Copper and Zinc as Roofing Materials—A Review on the Occurrence and Mitigation Measures of Runoff Pollution
Abstract
:1. Introduction
2. Characterization of Metal Roof Runoff
2.1. Primary and Secondary Stormwater Pollution
2.2. Chemical Forms of Cu and Zn in Stormwater
2.3. Metal Corrosion and Runoff Rates
2.3.1. Properties of the Roof Material and Building Characteristics
2.3.2. Influence from the Surrounding Environment and Climate
2.4. Runoff Concentrations
3. Metal Roof Runoff Management and Regulation
3.1. Legal Requirements in Germany
3.1.1. Groundwater
3.1.2. Surface Water
3.2. Mitigation Strategies
- (1)
- The calculated annual mean value of the concentration in the filter drain does not exceed the specified limit value of 50 µg/L for Cu or 500 µg/L for Zn, respectively (according to BBodSchV), and
- (2)
- if all measured concentrations within a single class I, II, or III exceed the specified limit value, the mean value of this class must not exceed twice the limit value.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krupstedt, J. Historie der Metalldächer: Ein Rückblick mit Beispielen aus der Gegenwart. Baumetall 2005, 4, 36–47. [Google Scholar]
- Abtrag von Kupfer und Zink von Dächern, Dachrinnen und Fallrohren durch Niederschläge; Status Report; Texte 19-05; Environmental Agency: Dessau, Germany, 2001; ISSN 0722-186X.
- Hoffmann, M.; Rudolphi, A. Leitfaden für das Bauwesen (Guide for the Building Industry): Reduktion von Schwermetalleinträgen aus dem Bauwesen in die Umwelt; Texte 17-05; Environmental Agency: Dessau, Germany, 2005; ISSN 0722-186X.
- Leuenberger-Minger, A.U.; Faller, M.; Richner, P. Runoff of copper and zinc caused by atmospheric corrosion. Mater. Corros. 2002, 53, 157–164. [Google Scholar] [CrossRef]
- He, W.; Odnevall Wallinder, I.; Leygraf, C. A Comparison Between Corrosion Rates and Runoff Rates from New and Aged Copper and Zinc as Roofing Material. Water Air Soil Pollut. 2001, 1, 67–82. [Google Scholar] [CrossRef]
- Hullmann, H.; Kraft, U.; Lichtnecker, H. Einsatz von Kupfer und Zink bei Dächern, Dachrinnen und Fallrohren; Status Report; WirtschaftsVereinigung Metalle: Hannover, Germany, 2001. [Google Scholar]
- Helmreich, B. Stoffliche Betrachtungen der Dezentralen Niederschlagswasserbehandlung; Reports on Urban Water Systems Engineering, No. 199; Gesellschaft zur Förderung des Lehrstuhls für Siedlungswasserwirtschaft an der Technischen Universität München: Garching, Germany, 2010; ISSN 0942-914X. [Google Scholar]
- Faller, M.; Reiss, D. Runoff behaviour of metallic materials used for roofs and facades—A 5-year field exposure study in Switzerland. Mater. Corros. 2005, 56, 244–249. [Google Scholar] [CrossRef]
- Odnevall Wallinder, I.; Leygraf, C. Seasonal variations in corrosion rate and runoff rate of copper roofs in an urban and a rural atmospheric environment. Corros. Sci. 2001, 43, 2379–2396. [Google Scholar] [CrossRef]
- Odnevall Wallinder, I.; Bertling, S.; Leygraf, C. Kupfer-und Zinkabschwemmungen von Metalldächern (Copper and zinc wash-off from metal roofs). WLB 2005, 1–2, 15–18. [Google Scholar]
- Odnevall Wallinder, I. Atmospheric Corrosion of Field Exposed Zinc—A Multianalytical Characterization of Corrosion Products from Initial Films to Fully Developed Layers; Department of Materials Science and Engineering, Division of Corrosion Science, Royal Institute of Technology: Stockholm, Sweden, 1994; ISBN 91-7170-8669. [Google Scholar]
- Odnevall Wallinder, I.; Verbiest, P.; He, W.; Leygraf, C. Effects of exposure direction and inclination on the runoff rates of zinc and copper roofs. Corros. Sci. 2000, 42, 1471–1487. [Google Scholar] [CrossRef]
- Wallinder, I.O.; Leygraf, C. A study of copper runoff in an urban atmosphere. Corros. Sci. 1997, 39, 2039–2052. [Google Scholar] [CrossRef]
- Protzer, H.; Röbbert, F. Verhalten von Kupferoberflächen an der; Dt. Kupfer-Inst.: Dusseldorf, Germany, 1992; Volume 131. [Google Scholar]
- Faller, Metals and the Environment: Behaviour of Sheet Metal against Environmental Influences. In Proceedings of the Conference Suissetec Spenglertag, Bern, Switzerland, 14 March 2007; pp. 1–7.
