Permafrost Degradation and Its Hydrogeological Impacts
Abstract
:1. Introduction
2. Permafrost–Groundwater Systems
2.1. Hydraulic Properties of Freezing, Frozen, Thawing, and Thawed Aquifers
2.2. Groundwater Occurrence Relative to Permafrost
2.3. Hydraulic Conductivity of Frozen Soils
3. Permafrost Degradation
3.1. Arctic and Boreal Regions
3.2. Third Pole and Central Asia
3.3. Xing’an-Baikal Region in East-Central Asia
3.4. Other Regions: Alps, Nordic, and Southern Hemisphere
4. Change Configurations of Groundwater Systems and Hydrological Impacts
4.1. Impacts on Hydrogeological Structures
4.2. Impacts of Permafrost Degradation on Hydrogeological Functions
4.2.1. Changing Water Balance and Hydrogeological Cycles
4.2.2. Shifting Groundwater Dynamics: Recharge, Flow Paths, and Discharge
- (1)
- Hydrological impacts from changing active layer processes
- (2)
- Impacts of permafrost degradation on streamflows
- (3)
- Increasing hydraulic connections and preferential flows
4.2.3. Melting Ground Ice and Contributions to Streamflows on the QTP
- (1)
- Ground-ice storage and ice melt in the SAYR on the northeastern QTP
- (2)
- Ground-ice storage and ice melt in the Qilian Mountains on the northeastern QTP
- (3)
- Hydrological significance from deactivating rock glaciers
4.2.4. Groundwater Storage and Modulation Functions
4.2.5. Thermokarsting and Thermokarst Lakes and Ponds
4.3. Changing Configurations of Hydrogeological Systems in Different Regions
4.3.1. Low-Latitude Elevational Permafrost Regions
4.3.2. High-Latitude Permafrost Regions
- (1)
- Da Xing’anling Mountains in Northeast China
- (2)
- Russia
- (3)
- North America
4.4. Ecological Impacts and Adaption
4.5. Engineering Impacts and Mitigative Strategies
4.6. Socioeconomic Impacts and Adaption
4.6.1. Changing Water Quality and Public Health Threats
4.6.2. Changing Microbial Environments and Heavy Metal Pollutants
5. Research Inadequacies and Priority
5.1. Research Objectives
5.2. Research Contents
5.3. Impacts of Permafrost Degradation on Hydrogeological Functions
5.4. Key Regions for Cryo-Hydrogeology Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 2012, 6, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Obu, J.; Westermann, S.; Bartsch, A.; Berdnikov, N.; Christiansen, H.H.; Dashtseren, A.; Delaloye, R.; Elberling, B.; Etzelmüller, B.; Kholodov, A.; et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sci. Rev. 2019, 193, 299–316. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Cheng, G.; Nan, Z.; Che, J.; Sheng, Y.; Wu, Q.; Jin, H.; Luo, D.; Tang, Z.; et al. Mapping the permafrost stability over the Tibetan Plateau for 2005–2015. Sci. China Ser. D Earth Sci. 2021, 64, 62–79. [Google Scholar] [CrossRef]
- Jin, H.; Chang, X.; Wang, S. Evolution of permafrost on the Qinghai-Tibet Plateau since the end of the Pleistocene. J. Geophys. Res. 2007, 112, F02S09. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; He, R.; Cheng, G.; Wu, Q.; Wang, S.; Lv, L.; Chang, X. Change in frozen ground and eco-environmental impacts in the Sources Area of the Yellow River (SAYR) on the northeastern Qinghai-Tibet Plateau, China. Environ. Res. Lett. 2009, 4, 045206. [Google Scholar] [CrossRef]
