Water Res. 2020, 184, 116193. [Google Scholar] [CrossRef]
- Zhang, L.; Xue, M.; Wang, M.; Cai, W.; Wang, L.; Yu, Z. The spatiotemporal distribution of dissolved inorganic and organic carbon in the main stem of the Changjiang (Yangtze) River and the effect of the Three Gorges Reservoir. J. Geophys. Res. Biogeosci. 2014, 119, 741–757. [Google Scholar] [CrossRef]
- Perdue, E.M. Natural organic matter. In Encyclopedia of Inland Waters; Likens, G.E., Ed.; Academic Press: San Diego, CA, USA, 2009; pp. 806–819. [Google Scholar]
- Xie, X.Q.; Wang, L.J. Measurement and Analysis on Hydro-Environment Factors; China Standard Press: Beijing, China, 1998. (In Chinese) [Google Scholar]
- Wang, Z.P.; Zhang, L.; Wang, B.; Hou, L.Y.; Xiao, C.W.; Zhang, X.M.; Han, X.G. Dissolved methane in groundwater of domestic wells and its potential emissions in arid and semi-arid regions of Inner Mongolia, China. Sci. Total Environ. 2018, 626, 1193–1199. [Google Scholar] [CrossRef]
- Gao, T.G.; Kang, S.C.; Chen, R.S.; Zhang, T.G.; Zhang, T.J.; Han, C.T.; Tripathee, L.; Sillanpää, M.; Zhang, Y.L. Riverine dissolved organic carbon and its optical properties in a permafrost region of the Upper Heihe River basin in the Northern Tibetan Plateau. Sci. Total Environ. 2019, 686, 370–381. [Google Scholar] [CrossRef]
- Qu, B.; Sillanpaa, M.; Li, C.; Kang, S.; Stubbins, A.; Yan, F.; Aho, K.S.; Zhou, F.; Raymond, P.A. Aged dissolved organic carbon exported from rivers of the Tibetan Plateau. PLoS ONE 2017, 12, e0178166. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.D.; Song, K.S.; Liu, G.; Shang, Y.X.; Hou, J.B.; Lyu, L.; Fang, C. Impact factors of dissolved organic carbon and the transport in a river-lake continuum in the Tibet Plateau of China. J. Hydrol. 2019, 579, 124202. [Google Scholar] [CrossRef]
- Worrall, F.; Howden, N.J.K.; Burt, T.P.; Bartlett, R. The importance of sewage effluent discharge in the export of dissolved organic carbon from UK. rivers. Hydrol. Process. 2019, 33, 1851–1864. [Google Scholar]
- Freeman, C.; Fenner, N.; Ostle, N.J.; Kang, H.; Dowrick, D.J.; Reynolds, B.; Lock, M.A.; Sleep, D.; Hughes, S.; Hudson, J. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 2004, 430, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Ilina, S.M.; Drozdova, O.Y.; Lapitskiy, S.A.; Alekhin, Y.V.; Demin, V.V.; Zavgorodnyaya, Y.A.; Shirokova, L.S.; Viers, J.; Pokrovsky, O.S. Size fractionation and optical properties of dissolved organicmatter in the continuumsoil solution-bog-river and terminal lake of a boreal watershed. Org. Geochem. 2014, 66, 14–24. [Google Scholar] [CrossRef]
- Moyer, R.P.; Powell, C.E.; Gordon, D.J.; Long, J.S.; Bliss, C.M. Abundance, distribution, and fluxes of dissolved organic carbon (DOC) in four small sub-tropical rivers of the Tampa Bay Estuary (Florida, USA). Appl. Geochem. 2015, 63, 550–562. [Google Scholar] [CrossRef]