- Förster, J. Wasser aus Dachabflüssen: Saubere Ressource Oder Belastetes Abwasser? In Decentralized Wastewater Treatment in Urban and Rural Areas; Reports on Water Quality and Waste Management No. 138; Wilderer, P.A., Arnold, E., Schreff, D., Eds.; Gesellschaft zur Förderung des Lehrstuhls für Siedlungswasserwirtschaft an der Technischen Universität München: Garching, Germany, 1998; pp. 173–194. ISSN 0942-914X. [Google Scholar]
- Stoltz, G.; Knocke, G. Herkunft und Auswirkungen von Cu, Zn, Pb, Cd und Hg aus Diffusen Quellen auf Oberflächengewässer; Final Report on Research Project 297 24 519 of the Federal Environment Agency; University of Stuttgart: Stuttgart, Germany, 2000. [Google Scholar]
- Athanasiadis, K.; Helmreich, B.; Wilderer, P.A. Infiltration of a Copper Roof Runoff through Artificial Barriers. In Proceedings of the 10th International Conference on Urban Drainage, Copenhagen, Denmark, 21–26 August 2005. [Google Scholar]
- Schmitt, T.G.; Scheid, C. Umgang mit Metalldachabflüssen (Dealing with metal roof runoff). Ratg. Regenwasser 2020, 7, 16–17. [Google Scholar]
- DWA-A 138-E: Planning, Construction and Operation of Facilities for the Percolation of Precipitation Water; The German Association for Water, Wastewater and Waste (DWA): Hennef, Germany, 2005; ISBN 978-3-937758-74-9.
- Dierkes, C.; Lucke, T.; Helmreich, B. General Technical Approvals for Decentralised Sustainable Urban Drainage Systems (SUDS)—The Current Situation in Germany. Sustainability 2015, 7, 3031–3051. [Google Scholar] [CrossRef] [Green Version]
- Schriewer, A.; Horn, H.; Helmreich, B. Time focused measurements of roof runoff quality. Corros. Sci. 2008, 50, 384–391. [Google Scholar] [CrossRef]
- Charters, F.J.; Cochrane, T.A.; O’Sullivan, A.D. The influence of urban surface type and characteristics on runoff water quality. Sci. Total Environ. 2021, 755, 142470. [Google Scholar] [CrossRef] [PubMed]
- Jouen, S.; Hannoyer, B.; Barbier, A.; Kasperek, J.; Jean, M. A comparison of runoff rates between Cu, Ni, Sn and Zn in the first steps of exposition in a French industrial atmosphere. Mater. Chem. Phys. 2004, 85, 73–80. [Google Scholar] [CrossRef]
- Veleva, L.; Meraz, E.; Acosta, M. Zinc corrosion runoff process induced by humid tropical climate. Mater. Corros. 2007, 58, 348–352. [Google Scholar] [CrossRef]
- Feldhaus, R.; Klein, N. Maßnahmen zur Niederschlagswasserbehandlung in Kommunalen Trennsystemen am Beispiel des Regierungsbezirkes Köln; Final Report; Cologne University of Applied Science: Cologne, Germany, 2009. [Google Scholar]
- Burkhardt, M.; Hodel, P. Abschwemmung von Metallflächen und Eintrag ins Grundwasser: Literaturrecherche und Messungen unter Berücksichtigung von Drei Urbanen Pestiziden; Report commissioned by the Swiss Federal Office for the Environment; Ostschweizer Fachhochschule: Rapperswil, Switzerland, 2019. [Google Scholar]
- Förster, J. Variability of roof runoff quality. Water Sci. Technol. 1999, 39, 137–144. [Google Scholar] [CrossRef]
- Odnevall Wallinder, I.; Leygraf, C.; Karlén, C.; Heijerick, D.; Janssen, C.R. Atmospheric corrosion of zinc-based materials: Runoff rates, chemical speciation and ecotoxicity effects. Corros. Sci. 2001, 43, 809–816. [Google Scholar] [CrossRef]
- Pennington, S.L.; Webster-Brown, J.G. Stormwater runoff quality from copper roofing, Auckland, New Zealand. N. Z. J. Mar. Freshw. Res. 2008, 42, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Heijerick, D.G.; Janssen, C.R.; Karlén, C.; Odnevall Wallinder, I.; Leygraf, C. Bioavailability of zinc in runoff water from roofing materials. Chemosphere 2002, 47, 1073–1080. [Google Scholar] [CrossRef]
- Bahar, B.; Herting, G.; Odnevall Wallinder, I.; Hakkila, K.; Leygraf, C.; Virta, M. The interaction between concrete pavement and corrosion-induced copper runoff from buildings. Environ. Monit. Assess. 2008, 140, 175–189. [Google Scholar] [CrossRef]
