Carbon Neutrality Assessment and Driving Factor Analysis of China’s Offshore Fishing Industry
Abstract
:1. Introduction
2. Literature Review
3. Methods and Data Sources
3.1. Assessment of Carbon Neutrality in Marine Fisheries
3.1.1. Estimation of Carbon Emissions from Marine Fisheries
3.1.2. Estimation of Carbon Sinks from Marine Fisheries
3.2. LMDI Decomposition Method
3.3. Data Sources
4. Results and Analysis
4.1. Carbon Neutrality in Offshore Fishing Industry
4.2. Empirical Analysis of Driving Factor Decomposition
5. Discussion
6. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, Q.S.; Liu, H. Strategy for carbon sink and its amplification in marine fisheries. Eng. Sci. 2016, 18, 68–73. [Google Scholar] [CrossRef]
- Nellemann, C.; Corcoran, E.; Duarte, C.M.; Valdés, L.; DeYoung, C.; Fonseca, L.E.; Grimsditch, G.D. Blue Carbon—A Rapid Response Assessment; United Nations Environment Programme: Nairobi, Kenya, 2009; Volume 9. [Google Scholar]
- Tang, Q.S. Carbon sinks fisheries and fast development of modern fisheries. Jiangxi Aquat. Technol. 2011, 2, 5–7. [Google Scholar] [CrossRef]
- Yang, J.; Sun, Y.P.; Liu, H.B.; Ge, X.P. Characteristics of carbon cycles and mechanism of carbon sink in inland fishery ecosystem. J. Fish. China 2012, 36, 794–800. [Google Scholar] [CrossRef]
- Tang, Q.S.; Liu, H.; Fang, J.G. Strategic Studies on the Amplification of Biological Carbon Sink: Amplification of Ocean Biological Carbon Sink; Science Press: Beijing, China, 2015. [Google Scholar]
- Shi, L.; Qin, H.; Liu, L.T. Development situation and trend of world marine fishing industry and its enlightenment to China. Mar. Sci. 2018, 42, 126–134. [Google Scholar] [CrossRef]
- Tang, Z.M.; Zhang, X.; Huang, H.L.; Chen, X.X.; Chai, X.F. Cause analysis and Countermeasures of high energy consumption in marine fishing in China. China Fish. 2010, 6, 24–25. [Google Scholar] [CrossRef]
- Parker, R.W.R.; Blanchard, J.L.; Gardner, C.; Green, B.S.; Hartmann, K.; Tyedmers, P.H.; Watson, R.A. Fuel use and greenhouse gas emissions of world fisheries. Nat. Clim. Chang. 2018, 8, 333–337. [Google Scholar] [CrossRef]
- Port, D.; Perez, J.A.A.; de Menezes, J.T. Energy direct inputs and greenhouse gas emissions of the main industrial trawl fishery of Brazil. Mar. Pollut. Bull. 2016, 107, 251–260. [Google Scholar] [CrossRef]
- Lee, J.; Kim, T.; Ellingsen, H.; Hognes, E.S.; Hwang, B. Energy consumption and greenhouse gas emission of Korean offshore fisheries. J. Ocean Univ. China 2018, 17, 675–682. [Google Scholar] [CrossRef]
- Hua, J.; Wu, Y. Implications of energy use for fishing fleet—Taiwan example. Energy Policy 2011, 39, 2656–2668. [Google Scholar] [CrossRef]
- Driscoll, J.; Tyedmers, P. Fuel use and greenhouse gas emission implications of fisheries management: The case of the New England Atlantic herring fishery. Mar. Policy 2010, 34, 353–359. [Google Scholar] [CrossRef]
- Greer, K.; Zeller, D.; Woroniak, J.; Coulter, A.; Winchester, M.; Palomares, M.L.D.; Pauly, D. Global trends in carbon dioxide (CO2) emissions from fuel combustion in marine fisheries from 1950 to 2016. Mar. Policy 2019, 107, 103382. [Google Scholar] [CrossRef]