- Jin, H.; Vandenberghe, J.; Luo, D.; Harris, S.A.; He, R.; Chen, X.; Jin, X.; Wang, Q.; Zhang, Z.; Spektor, V.; et al. Quaternary permafrost in China: A preliminary framework and some discussions. Quaternary 2020, 3, 32. [Google Scholar] [CrossRef]
- Koch, J.C.; Ewing, S.A.; Striegl, R.; McKnight, D.M. Rapid runoff via shallow throughflow and deeper preferential flow in a boreal catchment underlain by frozen silt (Alaska, USA). Hydrogeol. J. 2013, 21, 93–106. [Google Scholar] [CrossRef]
- Koch, J.C.; Kikuchi, C.P.; Wickland, K.P.; Schuster, P. Runoff sources and flow paths in a partially burned, upland boreal catchment underlain by permafrost. Water Resour. Res. 2014, 50, 8141–8158. [Google Scholar] [CrossRef]
- Sjöberg, Y.; Coon, E.; Sannel, A.B.K.; Pannetier, R.; Harp, D.; Frampton, A.; Painter, S.L.; Lyon, S.W. Thermal effects of groundwater flow through subarctic fens: A case study based on field observations and numerical modeling. Water Resour. Res. 2016, 52, 1591–1606. [Google Scholar] [CrossRef] [Green Version]
- Lebedeva, L.S.; Bazhin, K.I.; Khristoforov, I.I.; Abramov, A.A.; Pavlova, N.A.; Efremov, V.S.; Ogonerov, V.V.; Tarbeeva, A.M.; Fedorov, M.P.; Nesterova, N.V.; et al. Surface and ground water in permafrost region: Subprapermafrost subaerial taliks, Central Yakutia, Shestakovka River Basin. Kriosf. Zemli 2019, 23, 40–50. [Google Scholar]
- Lemieux, J.-M.; Fortier, R.; Molson, J.; Therrien, R.; Ouellet, M. Topical Collection: Hydrogeology of a cold-region watershed near Umiujaq (Nunavik, Canada). Hydrogeol. J. 2020, 28, 809–812. [Google Scholar] [CrossRef] [Green Version]
- Lemieux, J.-M.; Fortier, R.; Murray, R.; Dagenais, S.; Cochand, M.; Delottier, H.; Therrien, R.; Molson, J.; Pryet, A.; Parhizkar, M. Groundwater dynamics within a watershed in the discontinuous permafrost zone near Umiujaq (Nunavik, Canada). Hydrogeol. J. 2020, 28, 833–851. [Google Scholar] [CrossRef]
- Kurylyk, B.L.; Walvoord, M.A. Permafrost hydrogeology. In Arctic Hydrology, Permafrost and Ecosystems; Yang, D., Kane, D.L., Eds.; Springer: Cham, Switzerland, 2021; pp. 493–523. [Google Scholar]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 2041–2723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anisimov, O.; Reneva, S. Permafrost and changing climate: The Russian perspective. AMBIO 2006, 35, 169–175. [Google Scholar] [CrossRef]
- Jin, H.; Wu, Q.; Romanovsky, V.E. Editorial: Impacts from degrading permafrost. Adv. Clim. Chang. Res. 2021, 12, 1–6. [Google Scholar] [CrossRef]
- Sjöberg, Y.; Marklund, P.; Pettersson, R.; Lyon, S.W. Geophysical mapping of palsa peatland permafrost. Cryosphere 2015, 9, 465–478. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Ye, R.; Wang, G. Review: Progress in permafrost hydrogeology in China. Hydrogeol. J. 2018, 26, 1387–1399. [Google Scholar] [CrossRef]
- Hjort, J.; Karjalainen, O.; Aalto, J.; Westermann, S.; Romanovsky, V.E.; Nelson, F.E.; Etzelmüller, B.; Luoto, M. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 2018, 9, 5147. [Google Scholar] [CrossRef]