- Wallinder, I.O.; Bertling, S.; Zhang, X.; Leygraf, C. Predictive models of copper runoff from external structures. J. Environ. Monit. 2004, 6, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Perkins, C.; Nadim, F.; Arnold, W.R. Effects of PVC, cast iron and concrete conduit on concentrations of copper in stormwater. Urban Water J. 2005, 2, 183–191. [Google Scholar] [CrossRef]
- Imran, H.M.; Akib, S.; Karim, M.R. Permeable pavement and stormwater management systems: A review. Environ. Technol. 2013, 34, 2649–2656. [Google Scholar] [CrossRef] [Green Version]
- Bertling, S.; Odnevall Wallinder, I.; Leygraf, C.; Berggren, D. Immobilization of Copper in Runoff Water from Roofing Materials by Limestone, Soil and Concrete. In Proceedings of the 15th International Corrosion Conference, Granada, Spain, 22–27 September 2002. [Google Scholar]
- Veleva, L.; Acosta, M.; Meraz, E. Atmospheric corrosion of zinc induced by runoff. Corros. Sci. 2009, 51, 2055–2062. [Google Scholar] [CrossRef]
- Leygraf, C. Umweltaspekte bei Kupfer-und Zinkabschwemmungen Infolge Atmosphärischer Korrosion. In Proceedings of the International Symposium on the Construction Metals Copper and Zinc in the Environment, Munich, Germany, 21 November 2006. [Google Scholar]
- Hedberg, Y.S.; Hedberg, J.F.; Herting, G.; Goidanich, S.; Odnevall Wallinder, I. Critical review: Copper runoff from outdoor copper surfaces at atmospheric conditions. Environ. Sci. Technol. 2014, 48, 1372–1381. [Google Scholar] [CrossRef]
- Hechler, J.-J.; Boulanger, J.; Noel, D.; Pinon, C. Corrosion Rates, Wetness, and Pollutants on Exterior of Building. J. Mater. Civ. Eng. 1993, 5, 53–61. [Google Scholar] [CrossRef]
- Athanasiadis, K.; Horn, H.; Helmreich, B. A field study on the first flush effect of copper roof runoff. Corros. Sci. 2010, 52, 21–29. [Google Scholar] [CrossRef]
- Bielmyer, G.K.; Arnold, W.R.; Tomasso, J.R.; Isely, J.J.; Klaine, S.J. Effects of roof and rainwater characteristics on copper concentrations in roof runoff. Environ. Monit. Assess. 2012, 184, 2797–2804. [Google Scholar] [CrossRef]
- Sandberg, J.; Odnevall Wallinder, I.; Leygraf, C.; Le Bozec, N. Corrosion-Induced Zinc Runoff from Construction Materials in a Marine Environment. J. Electrochem. Soc. 2007, 154, C120–C131. [Google Scholar] [CrossRef]
- Elsener, B. Korrosionsgeschwindigkeit von Stahl in Beton: Vom Labor zur Bauwerkerhaltung (Corrosion rate of steel in concrete: From the laboratory to the building site). Schweiz. Ing. Archit. 1997, 115, 78–82. [Google Scholar]
- Welker, A.; Dierschke, M. Aufkommen von Schwermetallen in Niederschlagsabflüssen von Dachflächen als Basis für die Festlegung von Stoffkonzentrationen für Prüfverfahren von Behandlungsanlagen. Gwf-Wasser Abwasser 2009, 150, 595–605. [Google Scholar]
- He, W.; Odnevall Wallinder, I.; Leygraf, C. A laboratory study of copper and zinc runoff during first flush and steady-state conditions. Corros. Sci. 2001, 43, 127–146. [Google Scholar] [CrossRef]
- Meraz, E.; Veleva, L.; Acosta, M. Runoff-Induced Atmospheric Corrosion of Zinc. ECS Trans. 2007, 3, 159–169. [Google Scholar] [CrossRef]
- Rice, D.W.; Peterson, P.; Rigby, E.B.; Phipps, P.; Cappell, R.J.; Tremoureux, R. Atmospheric corrosion of copper and silver. J. Electrochem. Soc. 1981, 128, 275–284. [Google Scholar] [CrossRef]
- Sandberg, J.; Odnevall Wallinder, I.; Leygraf, C.; Le Bozec, N. Corrosion-induced copper runoff from naturally and pre-patinated copper in a marine environment. Corros. Sci. 2006, 48, 4316–4338. [Google Scholar] [CrossRef]
- Gromaire, M.C.; Chebbo, G.; Constant, A. Impact of zinc roofing on urban runoff pollutant loads: The case of Paris. Water Sci. Technol. 2002, 45, 113–122. [Google Scholar] [CrossRef]
- Boulanger, B.; Nikolaidis, N.P. Mobility and aquatic toxicity of copper in an urban watershed. J. Am. Water Resour. Assoc. 2003, 39, 325–336. [Google Scholar] [CrossRef]