- Xu, H.; Liu, H.; Zhang, J.H.; Ni, Q.; Shen, J.; Jiang, L. Estimation of fishery energy consumption in China. China Fish. 2007, 11, 74–76, 78. [Google Scholar] [CrossRef]
- Xu, H. Report on fishery industry energy conservation and emissions reduction research in China. Fish. Modern. 2008, 4, 1–7. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Wang, W.; He, Y.P. The calculation of emissions of carbon during the process of fishing boats operations in China. J. Shanghai Ocean Univ. 2010, 19, 848–852. [Google Scholar]
- Yue, D.D.; Wang, L.M.; Ruan, W.; Ji, W.W. Time series analysis and factor decomposition of greenhouse gas emissions of marine fishing in China. Resour. Environ. Yangtze Basin 2014, 23, 1057–1063. [Google Scholar] [CrossRef]
- Yue, D.D.; Wang, L.M.; Wang, Q.; Zhou, Y.S. GHG emissions estimation and efficiency analysis of marine fisheries. J. Shanxi Agric. Sci. 2013, 41, 873–876. [Google Scholar] [CrossRef]
- Kristofersson, D.; Gunnlaugsson, S.; Valtysson, H. Factors affecting greenhouse gas emissions in fisheries: Evidence from Iceland’s demersal fisheries. ICES J. Mar. Sci. 2021, 78, 2385–2394. [Google Scholar] [CrossRef]
- Pershing, A.J.; Christensen, L.B.; Record, N.R.; Sherwood, G.D.; Stetson, P.B.; Humphries, S. The impact of whaling on the ocean carbon cycle: Why bigger was better. PLoS ONE 2010, 5, e12444. [Google Scholar] [CrossRef]
- Lavery, T.J.; Roudnew, B.; Gill, P.; Seymour, J.; Seuront, L.; Johnson, G.; Mitchell, J.G.; Smetacek, V. Iron defecation by sperm whales stimulates carbon export in the Southern Ocean. Proc. Biol. Sci. 2010, 277, 3527–3531. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Yu, G.; Yang, T.; Jia, Y.; He, N.; Zhuang, J. New insight into global blue carbon estimation under human activity in land-sea interaction area: A case study of China. Earth-Sci. Rev. 2016, 159, 36–46. [Google Scholar] [CrossRef]
- Liu, C.; Liu, G.; Casazza, M.; Yan, N.; Xu, L.; Hao, Y.; Franzese, P.P.; Yang, Z. Current status and potential assessment of China’s ocean carbon sinks. Environ. Sci. Technol. 2022, 56, 6584–6595. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Hao, X.; Shen, C.; An, D. Assessment of carbon sink capacity and potential of marine fisheries in China under the carbon neutrality target. Resour. Sci. 2022, 44, 716–729. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, S.; Tang, Q.S. Carbon sink by marine fishing industry. Prog. Fish. Sci. 2013, 34, 70–74. [Google Scholar] [CrossRef]
- Yue, D.D.; Wang, L.M.; Zhang, X.; Zheng, H.F.; Feng, C.L.; Zhang, H.; Wang, Y.J.; Dai, Y.Y. Studies on assessment of carbon sinks of India Ocean tuna fishery—Taking China for example. J. Agric. Sci. Technol. 2014, 16, 132–138. [Google Scholar] [CrossRef]
- Wang, S.H.; Yi, X.J. Can the financial industry ‘Anchor’ carbon emission reductions? The mediating and moderating effects of the technology market. Energy Environ. 2022, 22, 100–105. [Google Scholar] [CrossRef]
- Wang, S.H.; Wang, X.Q.; Tang, Y. Drivers of carbon emission transfer in China-An analysis of international trade from 2004 to 2011. Sci. Total Environ. 2020, 709, 135924. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.Q.; Cai, Z.; Feng, S.W. Spatial and temporal differences and influencing factors of carbon emissions based on the analysis of the two-stage LMDI model-An empirical study on Jiangsu Province. Soft Sci. 2021, 35, 107–113. [Google Scholar]