- Kajalainen, O.; Aalto, J.; Luoto, M.; Westermann, S.; Romanovsky, V.E.; Nelson, F.E.; Etzelmüller, B.; Hjort, J. Circumpolar permafrost maps and geohazard indices for near-future infrastructure risk assessments. Sci. Data 2019, 6, 190037. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Jin, H.; Sun, L.; Wang, H.; He, R.; Huang, Y.; Chang, X. Climate warming over 1961–2019 and impacts on permafrost zonation in Northeast China. J. For. Res. 2021, 1–21. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Q.; Hou, M.; Tai, B.; An, Y. Permafrost change in Northeast China in the 1950s–2010s. Adv. Clim. Chang. Res. 2021, 12, 18–28. [Google Scholar] [CrossRef]
- Streletskiy, D.A.; Sherstiukov, A.; Frauenfeld, O.W.; Nelson, F.E. Changes in the 1963–2013 shallow ground thermal regime in Russian permafrost regions. Environ. Res. Lett. 2015, 10, 125005. [Google Scholar] [CrossRef]
- Jin, X.; Jin, H.; Wu, X.; Luo, D.; Sheng, Y.; Li, X.; He, R.; Wang, Q.; Knops, J.M.H. Permafrost degradation leads to decrease in biomass and species richness on the northeastern Qinghai-Tibet Plateau. Plants 2020, 9, 1453. [Google Scholar] [CrossRef] [PubMed]
- Bense, V.F.; Ferguson, G.; Kooi, H. Evolution of shallow ground- water flow systems in areas of degrading permafrost. Geophys. Res. Lett. 2009, 36, L22401. [Google Scholar] [CrossRef] [Green Version]
- Bense, V.F.; Kooi, H.; Ferguson, G.; Read, T. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate. J. Geophys. Res. Earth Surf. 2012, 117, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kurylyk, B.L.; MacQuarrie, K.T.B.; McKenzie, J.M. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools. Earth Sci. Rev. 2014, 138, 313–334. [Google Scholar] [CrossRef]
- Jorgenson, M.T.; Harden, J.; Kanevskiy, M.; O’Donnell, J.; Wickland, K.; Ewing, S.; Manies, K.; Zhuang, Q.; Shur, Y.; Striegl, R. Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes. Environ. Res. Lett. 2013, 8, 035017. [Google Scholar] [CrossRef]
- Jin, X.; Jin, H.; Iwahana, G.; Marchenko, S.S.; Luo, D.; Li, X.; Liang, S. Impacts of climate-induced permafrost degradation on vegetation: A review. Adv. Clim. Chang. Res. 2021, 12, 29–47. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef]
- Ebel, B.A.; Koch, J.C.; Walwoord, M.A. Soil physical, hydraulic, and thermal properties in interior Alaska, USA: Implications for hydrologic response to thawing permafrost conditions. Water Resou. Res. 2019, 55, 4427–4447. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Voss, C.I.; Ebel, B.A.; Minsley, B.J. Development of perennial thaw zones in boreal hillslopes enhances potential mobilization of permafrost carbon. Environ. Res. Lett. 2019, 14, 015003. [Google Scholar] [CrossRef]
- Oblogov, G.E.; Vasiliev, A.A.; Streletskaya, I.D.; Zadorozhnaia, N.; Kuznetsova, A.O.; Kanevskiy, M.; Semenov, P. Methane content and emission in the permafrost landscapes of Western Yamal, Russian Arctic. Geosciences 2020, 10, 412. [Google Scholar] [CrossRef]
- Jin, H.; Ma, Q. Impacts of permafrost degradation on carbon stocks and emissions: A review. Atmosphere 2021, 12, 1425. [Google Scholar] [CrossRef]
- Martens, J.; Wild, B.; Muschitiello, F.; O’Regan, M.; Jakobsson, M.; Semiletov, I.P.; Dudarev, O.V.; Gustafsson, Ö. Remobilization of dormant carbon from Siberian-Arctic permafrost during three past warming events. Sci. Adv. 2020, 6, eabb6546. [Google Scholar] [CrossRef]