- Wallinder, I.O.; Korpinen, T.; Sundberg, R.; Leygraf, C. Atmosheric Corrosion of Naturally and Pre-Patinated Copper Roofs in Singapore and Stockholm—Runoff Rates and Corrosion Product Formation. In Outdoor Atmospheric Corrosion; Townsend, H.E., Ed.; American Society for Testing and Materials: West Conshohocken, PA, USA, 2002; pp. 230–244. ISBN 978-0-8031-2896-5. [Google Scholar]
- Helmreich, B.; Athanasiadis, K.; Horn, H. Abschlussbericht zum Forschungsvorhaben “Filtration des Niederschlagswassers von Kupferdächern zum Schutz von Boden und Grundwasser”; Bayerisches Landesamt für Umwelt: Augsburg, Germany, 2006. [Google Scholar]
- Yadav, A.P.; Nishikata, A.; Tsuru, T. Electrochemical impedance study on galvanized steel corrosion under cyclic wet–dry conditions–influence of time of wetness. Corros. Sci. 2004, 46, 169–181. [Google Scholar] [CrossRef]
- Mikhailov, A.A.; Strekalov, P.V.; Panchenko, Y.M. Atmospheric corrosion of metals in regions of cold and extremely cold climate (a review). Prot. Met. 2008, 44, 644–659. [Google Scholar] [CrossRef]
- Gupta, K.; Saul, A.J. Specific relationships for the first flush load in combined sewer flows. Water Res. 1996, 30, 1244–1252. [Google Scholar] [CrossRef]
- Directive 2000/60/EG of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; Official Journal of the European Union L 327; OJEU: Aberdeen, UK, 2000.
- Directive 2006/118/EG of the European Parliament and of the Council of 12 December 2006 on the Protection of Groundwater against Pollution and Deterioration; Official Journal of the European Union L 372; OJEU: Aberdeen, UK, 2006.
- Ordinance on the Protection of Surface Waters: OgewV; BMJ: Berlin, Germany, 2016.
- Law on the Order of the Water Balance: WHG; BMJ: Berlin, Germany, 2010.
- Ordinance on the Protection of Groundwater: GrwV; BMJ: Berlin, Germany, 2010.
- Ableitung von Geringfügigkeitsschwellenwerten für das Grundwasser; Working Group of the Federal States on Water: Stuttgart, Germany, 2016.
- Federal Soil Protection and Contaminated Sites Ordinance: BBodSchV; BMJ: Berlin, Germany, 1999.
- Ordinance on the Introduction of a Substitute Building Materials Ordinance, on the Revision of the Federal Soil Protection and Contaminated Sites Ordinance and on the Amendment of the Landfill Ordinance and the Commercial Waste Ordinance: MantelV; BMJ: Berlin, Germany, 2021.
- DWA-A 102-2//BWK-A 3-2: Grundsätze zur Bewirtschaftung und Behandlung von Regenwetterabflüssen zur Einleitung in Oberflächengewässer—Teil 2: Emissionsbezogene Bewertungen und Regelungen; The German Association for Water, Wastewater and Waste (DWA): Hennef, Germany, 2020; ISBN 978-3-96862-046-6.
- Huber, M.; Helmreich, B.; Welker, A. Einführung in die dezentrale Niederschlagswasserbehandlung für Verkehrsflächen- und Metalldachabflüsse: Schacht-/Kompaktsysteme, Rinnensysteme, Straßeneinläufe und Flächenbeläge; Reports on Urban Water Systems Engineering, No 213; Gesellschaft zur Förderung des Lehrstuhls für Siedlungswasserwirtschaft an der Technischen Universität München: Garching, Germany,, 2015; ISSN 0942-914X. [Google Scholar]
- Rommel, S.H.; Ebert, V.; Huber, M.; Drewes, J.E.; Helmreich, B. Spatial distribution of zinc in the topsoil of four vegetated infiltration swales treating zinc roof runoff. Sci. Total Environ. 2019, 672, 806–814. [Google Scholar] [CrossRef]
- Tedoldi, D.; Chebbo, G.; Pierlot, D.; Kovacs, Y.; Gromaire, M.C. Impact of runoff infiltration on contaminant accumulation and transport in the soil/filter media of Sustainable Urban Drainage Systems: A literature review. Sci. Total Environ. 2016, 569–570, 904–926. [Google Scholar] [CrossRef]
- Tedoldi, D.; Chebbo, G.; Pierlot, D.; Branchu, P.; Kovacs, Y.; Gromaire, M.C. Spatial distribution of heavy metals in the surface soil of source-control stormwater infiltration devices—Intersite comparison. Sci. Total Environ. 2016, 579, 881–892. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2014, 12, 525–542. [Google Scholar] [CrossRef]
- Stormwater Quality Improvement Devices Guidelines; Lake Macquarie City Council: Lake Macquarie City, Australia, 2013.