- Shao, G.L.; Kong, H.Z.; Yu, J.K.; Li, C. Decomposition of driving factors of marine fishery carbon emissions in China based on LMDI method. J. Agrotech. Econ. 2015, 6, 119–128. [Google Scholar] [CrossRef]
- Li, C.; Li, H.Y.; Kong, H.Z.; Feng, W. Structural characteristics and driving factors of embodied carbon emissions from fishery production system in China. Resour. Sci. 2021, 43, 1166–1177. [Google Scholar] [CrossRef]
- Ma, G.H.; Zhang, Y.C.; Yao, F.B. Study on the driving factors of carbon emission of fishery economy in China—Dual perspective analysis based on LMDI and decoupling model. J. Qingdao Univ Nat. Sci. Ed. 2022, 35, 117–123. [Google Scholar] [CrossRef]
- Sun, K.; Cui, Q.Q.; Su, Z.X.; Wang, Y.N. Spatio-temporal evolution and influencing factors of the economic value for mariculture carbon sinks in China. Geogr. Res. 2020, 39, 2508–2520. [Google Scholar] [CrossRef]
- Ren, W.H. Study on the removable carbon sink estimation and decomposition of influencing factors of mariculture shellfish and algae in China-a two-dimensional perspective based on scale and structure. Environ. Sci. Pollut. Res. 2021, 28, 21528–21539. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, S. Carbon emission and economic output of China’s marine fishery—A decoupling efforts analysis. Mar. Policy 2022, 135, 104831. [Google Scholar] [CrossRef]
- Li, C.; Chi, P.; Shao, G.L. Research on the responsive relationship between China’s deep-sea fishery carbon emissions and industry economic growth—An empirical analysis based on decoupling theory and LMDI decomposition. Sci. Technol. Manag. Res. 2016, 36, 233–237. [Google Scholar] [CrossRef]
- Zhu, X.K.; Tan, C.L.; Zhang, Y. Research on decomposition of factors affecting net carbon emissions from marine fisheries in Zhejiang Province. Mar. Econ. 2021, 1–9. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, L.; Wang, W.; Ma, W. Assessment of carbon emission and carbon sink capacity of China’s marine fishery under carbon neutrality target. J. Mar. Sci. Eng. 2022, 10, 1179. [Google Scholar] [CrossRef]
- Du, X.W. On carbon peak and carbon neutralization. Peoples Forum Acad. Front. 2021, 14, 22–27, 143. [Google Scholar] [CrossRef]
- Tang, Q.S.; Guo, X.W.; Sun, Y.; Zhang, B. Ecological conversion efficiency and its influencers in twelve species fish in the Yellow Sea eosystem. J. Mar. Syst. 2007, 67, 282–291. [Google Scholar] [CrossRef]
- Sun, J. Study on phytoplankton biomass I. Phytoplankton measurement biomass from cell volume or plasma volume. Acta Oceanol. Sin. China Ed. 1999, 21, 75–85. [Google Scholar] [CrossRef]
- Kaya, Y. Impact of Carbon Dioxide Emission Control on GNP Growth: Interpretation of Proposed Scenarios; Presentation to the Energy and Industry Subgroup; Response Strategies Working Group: Paris, France, 1990. [Google Scholar]
- Ang, B.W. LMDI decomposition approach: A guide for implementation. Energy Policy 2015, 86, 233–238. [Google Scholar] [CrossRef]
- Han, Y. Marine fishery resources management and policy adjustment in China since 1949. China Rural Econ. 2018, 9, 14–28. [Google Scholar]