- Nakhavali, M.; Lauerwald, R.; Regnier, P.; Guenet, B.; Chadburn, S.; Friedlingstein, P. Leaching of dissolved organic carbon from mineral soils plays a significant role in the terrestrial carbon balance. Glob. Change Biol. 2021, 27, 1083–1096. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Wang, Y.H.; Wan, Z.M.; Zuo, Y.J.; He, L.Y.; Li, D.; Yuan, F.H.; Wang, N.N.; Liu, J.Z.; Song, Y.Y.; et al. Soil dissolved organic carbon in terrestrial ecosystems: Global budget, spatial distribution and controls. Glob. Ecol. Biogeogr. 2020, 29, 2159–2175. [Google Scholar] [CrossRef]
- Cool, G.; Lebel, A.; Sadiq, R.; Rodriguez, M.J. Impact of catchment geophysical characteristics and climate on the regional variability of dissolved organic carbon (DOC) in surface water. Sci. Total Environ. 2014, 490, 947–956. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2013, the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Wang, Z.P.; Han, X.G.; Li, L.H.; Chen, Q.S.; Duan, Y.; Cheng, W.X. Methane emission from small wetlands and implications for semiarid region budgets. J. Geophys. Res. 2005, 110, D13304. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.P.; Li, H.L.; Wu, H.H.; Han, S.J.; Huang, J.H.; Zhang, X.M.; Han, X.G. Methane concentration in the heartwood of living trees and estimated methane emission on stems in upland forests. Ecosystems 2021, 24, 1485–1499. [Google Scholar] [CrossRef]
- Striegl, R.G.; Dornblaser, M.M.; McDonald, C.P.; Rover, J.R.; Stets, E.G. Carbon dioxide and methane emissions from the Yukon River system. Glob. Biogeochem. Cycles 2012, 26, GB0E05. [Google Scholar] [CrossRef]
- Aitkenhead-Peterson, J.A.; Steele, M.K. Dissolved organic carbon and dissolved organic nitrogen concentrations and exports upstream and downstream of the Dallas—Fort Worth metropolis, Texas, USA. Mar. Freshw. Res. 2016, 67, 1326–1337. [Google Scholar] [CrossRef]
- Wang, X.F.; He, Y.X.; Yuan, X.Z.; Chen, H.; Peng, C.H.; Yue, J.S.; Liu, S.S. Greenhouse gases concentrations and fluxes from subtropical small reservoirs in relation with watershed urbanization. Atmos. Environ. 2017, 154, 225–235. [Google Scholar] [CrossRef]
- Regan, S.; Hynds, P.; Flynn, R. An overview of dissolved organic carbon in groundwater and implications for drinking water safety. Hydrogeol. J. 2017, 25, 959–967. [Google Scholar] [CrossRef]
Stream | Sampling Habitat | pH | Temperature | TOC | TN | NO3−-N | NH4+-N | Ca2+ | SO42− | Cl− |
---|---|---|---|---|---|---|---|---|---|---|
(°C) | (mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | |||
Desheng | Normal area | 7.7 (0.3) A | 10.9 (0.2) A | 14.7 (0.6) A | 1.65 (0.10) B | 1.50 (0.08) B | 0.47 (0.01) A | 19.0 (2.7) A | 28.8 (16.4) C | 23.4 (7.7) C |
