Bismuth-Chitosan Nanocomposite Sensors for Trace Level Detection of Ni(II) and Co(II) in Water Samples
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Reagents
2.2. Apparatus
2.3. Fabrication of Bi-Chitosan Modified GCE Sensor
2.4. SWAdCSV Analysis
3. Results and Discussion
3.1. Metal-DMG Complex Formation and Reduction in SWAdCSV Analysis
3.2. Optimization of SWAdCSV Operational Parameters for Heavy Metal Detection
3.3. Sensor Performance Evaluation of the Modified Bi-Chitosan GCE
3.4. Electron Transfer of the Modified Bi-Chitosan GCE Sensor
3.5. Possible Ion Interference in Ni(II) and Co(II) Detection
3.6. Application to Natural Water Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Molaey, R.; Bayrakdar, A.; Sürmeli, R.Ö.; Çalli, B. Influence of trace element supplementation on anaerobic digestion of chicken manure: Linking process stability to methanogenic population dynamics. J. Clean. Prod. 2018, 181, 794–800. [Google Scholar] [CrossRef]
- Capson-Tojo, G.; Moscoviz, R.; Ruiz, D.; Santa-Catalina, G.; Trably, E.; Rouez, M.; Crest, M.; Steyer, J.-P.; Bernet, N.; Delgenès, J.-P. Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste. Bioresour. Technol. 2018, 260, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Yazdanpanah, A.; Ghasimi, D.S.; Kim, M.G.; Nakhla, G.; Hafez, H.; Keleman, M. Impact of trace element supplementation on mesophilic anaerobic digestion of food waste using Fe-rich inoculum. Environ. Sci. Pollut. Res. 2018, 25, 29240–29255. [Google Scholar] [CrossRef]
- Du, N.; Li, M.; Zhang, Q.; Ulsido, M.D.; Xu, R.; Huang, W. Study on the biogas potential of anaerobic digestion of coffee husks wastes in Ethiopia. Waste Manag. Res. 2021, 39, 291–301. [Google Scholar] [CrossRef]
- Bougrier, C.; Dognin, D.; Laroche, C.; Rivero, J.A.C. Use of trace elements addition for anaerobic digestion of brewer’s spent grains. J. Environ. Manag. 2018, 223, 101–107. [Google Scholar] [CrossRef]
- Takashima, M.; Shimada, K.; Speece, R.E. Minimum requirements for trace metals (iron, nickel, cobalt, and zinc) in thermophilic and mesophilic methane fermentation from glucose. Water Environ. Res. 2011, 83, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Serrano, A.; Wyman, V.; Southam, G.; Vaughan, J.; Villa-Gomez, D. Ni Stress to Sulphate Reducing Bacteria Enhances Ni Complexation: Opportunity for Ni-Co Separation from wastewater. In Proceedings of the 16th World Congress on Anaerobic Digestion, Delft, The Netherlands, 23–27 June 2019. [Google Scholar]
- Harada, H.; Uemura, S.; Momonoi, K. Interaction between sulfate-reducing bacteria and methane-producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate. Water Res. 1994, 28, 355–367. [Google Scholar] [CrossRef]
- Jiang, H.; Qin, Y.; Hu, B. Dispersive liquid phase microextraction (DLPME) combined with graphite furnace atomic absorption spectrometry (GFAAS) for determination of trace Co and Ni in environmental water and rice samples. Talanta 2008, 74, 1160–1165. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-H.; Fox, D.; Stanberry, J.; Anagnostopoulos, V.; Zhai, L.; Lee, W.H. Direct Mercury Detection in Landfill Leachate Using a Novel AuNP-Biopolymer Carbon Screen-Printed Electrode Sensor. Micromachines 2021, 12, 649. [Google Scholar] [CrossRef]
- Hwang, J.-H.; Pathak, P.; Wang, X.; Rodriguez, K.L.; Cho, H.J.; Lee, W.H. A novel bismuth-chitosan nanocomposite sensor for simultaneous detection of Pb (II), Cd (II) and Zn (II) in wastewater. Micromachines 2019, 10, 511. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Liang, X.; Niyungeko, C.; Zhou, J.; Xu, J.; Tian, G. A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 2018, 178, 324–338. [Google Scholar] [CrossRef]