- Martens, J.; Romankevich, E.; Semiletov, I.; Wild, B.; van Dongen, B.; Vonk, J.; Tesi, T.; Shakhova, N.; Dudarev, O.V.; Kosmach, D.; et al. CASCADE—The Circum-Arctic Sediment CArbon DatabasE. Earth Syst. Sci. Data. 2021, 13, 2561–2572. [Google Scholar] [CrossRef]
- Larsbo, M.; Holten, R.; Stenrød, M.; Eklo, O.M.; Jarvis, N. A dual-permeability approach for modeling soil water flow and heat transport during freezing and thawing. Vadose Zone J. 2019, 18, 190012. [Google Scholar] [CrossRef]
- Stadler, D.; Flühler, H.; Jansson, P.-E. Modelling vertical and lateral water flow in frozen and sloped forest soil plots. Cold Reg. Sci. Technol. 1997, 26, 181–194. [Google Scholar] [CrossRef]
- Jiang, R.; Li, T.; Liu, D.; Fu, Q.; Hou, R.; Li, Q.; Cui, S.; Li, M. Soil infiltration characteristics and pore distribution under freezing-thawing conditions. Cryosphere 2021, 15, 2133–2146. [Google Scholar] [CrossRef]
- Stuurop, J.C.; van der Zee, S.E.M.; Voss, C.I.; French, H.K. Simulating water and heat transport with freezing and cryosuction in unsaturated soil: Comparing an empirical, semi-empirical and physically-based approach. Adv. Water Resour. 2021, 149, 103846. [Google Scholar] [CrossRef]
- Watanabe, K.; Kugisaki, Y. Effect of macropores on soil freezing and thawing with infiltration. Hydrol. Process. 2017, 31, 270–278. [Google Scholar] [CrossRef]
- Evans, S.G.; Ge, S.; Voss, C.I.; Molotch, N.P. The role of frozen soil in groundwater discharge predictions for warming alpine watersheds. Water Resour. Res. 2018, 54, 1599–1615. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Kurylyk, B.L.; Cey, E.E.; Hayashi, M. Snowmelt infiltration and macropore flow in frozen soils: Overview, knowledge gaps, and a conceptual framework. Vadose Zone J. 2018, 17, 180084. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Pavlovskii, I.; Cey, E.E.; Hayashi, M. Effects of preferential flow on snowmelt partitioning and groundwater recharge in frozen soils. Hydrol. Earth Syst. Sci. Discuss. 2019, 23, 5017–5031. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Jin, H. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China. Hydrogeol. J. 2012, 21, 5–23. [Google Scholar] [CrossRef]
- Cheng, G.; Jin, H. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes. Hydrogeol. Eng. Geol. 2013, 40, 1–11, (In Chinese with English abstract). [Google Scholar]
- Connon, R.F.; Quinton, W.L.; Craig, J.R.; Hayashi, M. Changing hydrologic connectivity due to permafrost thaw in the lower Liard River valley, NWT, Canada. Hydrol. Process. 2014, 28, 4163–4178. [Google Scholar] [CrossRef]
- Carpino, O.A.; Berg, A.; Quinton, W.L.; Adams, J.R. Climate change and permafrost thaw-induced boreal forest loss in northwestern Canada. Environ. Res. Lett. 2018, 13, 084018. [Google Scholar] [CrossRef]
- Haynes, K.M.; Connon, R.F.; Quinton, W.L. Hydrometeorological measurements in peatland-dominated, discontinuous permafrost at Scotty Creek, Northwest Territories, Canada. Geosci. Data J. 2019, 6, 85–96. [Google Scholar] [CrossRef]
- Gao, H.; Wang, J.; Yang, Y.; Pan, X.; Ding, Y.; Duan, Z. Permafrost hydrology of the Qinghai-Tibet Plateau: A review of processes and modeling. Front. Earth Sci. 2021, 8, 576838. [Google Scholar] [CrossRef]
- Shepelev, V.V. Suprapermafrost Waters in the Cryolithozone; Academic Publishing House “Geo”: Novosibirsk, Russia, 2011. [Google Scholar]