Sewage outlet | 7.8 (0.3) A | 10.8 (0.2) A | 15.1 (3.5) A | 2.55 (0.31) A | 2.20 (0.12) A | 0.33 (0.01) B | 19.2 (1.8) A | 59.6 (15.7) A | 60.3 (24.7) A | |
Surrounding pond | 7.9 (0.2) A | 10.4 (0.4) A | 4.9 (0.3) B | 0.61 (0.15) C | 0.20 (0.13) C | 0.25 (0.09) B | 26.4 (8.3) A | 50.3 (46.2) AB | 49.6 (9.5) B | |
Shuangqiao | Normal area | 8.2 (0.2) a | 10.4 (0.1) a | 34.9 (7.6) a | 0.55 (0.09) a | 0.21 (0.06) a | 0.17 (0.01) ab | 27.4 (2.3) a | 66.8 (26.2) ab | 67.6 (18.7) a |
-Shiba | Sewage outlet | 7.9 (0.4) a | 10.9 (0.4) a | 36.0 (5.6) a | 0.60 (0.07) a | 0.20 (0.04) a | 0.22 (0.01) a | 25.5 (0.9) a | 75.7 (12.7) a | 71.1 (10.0) a |
Surrounding pond | 7.8 (0.2) a | 10.4 (0.3) a | 4.4 (1.5) b | 0.54 (0.06) a | 0.14 (0.10) a | 0.13 (0.05) b | 18.7 (3.6) b | 15.9 (2.1) c | 20.8 (8.9) b |
Stream | Sampling Date | Number of | pH | Water | DOC | DIC | DN | CH4 | CO2 | N2O |
---|---|---|---|---|---|---|---|---|---|---|
sampling sites (n) | temperature (°C) | (mg L−1) | (mg L−1) | (mg L−1) | (μL L−1) | (μL L−1) | (μL L−1) | |||
Desheng | October, 2018 | 13 | 8.2 (0.4) AB | 20.2 (1.2) B | 6.9 (1.8) A | 14.8 (2.6) B | 3.1 (1.5) A | |||
March, 2019 | 13 | 8.5 (0.6) A | 16.1 (0.6) C | 4.7 (1.6) B | 9.9 (1.6) C | 2.7 (1.2) A | 37.6 (73.9) A | 787.4 (205.7) A | 0.35 (0.08) B | |
August, 2019 | 13 | 7.6 (0.6) CD | 31.5 (1.4) A | 5.1 (2.2) B | 18.0 (4.3) A | 1.1 (0.7) B | ||||
October, 2019 | 13 | 8.0 (0.6) BC | 20.7 (1.0) B | 5.2 (2.0) B | 10.0 (3.1) C | 2.7 (3.4) A | 36.7 (96.5) A | 1109.6 (987.6) A | 0.70 (0.50) A | |
January, 2020 | 13 | 7.5 (0.2) D | 6.9 (1.5) D | 4.9 (0.9) B | 17.1 (2.2) A | 3.0 (1.4) A | ||||
Shuangqiao | March, 2019 | 9 | 8.0 (0.5) a | 16.3 (0.7) b | 6.6 (2.0) a | 11.3 (2.3) a | 1.5 (1.2) a | |||
-Shiba | October, 2019 | 9 | 7.8 (0.4) a | 20.0 (0.7) a | 6.9 (1.7) a | 7.8 (1.5) b | 0.5 (0.2) b | 10.8 (7.3) | 812.6 (234.8) | 0.34 (0.02) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.-F.; Han, S.-J.; Zhang, X.-M.; Han, X.-G.; Wang, Z.-P. Temporal–Spatial Variability of Dissolved Carbon in the Tributary Streams of the Lower Yangtze River Basin. Water 2022, 14, 4057. https://doi.org/10.3390/w14244057
Cui J-F, Han S-J, Zhang X-M, Han X-G, Wang Z-P. Temporal–Spatial Variability of Dissolved Carbon in the Tributary Streams of the Lower Yangtze River Basin. Water. 2022; 14(24):4057. https://doi.org/10.3390/w14244057
Chicago/Turabian StyleCui, Ji-Fa, Shi-Jie Han, Xi-Mei Zhang, Xing-Guo Han, and Zhi-Ping Wang. 2022. "Temporal–Spatial Variability of Dissolved Carbon in the Tributary Streams of the Lower Yangtze River Basin" Water 14, no. 24: 4057. https://doi.org/10.3390/w14244057
APA StyleCui, J. -F., Han, S. -J., Zhang, X. -M., Han, X. -G., & Wang, Z. -P. (2022). Temporal–Spatial Variability of Dissolved Carbon in the Tributary Streams of the Lower Yangtze River Basin. Water, 14(24), 4057. https://doi.org/10.3390/w14244057