- Abollino, O.; Malandrino, M.; Berto, S.; La Gioia, C.; Maruccia, V.; Conca, E.; Ruo Redda, A.; Giacomino, A. Stripping voltammetry for field determination of traces of copper in soil extracts and natural waters. Microchem. J. 2019, 149, 104015. [Google Scholar] [CrossRef]
- Hwang, J.-H.; Wang, X.; Zhao, D.; Rex, M.M.; Cho, H.J.; Lee, W.H. A novel nanoporous bismuth electrode sensor for in situ heavy metal detection. Electrochim. Acta 2019, 298, 440–448. [Google Scholar] [CrossRef]
- Hwang, J.-H.; Wang, X.; Pathak, P.; Rex, M.M.; Cho, H.J.; Lee, W.H. Enhanced electrochemical detection of multiheavy metal ions using a biopolymer-coated planar carbon electrode. IEEE Trans. Instrum. Meas. 2019, 68, 2387–2393. [Google Scholar] [CrossRef]
- Taylor, R.; Humffray, A. Electrochemical studies on glassy carbon electrodes: I. Electron transfer kinetics. J. Electroanal. Chem. Interfacial Electrochem. 1973, 42, 347–354. [Google Scholar] [CrossRef]
- Adenier, A.; Chehimi, M.M.; Gallardo, I.; Pinson, J.; Vilà, N. Electrochemical oxidation of aliphatic amines and their attachment to carbon and metal surfaces. Langmuir 2004, 20, 8243–8253. [Google Scholar] [CrossRef] [PubMed]
- Mardegan, A. Advanced Materials for Inorganic Pollutants Electroanalysis. Ph.D. Thesis, Università Ca’ Foscari Venezia, Venice, Italy, 2013. [Google Scholar]
- Standard Electrode Potentials. Available online: http://www.benjamin-mills.com/chemistry/ecells.htm#top (accessed on 13 October 2021).
- Brett, C.M.A.; Oliveira Brett, A.M.C.F.; Pereira, J.L.C. Adsorptive stripping voltammetry of cobalt and nickel in flow systems at wall-jet electrodes. Electroanalysis 1991, 3, 683–689. [Google Scholar] [CrossRef]
- Paneli, M.G.; Voulgaropoulos, A. Applications of adsorptive stripping voltammetry in the determination of trace and ultratrace metals. Electroanalysis 1993, 5, 355–373. [Google Scholar] [CrossRef]
- Li, H.; Smart, R.B. Catalytic stripping voltammetry of vanadium in the presence of dihydroxynaphthalene and bromate. Anal. Chim. Acta 1996, 333, 131–138. [Google Scholar] [CrossRef]
- Piech, R.; Baś, B.; Kubiak, W.W. The cyclic renewable mercury film silver based electrode for determination of molybdenum(VI) traces using adsorptive stripping voltammetry. Talanta 2008, 76, 295–300. [Google Scholar] [CrossRef]
- Kapturski, P.; Bobrowski, A. The silver amalgam film electrode in catalytic adsorptive stripping voltammetric determination of cobalt and nickel. J. Electroanal. Chem. 2008, 617, 1–6. [Google Scholar] [CrossRef]
- Morfobos, M.; Economou, A.; Voulgaropoulos, A. Simultaneous determination of nickel (II) and cobalt (II) by square wave adsorptive stripping voltammetry on a rotating-disc bismuth-film electrode. Anal. Chim. Acta 2004, 519, 57–64. [Google Scholar] [CrossRef]
- Kokkinos, C.; Economou, A.; Raptis, I.; Efstathiou, C.E.; Speliotis, T. Novel disposable bismuth-sputtered electrodes for the determination of trace metals by stripping voltammetry. Electrochem. Commun. 2007, 9, 2795–2800. [Google Scholar] [CrossRef]
- Korolczuk, M.; Rutyna, I.; Tyszczuk, K. Adsorptive stripping voltammetry of nickel at an in situ plated bismuth film electrode. Electroanalysis 2010, 22, 1494–1498. [Google Scholar] [CrossRef]