- Dechesne, M.; Barraud, S.; Bardin, J.P. Spatial distribution of pollution in an urban stormwater infiltration basin. J. Contam. Hydrol. 2004, 72, 189–205. [Google Scholar] [CrossRef]
- Barrow, N.J. Testing a mechanistic model. IV. Describing the effects of pH on zinc retention by soils. J. Soil Sci. 1986, 37, 295–302. [Google Scholar] [CrossRef]
- Adriano, D.C.; Wenzel, W.W.; Vangronsveld, J.; Bolan, N.S. Role of assisted natural remediation in environmental cleanup. Geoderma 2004, 122, 121–142. [Google Scholar] [CrossRef]
- Freese, D.; Bens, O.; Hüttl, F. Kupfer und Zink in Böden. In Proceedings of the International Symposium on the Construction Metals Copper and Zinc in the Environment, Munich, Germany, 21 November 2006. [Google Scholar]
- Herms, U. Löslichkeit von Schwermetallen in Böden unter variierenden Milieubedingungen. In Beurteilung von Schwermetall-Kontaminationen in Böden; Behrens, D., Wiesner, J., Eds.; DECHEMA Gesellschaft für Chemische Technik und Biotechnologie: Frankfurt, Germany, 1989; pp. 189–197. ISBN 10-3-926959-06-1. [Google Scholar]
- Temminghoff, J.M.; van der Zee, S.; Keizer, M.G. The influence of pH on the desorption and speciation of copper in a sandy soil. Soil Sci. 1994, 158, 398–408. [Google Scholar] [CrossRef]
- Wu, J.; Laird, D.A.; Thompson, M.L. Sorption and desorption of copper on soil clay components. J. Environ. Qual. 1999, 28, 334. [Google Scholar] [CrossRef]
- Bertling, S.; Wallinder, I.O.; Leygraf, C.; Berggren, D. Environmental Effects of Zinc Runoff from Roofing Materials—A New Multidisciplinary Approach. In Outdoor Atmospheric Corrosion; Townsend, H.E., Ed.; American Society for Testing and Materials: West Conshohocken, PA, USA, 2002; ISBN 978-0-8031-2896-5. [Google Scholar]
- Hornburg, V.; Brümmer, G.W. Verhalten von Schwermetallen in Böden 1. Untersuchungen zur Schwermetallmobilität (Behaviour of heavy metals in soils 1st studies on heavy metal mobility). Z. Pflanzenernaehr. Bodenk. 1993, 156, 467–477. [Google Scholar] [CrossRef]
- Kluge, B.; Wessolek, G. Heavy metal pattern and solute concentration in soils along the oldest highway of the world—The AVUS Autobahn. Environ. Monit. Assess. 2012, 184, 6469–6481. [Google Scholar] [CrossRef] [PubMed]
- Horstmeyer, N.; Huber, M.; Drewes, J.E.; Helmreich, B. Evaluation of site-specific factors influencing heavy metal contents in the topsoil of vegetated infiltration swales. Sci. Total Environ. 2016, 560–561, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Dierkes, C.; Geiger, W.F. Pollution retention capabilities of roadside soils. Water Sci. Technol. 1999, 39, 201–208. [Google Scholar] [CrossRef]
- Nolting, B. Untersuchungen zur Filtration und Anschließenden Versickerung von Niederschlagswässern von Zinkdächern (am Beispiel des Altersheims Wahlscheid); Final Report; Hochschule Bochum: Bochum, Germany, 2008. [Google Scholar]
- Rommel, S.H.; Gelhardt, L.; Welker, A.; Helmreich, B. Settling of Road-Deposited Sediment: Influence of Particle Density, Shape, Low Temperatures, and Deicing Salt. Water 2020, 12, 3126. [Google Scholar] [CrossRef]
- Helmreich, B.; Horn, H. Prüfung einer Behandlungsanlage für Metalldachabflüsse nach den Prüfkriterien des Bayerischen Landesamtes für Umwelt. KA Abwasser Abfall 2010, 57, 756–764. [Google Scholar]
- König, K.W. Ratgeber Regenwasser: Ratgeber für Kommunen und Planungsbüros, 6th ed.; Ökologie aktuell; Mall GmbH: Donaueschingen, Germany, 2016; ISBN 978-3-9803502-2-8. [Google Scholar]