Region | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|---|
China | 186.91 | 186.24 | 178.21 | 171.61 | 169.01 | 171.73 | 156.09 | 174.94 | 178.08 | 176.81 |
Tianjin | 0.86 | 0.99 | 1.31 | 0.27 | 0.65 | 1.01 | 1.08 | 1.39 | 1.25 | 1.26 |
Hebei | 7.94 | 7.91 | 7.05 | 7.96 | 8.89 | 8.65 | 7.43 | 7.15 | 7.45 | 7.99 |
Liaoning | 21.59 | 20.59 | 19.11 | 15.27 | 13.48 | 16.85 | 12.50 | 22.67 | 25.76 | 24.54 |
Shanghai | 1.61 | 1.68 | 1.64 | 1.28 | 1.49 | 1.49 | 0.72 | 0.45 | 1.37 | 0.82 |
Jiangsu | 7.19 | 9.25 | 9.87 | 9.40 | 9.35 | 10.98 | 10.82 | 12.29 | 13.11 | 12.50 |
Zhejiang | 50.28 | 48.44 | 49.35 | 44.62 | 43.54 | 39.13 | 34.98 | 31.22 | 34.76 | 34.87 |
Fujian | 17.37 | 17.96 | 17.25 | 19.56 | 16.94 | 20.29 | 17.52 | 20.18 | 20.66 | 27.47 |
Shandong | 8.93 | 10.67 | 9.23 | 9.19 | 7.47 | 10.80 | 9.03 | 13.44 | 7.13 | 3.91 |
Guangdong | 42.07 | 41.35 | 40.31 | 40.06 | 39.30 | 36.96 | 35.80 | 33.52 | 32.60 | 31.79 |
Guangxi | 16.43 | 14.81 | 12.16 | 12.86 | 12.55 | 11.50 | 12.51 | 12.48 | 13.46 | 13.59 |
Hainan | 12.24 | 12.19 | 11.09 | 11.70 | 16.44 | 14.56 | 14.34 | 20.29 | 21.05 | 18.89 |
Year | Total Effect | ||||
---|---|---|---|---|---|
2011 | −2.751 | −3.771 | 12.662 | −6.811 | −0.670 |
2012 | −6.303 | −5.402 | 2.638 | 1.029 | −8.038 |
2013 | −4.330 | −1.872 | 0.171 | −0.558 | −6.590 |
2014 | −2.592 | −2.214 | 12.168 | −9.966 | −2.604 |
2015 | −0.534 | −1.207 | 11.291 | −6.835 | 2.716 |
2016 | −10.790 | −6.518 | 9.087 | −7.416 | −15.638 |
2017 | 28.082 | 20.091 | −23.923 | −5.397 | 18.853 |
2018 | 8.294 | 5.968 | −2.452 | −8.674 | 3.136 |
2019 | 3.383 | 3.045 | 1.942 | −9.634 | −1.265 |
Average effect | 1.384 | 0.902 | 2.620 | −6.029 | −1.122 |
2010–2019 | 12.458 | 8.120 | 23.583 | −54.262 | −10.100 |
Region | Total Effect | ||||
---|---|---|---|---|---|
Tianjin | −0.033 | 0.342 | −0.508 | 0.599 | 0.400 |
Hebei | 0.774 | 1.299 | −1.921 | −0.106 | 0.046 |
Liaoning | 6.029 | 10.030 | −6.385 | −6.720 | 2.954 |
Shanghai | −0.052 | −0.134 | 1.120 | −1.720 | −0.786 |
Jiangsu | 4.136 | 4.157 | 1.141 | −4.123 | 5.311 |
Zhejiang | −8.498 | −8.235 | 12.840 | −11.516 | −15.409 |
Fujian | 8.921 | 4.704 | 1.925 | −5.449 | 10.102 |
Shandong | −1.421 | −0.031 | 3.297 | −6.863 | −5.018 |
Guangdong | −2.910 | −1.820 | 2.154 | −7.703 | −10.278 |
Guangxi | −0.261 | −0.212 | −1.677 | −0.684 | −2.834 |
Hainan | 5.280 | 1.303 | −0.202 | 0.273 | 6.654 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, H.; Chen, Y.; Zhao, A. Carbon Neutrality Assessment and Driving Factor Analysis of China’s Offshore Fishing Industry. Water 2022, 14, 4112. https://doi.org/10.3390/w14244112
Guan H, Chen Y, Zhao A. Carbon Neutrality Assessment and Driving Factor Analysis of China’s Offshore Fishing Industry. Water. 2022; 14(24):4112. https://doi.org/10.3390/w14244112
Chicago/Turabian StyleGuan, Hongjun, Yuhuan Chen, and Aiwu Zhao. 2022. "Carbon Neutrality Assessment and Driving Factor Analysis of China’s Offshore Fishing Industry" Water 14, no. 24: 4112. https://doi.org/10.3390/w14244112
APA StyleGuan, H., Chen, Y., & Zhao, A. (2022). Carbon Neutrality Assessment and Driving Factor Analysis of China’s Offshore Fishing Industry. Water, 14(24), 4112. https://doi.org/10.3390/w14244112