- Worsfold, P.; Townshend, A.; Poole, C.F.; Miró, M. Encyclopedia of Analytical Science; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Cardoso, W.S.; Dias, V.L.; Costa, W.M.; de Araujo Rodrigues, I.; Marques, E.P.; Sousa, A.G.; Boaventura, J.; Bezerra, C.W.; Song, C.; Liu, H.; et al. Nickel-dimethylglyoxime complex modified graphite and carbon paste electrodes: Preparation and catalytic activity towards methanol/ethanol oxidation. J. Appl. Electrochem. 2009, 39, 55–64. [Google Scholar] [CrossRef]
- Economou, A.; Fielden, P. Applications, potentialities and limitations of adsorptive stripping analysis on mercury film electrodes. TrAC Trends Anal. Chem. 1997, 16, 286–292. [Google Scholar] [CrossRef]
- Wang, J.; Lu, J.; Hocevar, S.B.; Farias, P.A.; Ogorevc, B. Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal. Chem. 2000, 72, 3218–3222. [Google Scholar] [CrossRef] [PubMed]
- Pathak, P.; Hwang, J.-H.; Li, R.H.; Rodriguez, K.L.; Rex, M.M.; Lee, W.H.; Cho, H.J. Flexible copper-biopolymer nanocomposite sensors for trace level lead detection in water. Sens. Actuators B Chem. 2021, 344, 130263. [Google Scholar] [CrossRef]
- Legeai, S.; Bois, S.; Vittori, O. A copper bismuth film electrode for adsorptive cathodic stripping analysis of trace nickel using square wave voltammetry. J. Electroanal. Chem. 2006, 591, 93–98. [Google Scholar] [CrossRef]
- Economou, A.; Voulgaropoulos, A. Stripping Voltammetry of Trace Metals at Bismuth-Film Electrodes by Batch-Injection Analysis. Electroanalysis 2010, 22, 1468–1475. [Google Scholar] [CrossRef]
- Economou, A.; Voulgaropoulos, A. On-line stripping voltammetry of trace metals at a flow-through bismuth-film electrode by means of a hybrid flow-injection/sequential-injection system. Talanta 2007, 71, 758–765. [Google Scholar] [CrossRef]
- Rutyna, I.; Korolczuk, M. Catalytic adsorptive stripping voltammetry of cobalt in the presence of nitrite at an in situ plated bismuth film electrode. Electroanalysis 2011, 23, 637–641. [Google Scholar] [CrossRef]
- Mardegan, A.; Dal Borgo, S.; Scopece, P.; Moretto, L.; Hočevar, S.; Ugo, P. Simultaneous Adsorptive Cathodic Stripping Voltammetric Determination of Nickel (II) and Cobalt (II) at an In Situ Bismuth-Modified Gold Electrode. Electroanalysis 2013, 25, 2471–2479. [Google Scholar] [CrossRef]
- Pokpas, K.; Jahed, N.; Baker, P.G.; Iwuoha, E.I. Complexation-based detection of nickel (II) at a graphene-chelate probe in the presence of cobalt and zinc by adsorptive stripping voltammetry. Sensors 2017, 17, 1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Švancara, I.; Prior, C.; Hočevar, S.B.; Wang, J. A decade with bismuth-based electrodes in electroanalysis. Electroanalysis 2010, 22, 1405–1420. [Google Scholar] [CrossRef]
- Alves, G.M.; Magalhães, J.M.; Soares, H.M. Simultaneous determination of nickel and cobalt using a solid bismuth vibrating electrode by adsorptive cathodic stripping voltammetry. Electroanalysis 2013, 25, 1247–1255. [Google Scholar] [CrossRef]
- Miller, J.N. Basic statistical methods for analytical chemistry. Part 2. Calibration and regression methods. A review. Analyst 1991, 116, 3–14. [Google Scholar] [CrossRef]
- Scholz, F. Voltammetric techniques of analysis: The essentials. ChemTexts 2015, 1, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Godycki, L.E.; Rundle, R. The structure of nickel dimethylglyoxime. Acta Crystallogr. 1953, 6, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Bambenek, M.A.; Pflaum, R. The reaction of nickel with dioximes. Inorg. Chem. 1963, 2, 289–292. [Google Scholar] [CrossRef]
- Ma, F.; Jagner, D.; Renman, L. Mechanism for the electrochemical stripping reduction of the nickel and cobalt dimethylglyoxime complexes. Anal. Chem. 1997, 69, 1782–1784. [Google Scholar] [CrossRef] [PubMed]