- Zhou, Y.; Qiu, G.; Guo, D.; Cheng, G.; Li, S. Geocryology in China; Science Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Jarafov, E.; Coon, T.C.; Harp, D.R.; Wilson, C.J.; Painter, S.L.; Atchley, A.L.; Romanovsky, V.E. Modeling the role of preferential snow accumulation in through talik development and hillslope groundwater flow in a transitional permafrost landscape. Environ. Res. Lett. 2018, 13, 105006. [Google Scholar] [CrossRef]
- Devoie, É.G.; Craig, J.R.; Connon, R.F.; Quinton, W.L. Taliks: A tipping point in discontinuous permafrost degradation in peatlands. Water Resour. Res. 2019, 55, 9838–9857. [Google Scholar] [CrossRef]
- McKenzie, J.M.; Kurylyk, B.L.; Walvoord, M.A.; Bense, V.F.; Fortier, D.; Spence, C.; Grenier, C. Invited perspective: What lies beneath a changing arctic? Cryosphere 2021, 15, 479–484. [Google Scholar] [CrossRef]
- Katasonova, E.G.; Tolstov, A.N. The geocryological features of quick sands (tukulans) on the right bank of the Viluy River. In Permafrost Mountain Rocks in Different Regions of the USSR; AS USSR Press: Moscow, Russia, 1963; pp. 166–179. [Google Scholar]
- Boitsov, A.V.; Shepelev, V.V. The permafrost-hydrogeological conditions of the Makhatta massif of quick sands (Central Yakutia). In Hydrogeological Studies of the Permafrost Zone; Melnikov Permafrost Institute, Siberia Branch, Russian Academy of Sciences: Yakutsk, Russia, 1976; pp. 25–34. [Google Scholar]
- Boitsov, A.V. Conditions of formation and the regime of slope taliks in Central Yakutia. In Hydrogeological Studies; Melnikov Permafrost Institute, SB RAS: Yakutsk, Russia, 1985; pp. 44–55. [Google Scholar]
- Boitsov, A.V. The Conditions of Formation and the Regime of Ground Waters of Supra-Permafrost and Intra-Permafrost Runoff in Central Yakutia. Ph.D. Thesis, Melnikov Permafrost Institute, Siberia Branch, Russian Academy of Sciences, Yakutsk, Russia, 1985. (In Russian). [Google Scholar]
- Boitsov, A.V. Geocryology and the Ground Waters of the Permafrost Zone; Tyumen State University Press: Tyumen, Russia, 2011; p. 177. (In Russian) [Google Scholar]
- Shepelev, V.V.; Boitsov, A.V.; Oberman, N.G. Monitoring of the Ground Waters of the Permafrost Zone; Melnikov Permafrost Institute, Siberia Branch, Russian Academy of Sciences: Yakutsk, Russia, 2002; p. 172. (In Russian) [Google Scholar]
- Anisimova, N.P. The Ground Waters of Central Yakutia and the Perspectives of their Use; SB RAS Press: Geoaffiliate, Russia, 2003; p. 117. (In Russian) [Google Scholar]
- Burt, T.P.; Williams, P.J. Hydraulic conductivity in frozen soils. Earth Surf. Process. 1976, 9, 411–416. [Google Scholar] [CrossRef]
- Tarnawski, V.R.; Wagner, B. On the prediction of hydraulic conductivity of frozen soils. Can. Geotech. J. 2011, 33, 176–180. [Google Scholar] [CrossRef]
- Watanabe, K.; Osada, Y. Comparison of hydraulic conductivity in frozen saturated and unfrozen saturated soils. Vadose Zone J. 2016, 15, vzj2015.11.0154. [Google Scholar] [CrossRef]
- Watanabe, K.; Osada, Y. Simultaneous measurement of unfrozen water content and hydraulic conductivity of partially frozen soil near 0 °C. Cold Reg. Sci. Technol. 2017, 142, 79–84. [Google Scholar] [CrossRef]