- Fürhacker, M.; Haile, M.; Schärfinger, B.; Kammerer, G.; Allabashi, R.; Magnat, S.; Lins, A. Entwicklung von Methoden zur Prüfung der Eignung von Substraten für die Oberflächenwasserbehandlung von Dach-und Verkehrsflächen: Funding Agreement GZ B100121; Final Report; Long Version; The University of Agriculture, Forestry and Renewable Natural Resources Vienna: Vienna, Austria, 2013. [Google Scholar]
- Dierkes, C.; Göbel, P.; Coldewey, W.G. Entwicklung und Optimierung Eines Kombinierten Unterirdischen Reinigungs-und Versickerungssystems für Regenwasser; Final Report; Funded by the German Federal Institute for the Environment under Reference 18622: Münster, Germany, 2005. [Google Scholar]
- Athanasiadis, K.; Helmreich, B.; Wilderer, P.A. Entfernung von Zink aus Dachabläufen eines Zinkdachs durch Klinoptilolith. In Regenwasserversickerung—Eine Möglichkeit der Dezentralen Regenwasserbewirtschaftung; Reports on Urban Water Systems Engineering, No. 175; Wilderer, P.A., Helmreich, B., Athanasiadis, K., Eds.; Gesellschaft zur Förderung des Lehrstuhls für Siedlungswasserwirtschaft an der Technischen Universität München: Garching, Germany, 2003; pp. 205–219. [Google Scholar]
- Athanasiadis, K.; Helmreich, B. Influence of chemical conditioning on the ion exchange capacity and on kinetic of zinc uptake by clinoptilolite. Water Res. 2005, 39, 1527–1532. [Google Scholar] [CrossRef] [PubMed]
- Athanasiadis, K.; Helmreich, B.; Wilderer, P.A. Elimination of Zinc from Roof Runoff through Geotextile and Clinoptilolite Filters. Acta Hydrochim. Hydrobiol. 2004, 32, 419–428. [Google Scholar] [CrossRef]
- ENREGIS/Schwermetall-Adsorptionsfilterschacht (Heavy Metal Adsorption Filter Shaft) ESAF: Innovatives und Zugleich Nachhaltig Kostengünstiges Schwermetall-Adsorptionssystem für die Behandlung von Regenwasserabläufen; Product Datasheet; Enregis: Sundern, Germany, 2012.
- Meyer, N.; Nernheim, A.; Zanzinger, H. Investigations into the filter effect and pollutant retention capacity of geotextile filter elements. Geotechnik Sonderheft. 2001, 43–46. [Google Scholar]
- Priggemeyer, S. System zur Verbesserung der Umweltqualität von Dachablaufwässern; Final Report on a Development Project, Funded under AZ: 10730; German Federal Environmental Foundation: Osnabrück, Germany, 1998. [Google Scholar]
- Bavarian State Agency for the Environment. Prüfkriterien zur Vorläufigen Beurteilung von Behandlungsanlagen zum Rückhalt von Metallionen aus Niederschlagsabflüssen von Metalldächern, 3 January 2011. Available online: https://www.lfu.bayern.de/wasser/umgang_mit_niederschlagswasser/versickerung/doc/pruefkriterien_behandlungsanlagen.pdf (accessed on 6 August 2021).
- Mall Environmental Systems. Metalldachfilter Tecto: Typ MVS für Metalldach-Versickerung Mit 25 Jahren. Available online: https://www.mall.info/produkte/regenwasserbewirtschaftung/regenwasserbehandlung/tecto-metalldachfilter/ (accessed on 6 August 2021).
- Mall Environmental Systems. Einbauanleitung Mall-Metalldachfilter Tecto Typ MVS (Installation Instructions Mall Metal Roof Filter Tecto Type MVS). Available online: https://www.mall-umweltsysteme.at/fileadmin/user_upload/produkte/regenwasserbewirtschaftung/einbau-und-wartung/einbauhinweise-metalldachfilter-tecto.pdf (accessed on 14 September 2021).
- 3P Technik Filtersysteme GmbH. 3P Hydrosystem 400 Metal. Available online: https://www.3ptechnik.de/index.php?article_id=24&clang=0&model=3100430&t=true (accessed on 6 August 2021).
- 3P Technik Filtersysteme GmbH. 3P Hydrosystem 1000 Metal. Available online: https://www.3ptechnik.de/index.php?article_id=23&clang=0&model=3100130&t=true (accessed on 6 August 2021).
- Regenwassermanagement: Technische Information; Company Catalogue, Print No. 838350; REHAU AG + Co.: Rehau, Germany, 2020.