- Baxter, L.A.; Bobrowski, A.; Bond, A.M.; Heath, G.A.; Paul, R.L.; Mrzljak, R.; Zarebski, J. Electrochemical and spectroscopic investigation of the reduction of dimethylglyoxime at mercury electrodes in the presence of cobalt and nickel. Anal. Chem. 1998, 70, 1312–1323. [Google Scholar] [CrossRef]
- Kokkinos, C.; Economou, A.; Raptis, I.; Speliotis, T. Disposable lithographically fabricated bismuth microelectrode arrays for stripping voltammetric detection of trace metals. Electrochem. Commun. 2011, 13, 391–395. [Google Scholar] [CrossRef]
- Ruhlig, D.; Schulte, A.; Schuhmann, W. An electrochemical robotic system for routine cathodic adsorptive stripping analysis of Ni2+ ion release from corroding NiTi shape memory alloys. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2006, 18, 53–58. [Google Scholar] [CrossRef]
- Bing, C.; Deen, R.; Khang, G.N.; Sai, C.L.; Kryger, L. Chemical accumulation and voltammetric determination of traces of nickel (II) at glassy carbon electrodes modified with dimethyl glyoxime containing polymer coatings. Talanta 1999, 49, 651–659. [Google Scholar] [CrossRef]
- Tartarotti, F.O.; de Oliveira, M.F.; Balbo, V.R.; Stradiotto, N.R. Determination of nickel in fuel ethanol using a carbon paste modified electrode containing dimethylglyoxime. Microchim. Acta 2006, 155, 397–401. [Google Scholar] [CrossRef]
- Ferancová, A.; Hattuniemi, M.K.; Sesay, A.M.; Räty, J.P.; Virtanen, V.T. Rapid and direct electrochemical determination of Ni (II) in industrial discharge water. J. Hazard. Mater. 2016, 306, 50–57. [Google Scholar] [CrossRef]
- Kang, X.; Wang, J.; Wu, H.; Aksay, I.A.; Liu, J.; Lin, Y. Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens. Bioelectron. 2009, 25, 901–905. [Google Scholar] [CrossRef]
- Yin, K.; Cui, Z.; Yang, X.; Zhu, S.; Li, Z.; Liang, Y. Nanocrystal Bismuth Telluride Electrocatalysts for Highly Efficient Oxygen Reduction. J. Electrochem. Soc. 2015, 162, H785. [Google Scholar] [CrossRef]
- Alipoori, S.; Rouhi, H.; Linn, E.; Stumpfl, H.; Mokarizadeh, H.; Esfahani, M.R.; Koh, A.; Weinman, S.T.; Wujcik, E.K. Polymer-Based Devices and Remediation Strategies for Emerging Contaminants in Water. ACS Appl. Polym. Mater. 2021, 3, 549–577. [Google Scholar] [CrossRef]
- Webster, A.; Halling, M.D.; Grant, D.M. Metal complexation of chitosan and its glutaraldehyde cross-linked derivative. Carbohydr. Res. 2007, 342, 1189–1201. [Google Scholar] [CrossRef]
- Ariunbaatar, J.; Esposito, G.; Yeh, D.H.; Lens, P.N. Enhanced anaerobic digestion of food waste by supplementing trace elements: Role of selenium (VI) and iron (II). Front. Environ. Sci. 2016, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Shaker, S.A. Preparation and spectral properties of mixed-ligand complexes of VO (IV), Ni (II), Zn (II), Pd (II), Cd (II) and Pb (II) with dimethylglyoxime and N-Acetylglycine. E-J. Chem. 2010, 7, S580–S586. [Google Scholar] [CrossRef] [Green Version]
- Burger, K.; Ruff, I.; Ruff, F. Some theoretical and practical problems in the use of organic reagents in chemical analysis—IV: Infra-red and ultra-violet spectrophotometric study of the dimethylglyoxime complexes of transition metals. J. Inorg. Nucl. Chem. 1965, 27, 179–190. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Kenawy, I.; Hafez, M.A.; Lashein, R. Removal, preconcentration and determination of trace heavy metal ions in water samples by AAS via chemically modified silica gel N-(1-carboxy-6-hydroxy) benzylidenepropylamine ion exchanger. Desalination 2010, 250, 62–70. [Google Scholar] [CrossRef]
- Available online: https://www.elgalabwater.com/impurities (accessed on 26 November 2021).