- Ma, R.; Sun, Z.; Hu, Y.; Chang, Q.; Wang, S.; Xing, W.; Ge, M. Hydrological connectivity from glaciers to rivers in the Qinghai-Tibet Plateau: Roles of suprapermafrost and subpermafrost groundwater. Hydrol. Earth Sys. Sci. 2017, 21, 4803–4823. [Google Scholar] [CrossRef] [Green Version]
- Ran, Y.; Jorgenson, M.T.; Li, X.; Jin, H.; Wu, T.; Li, R.; Cheng, G. Biophysical permafrost map indicates ecosystem processes dominate permafrost stability in the Northern Hemisphere. Env. Res. Lett. 2021, 16, 095010. [Google Scholar] [CrossRef]
- Streletskiy, D.A.; Anisimov, O.; Vasiliev, A. Permafrost degradation. In Snow and Ice-Related Hazards, Risks and Disasters; Elsevier: Amsterdam, The Netherlands, 2015; pp. 303–304. [Google Scholar]
- Gruber, S. Ground subsidence and heave over permafrost: Hourly time series reveal interannual, seasonal and shorter-term movement caused by freezing, thawing and water movement. Cryosphere 2020, 14, 1437–1447. [Google Scholar] [CrossRef]
- Vasiliev, A.A.; Drozdov, D.S.; Gravis, A.G.; Malkova, G.V.; Nyland, K.E.; Streletskiy, D.A. Permafrost degradation in the Western Russian Arctic. Environ. Res. Lett. 2020, 15, 045001. [Google Scholar] [CrossRef]
- Streletskiy, D.A.; Suter, L.; Shiklomanov, N.; Porfiriev, B.N.; Eliseev, D.O. Assessment of climate change impacts on buildings, structures and infrastructure in the Russian regions on permafrost. Environ. Res. Lett. 2019, 14, 025003. [Google Scholar] [CrossRef]
- Ma, Q.; Jin, H.; Yu, C.; Bense, V. Dissolved organic carbon in permafrost regions: A review. Sci. China Earth Sci. 2019, 62, 349–364. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Ouyang, H.; Xu, X.; Zhao, L.; Song, M.; Zhou, C. Effects of permafrost degradation on ecosystems. Acta Ecol. Sin. 2010, 30, 33–39. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Kurylyk, B.L. Hydrologic impacts of thawing permafrost—A review. Vadose Zone J. 2016, 15, vzj2016-01. [Google Scholar] [CrossRef]
- Ravanel, L.; Magnin, F.; Deline, P. Impacts of the 2003 and 2015 summer heatwaves on permafrost-affected rock-walls in the Mont Blanc massif. Sci. Total Environ. 2017, 609, 132–143. [Google Scholar] [CrossRef]
- Noetzli, J.; Christiansen, H.H.; Deline, P.; Gugliemin, M.; Isaksen, K.; Romanovsky, V.E.; Smith, S.L.; Zhao, L.; Streletskiy, D.A. Permafrost thermal state. Bull. Am. Meteorol. Soc. 2018, 99, S20–S22. [Google Scholar]
- Drozdov, D.; Rumyantseva, Y.; Malkova, G.; Rumyantseva, Y.V.; Abramov, A.A.; Konstantinov, P.Y.; Sergeev, D.O.; Shiklomanov, N.I.; Kholodov, A.L.; Ponomareva, O.E.; et al. Monitoring of permafrost in Russia and the international GTN-P project. In Proceedings of the International GTN-P Project 68th Canadian Geotechnical Conference, Québec, QC, Canada, 20–23 September 2015. [Google Scholar]
- Christiansen, H.H.; Etzelmüller, B.; Isaksen, K.; Juliussen, H.; Farbrot, H.; Humlum, O.; Johansson, M.; Ingeman-Nielsen, T.; Kristensen, L.; Hjort, J.; et al. The thermal state of permafrost in the Nordic area during the International Polar Year. Permafr. Periglac. Process. 2010, 21, 156–181. [Google Scholar] [CrossRef] [Green Version]