- Semmens, M.J.; Martin, W.P. The influence of pretreatment on the capacity and selectivity of clinoptilolite for metal ions. Water Res. 1988, 22, 537–542. [Google Scholar] [CrossRef]
- Erdem, E.; Karapinar, N.; Donat, R. The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 2004, 280, 309–314. [Google Scholar] [CrossRef]
- Zamzow, M.J.; Eichbaum, B.R.; Sandgren, K.R.; Shanks, D.E. Removal of Heavy Metals and Other Cations from Wastewater Using Zeolites. Sep. Sci. Technol. 1990, 25, 1555–1569. [Google Scholar] [CrossRef]
- Inglezakis, V.J.; Loizidou, M.M.; Grigoropoulou, H.P. Ion exchange studies on natural and modified zeolites and the concept of exchange site accessibility. J. Colloid Interface Sci. 2004, 275, 570–576. [Google Scholar] [CrossRef]
Zn Corrosion Rate [g/(m²·a)] | Zn Runoff Rate or Concentration | pH Value of the Rain [-] | Roof Age [a] | Roof Size [m²] | Test Site | Source |
---|---|---|---|---|---|---|
n.a. | 6.3 g/(m²·a) | 4.3 | 1 | 0.02 | Stockholm, Sweden | [12] |
n.a. | 3.7 g/(m²·a) | 6.7 | 14 | 238 | Garching, Germany | [22] |
n.a. | 3 g/(m²·a) | n.a. | 30 | 950 | St. Gallen, Switzerland | [27] |
5 (after 48 weeks of exposure) | 3.1 g/(m²·a) | 4.7 ± 0.6 | new | 0.03 | Stockholm, Sweden | [5] |
n.a. | 98 µg/L (Zn2+) | 6.57 | <1 | n.a. | Christchurch, New Zealand | [23] |
n.a. | 640 µg/L (Zn2+) | 6.57 | 22 | n.a. | Christchurch, New Zealand | [23] |
n.a. | 8.72 g/(m²·a) | 6.1 | n.a. | 1 | Rouen, France | [24] |
8 | 2.6 g/(m²·a) | 5.9 | n.a. | 0.03 resp. 0.0048 | Brest, France | [43] |
n.a. | 7800 µg/L | <5.6 | n.a. | (744–1339) 104 | Paris, France | [50] |
Cu Corrosion Rate [g/(m²·a)] | Cu Runoff Rate or Concentration | pH Value of the Rain [-] | Roof Age [a] | Roof Size [m²] | Test Site | Source |
---|---|---|---|---|---|---|
n.a. | 1.1 g/(m²·a) | 4.3 | 145 | 0.03 | Helsinki, Finland | [12] |
n.a. | 1 g/(m²·a) | n.a. | 29 | 400 | Zurich, Switzerland | [27] |
6.7 (after 48 weeks of exposure) | 1.3 g/(m²·a) | 4.7 ± 0.6 | new | 0.03 | Stockholm, Sweden | [5] |
attempts were unsuccessful | 1.9 g/(m²·a) | 4.7 ± 0.6 | 100 | 0.03 | Stockholm, Sweden | [5] |
n.a. | 2130 µg/L (Cu2+) | 6.45 | 8 | 384 | Auckland, New Zealand | [30] |
n.a. | 519 µg/L (Cu2+) | 6.45 | 37 | 102 | Auckland, New Zealand | [30] |
n.a. | 3.93 g/(m²·a) | 6.1 | n.a. | 1 | Rouen, France | [24] |
8.5–13.3 (first year), 4.9–7.8 (second year) | 0.6–0.8 g/(m²·a) (first year), 0.8–1 g/(m²·a) (second year) | 4.6 | n.a. | 0.03 | Stockholm, Sweden | [9] |
8.9–9.8 (first year), 3.6–6.4 (second year) | 1.1–1.4 g/(m²·a) (first year), 1.4–1.7 g/(m²·a) (second year) | 4.6–4.7 | n.a. | 0.03 | Stockholm city, Sweden | [9] |
n.a. | 255–359 µg/L at inclination 20–60°, resp. | 4.5 | new | 1.2 | New York, USA | [42] |
n.a. | 403–426 µg/L at inclination 20–60°, resp. | 4.5 | new | 3.7 | New York, USA | [42] |
n.a. | 39–47 µg/L at inclination 20–60°, resp. | 6.4 | new | 1.2 | New York, USA | [42] |
n.a. | 149–231 µg/L at inclination 20–60°, resp. | 6.4 | new | 3.7 | New York, USA | [42] |
73 (after 2 weeks of exposure), 19 (after 1 year of exposure) | 1.38 g/(m²·a) | 5.7 | new | 0.03 resp. 0.0016 | Brest, France | [49] |
n.a. | 1.23 g/(m²·a) | 5.7 | 200 | 0.03 resp. 0.0016 | Brest, France | [49] |
n.a. | 3340 ± 1520 µg/L (Cu2+) | 4.7 | 11 | 65.8 | Connecticut, USA | [51] |
n.a. | 1340 ± 760 µg/L (Cu2+) | 4.7 | 72 | 12.6 | Connecticut, USA | [51] |
n.a. | 5.7 g/(m²·a) | 4.4 | new | 0.03 | Singapore, Singapore | [52] |
n.a. | 0.66–1.9 g/(m²·a) | 6.9 | 0–2 | 500 | Munich, Germany | [53] |
Mechanism | Materials and Components | Achievable Cleaning Performance | Comments | Examples |
---|---|---|---|---|