Metal Ions | Electrode Substrate | Analytical Method | Deposition Time (s) | Linear Range (µg L−1) | LOD a (Ni(II)) (µg L−1) | LOD (Co(II)) (µg L−1) | Ref. |
---|---|---|---|---|---|---|---|
Ni(II) & Co(II) b | Solid Bi vibrating electrode | SWAdCSV c | 30 | Up to10 | 0.6 | 1 | [39] |
Ni(II) & Co(II) b | Bi-modified GCE | SWAdCSV | 120 | N/A d | 0.1 | 0.07 | [28] |
Ni(II) & Co(II) | Bi-modified Gold electrode | SWAdCSV | 120 | N/A | 0.098 | 0.058 | [29] |
Ni(II) | Sputtered Bi-film micro disk array | SWAdCSV | 60 | Up to 60 | 2.7 | - | [47] |
Ni(II) | Copper Bi-film electrode | SWAdCSV | 600 | 5.9–59 | 6 | - | [35] |
Ni(II) | Bi modified GCE | SWAdCSV | 300 | Up to 10 | 0.1 | - | [48] |
Ni(II) | polyvinyl chloride-polyaniline- dimethylglyoxime-GCE (PVC-PA-DMG-GCE) | SWAdCSV | 120 | 18–180 | 18 | - | [49] |
Ni(II) | dimethylglyoxime-carbon paste electrode (DMG-CPE) | DPAdCSV e | 1500 | 80–600 | 27 | - | [50] |
Ni(II) | dimethylglyoxime-Nafion-screen sprinted electrode (DMG-N/SPE) | DPAdCSV | 120 | 60–500 | 30 | - | [51] |
Ni(II) | nafion-graphene dimethylglyoxime-GCE (NGr-DMG-GCE) | SWAdCSV | 240 | 2–20 | 1.5 | - | [40] |
Ni(II) | Bi-chitosan modified GCE | SWAdCSV | 120 | Up to 100 | 3.6 | - | This study |
Co(II) | Bi-chitosan modified GCE | SWAdCSV | 120 | Up to 100 | - | 2.4 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilevar, M.; Hwang, J.-H.; Stanberry, J.; Anagnostopoulos, V.; Chumbimuni-Torres, K.; Lee, W.H. Bismuth-Chitosan Nanocomposite Sensors for Trace Level Detection of Ni(II) and Co(II) in Water Samples. Water 2022, 14, 302. https://doi.org/10.3390/w14030302
Pilevar M, Hwang J-H, Stanberry J, Anagnostopoulos V, Chumbimuni-Torres K, Lee WH. Bismuth-Chitosan Nanocomposite Sensors for Trace Level Detection of Ni(II) and Co(II) in Water Samples. Water. 2022; 14(3):302. https://doi.org/10.3390/w14030302
Chicago/Turabian StylePilevar, Mohsen, Jae-Hoon Hwang, Jordan Stanberry, Vasileios Anagnostopoulos, Karin Chumbimuni-Torres, and Woo Hyoung Lee. 2022. "Bismuth-Chitosan Nanocomposite Sensors for Trace Level Detection of Ni(II) and Co(II) in Water Samples" Water 14, no. 3: 302. https://doi.org/10.3390/w14030302
APA StylePilevar, M., Hwang, J. -H., Stanberry, J., Anagnostopoulos, V., Chumbimuni-Torres, K., & Lee, W. H. (2022). Bismuth-Chitosan Nanocomposite Sensors for Trace Level Detection of Ni(II) and Co(II) in Water Samples. Water, 14(3), 302. https://doi.org/10.3390/w14030302