Density separation | silt trap, hydrodynamic separator | n.a.; pretreatment step | for the retention of undissolved stormwater constituents; usually preceding the following mechanisms | [18,26,86] |
(Ad-) Sorption | activated carbon (fixed bed) | n.a. | also, for the retention of organic trace substances contained in runoff | [26,87,88] |
granulated Fe hydroxide (GEH) | Cu: approx. 38% | especially suitable for Cu roof runoff | [18,86,87,88,89] | |
Fe sludge | Cu: approx. 47% | especially suitable for Cu roof runoff | [89] | |
GEH + concrete rubble (50:1) | Cu: approx. 43% | addition of concrete rubble to GEH at low ratio (1:50) improves cleaning performance slightly, opposite effect at higher ratio | [89] | |
Ion exchange | clinoptilolite (natural zeolite) | Zn: 92% for first flush, 97% for remaining stormwater; Cu: 97% (combined with hydrodynamic separator and subsequent infiltration ditch) | increase in ion exchange capacity possible through pre-activation | [18,86,90,91,92] |
zeolites | Cu: 99% (combined with silt trap and subsequent infiltration) → compliance with BBodSchV limit value possible | ion exchange capabilities of zeolites are only usable if pollutants are dissolved → in the case of previous precipitation, however, they are in particulate form | [18,26,86] | |
chabazite-philipsite (natural zeolite) | Cu: approx. 99% (combined with hydrodynamic separator and subsequent infiltration ditch) | - | [18,86] | |
biocalith K | proven cleaning performance fulfilling the requirements of BBodSchV and LAWA | high-performance substrate | [93] | |
Precipi-tation | clay + GEH | f Zn: approx. 70% | especially suitable for Zn roof runoff | [89] |
zeolites | Zn: approx. 40% | especially suitable for Zn roof runoff; besides sorption of heavy metals, also sorption of protons of water → pH increase → precipitation of Zn hydroxides | [89] | |
porous concrete with high CaCO3 content | Cu: approx. 99% (combined with hydrodynamic separator, Fe hydroxide coating and infiltration ditch) | high concentration of CaCO3 increases the pH in the runoff of the plant → precipitation of dissolved heavy metals as hydroxides or carbonates | [18,86] | |
Filtration | Geotextile filter | n/a | No removal of dissolved metals, just pre-treatment | [92] |
two-layer, needle-punched geotextile fleece | Zn: almost 80% (particulate bound) | due to fine pores, fleece can remove particulate bound pollutants | [94] |
SQIDs Name | Manufacturer | Suitable Metal Roofing Material | Description of the Plant | Cleaning Performance |
---|---|---|---|---|
Metal roof filter “Tecto” type MVS 70–600 | Mall GmbH | Cu and Zn |
| >97% |
3P Hydrosystem 400 metal (Cu) | 3P Technik Filtersysteme GmbH | Cu and Zn |
| >90% for Zn, >98% for Cu |
3P Hydrosystem 1000 metal | 3P Technik Filtersysteme GmbH | Cu and Zn | see above | >90% for Zn, >98% for Cu |
RAUSIKKO HydroClean type M | REHAU AG + Co. | Cu and Zn |
| >90% for Zn, >98% for Cu |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galster, S.; Helmreich, B. Copper and Zinc as Roofing Materials—A Review on the Occurrence and Mitigation Measures of Runoff Pollution. Water 2022, 14, 291. https://doi.org/10.3390/w14030291
Galster S, Helmreich B. Copper and Zinc as Roofing Materials—A Review on the Occurrence and Mitigation Measures of Runoff Pollution. Water. 2022; 14(3):291. https://doi.org/10.3390/w14030291
Chicago/Turabian StyleGalster, Susanne, and Brigitte Helmreich. 2022. "Copper and Zinc as Roofing Materials—A Review on the Occurrence and Mitigation Measures of Runoff Pollution" Water 14, no. 3: 291. https://doi.org/10.3390/w14030291
APA StyleGalster, S., & Helmreich, B. (2022). Copper and Zinc as Roofing Materials—A Review on the Occurrence and Mitigation Measures of Runoff Pollution. Water, 14(3), 291. https://doi.org/10.3390/w14030291