- Isaksen, K.; Ødegård, R.S.; Etzelmüller, B.; Hilbich, C.; Hauck, C.; Farbrot, H.; Eiken, T.; Hygen, H.O.; Hipp, T.F. Degrading mountain permafrost in southern Norway: Spatial and temporal variability of mean ground temperatures, 1999–2009. Permafr. Periglac. Process. 2011, 22, 361–377. [Google Scholar] [CrossRef]
- Farbrot, H.; Isaksen, K.; Etzelmüller, B.; Gisnås, K. Ground thermal regime and permafrost distribution under a changing climate in Northern Norway. Permafr. Periglac. Process. 2013, 24, 20–38. [Google Scholar] [CrossRef]
- Borge, A.F.; Westermann, S.; Solheim, I.; Etzelmüller, B. Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years. Cryosphere 2017, 11, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Shur, Y.L.; Jorgenson, M.T. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafr. Periglac. Process. 2007, 18, 7–19. [Google Scholar] [CrossRef]
- Jorgenson, M.T.; Romanovsky, V.E.; Harden, J.; Shur, Y.; O’Donnell, J.; Schuur, E.A.G.; Kanevskiy, M.; Marchenko, S. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 2010, 40, 1219–1236. [Google Scholar] [CrossRef] [Green Version]
- Talucci, A.C.; Loranty, M.M.; Alexander, H.D. Siberian taiga and tundra fire regimes from 2001–2020. Environ. Res. Lett. 2022, 17, 025001. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Q.; Xun, X.; Li, Y. Spatial distribution and changes of Xing’an permafrost in China over the past three decades. Quatern. Int. 2019, 523, 16–24. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, Q.; Marchenko, S.S.; Sharkhuu, N. Thermal state of permafrost and active layer in Central Asia during the international polar year. Permafr. Periglac. Process. 2010, 21, 198–207. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Hu, G.; Zou, D.; Wu, X.; Ma, L.; Sun, Z.; Yuan, L.; Zhou, H.; Liu, S. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau. Bull. Chin. Acad. Sci. 2019, 34, 1233–1246. [Google Scholar] [CrossRef]
- Zhao, L.; Zou, D.; Hu, G.; Du, E.; Pang, Q.; Xiao, Y.; Li, R.; Sheng, Y.; Wu, X.; Sun, Z.; et al. Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) plateau. Permafr. Periglac. Process. 2020, 31, 396–405. [Google Scholar] [CrossRef]
- Cheng, G.; Zhao, L.; Li, R.; Wu, X.; Sheng, Y.; Hu, G.; Zou, D.; Jin, H.; Li, X.; Wu, Q. Dynamics, changes and impacts of permafrost on the Qinghai-Tibet Plateau. Sci. Bull. 2019, 64, 2783–2795. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Li, S.; Cheng, G.; Wang, S.; Li, X. Permafrost and climatic change in China. Glob. Planet. Chang. 2000, 26, 387–404. [Google Scholar] [CrossRef]
- Jin, H.; Luo, D.; Wang, S.; Lü, L.; Wu, J. Spatiotemporal variability of permafrost degradation on the Qinghai-Tibet Plateau. Sci. Cold Arid Reg. 2011, 3, 281–305. [Google Scholar]
- Zhang, Z.; Wu, Q.; Jiang, G.; Gao, S.; Liu, Y. Changes in the permafrost temperatures from 2003 to 2015 in the Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 2020, 169, 102904. [Google Scholar]
- Luo, D.; Wu, Q.; Jin, H.; Marchenko, S.S.; Lü, L.; Gao, S. Recent changes in active layer thickness across the Northern Hemisphere. Env. Earth Sci. 2016, 75, 555. [Google Scholar] [CrossRef]
- Ni, J.; Wu, T.; Zhu, X.; Hu, G.; Zou, D.; Wu, X.; Li, R.; Xie, C.; Qiao, Y.; Pang, Q.; et al. Simulation of the present and future projection of permafrost on the Qinghai-Tibet Plateau with statistical and machine learning models. J. Geophys. Res.-Atmos. 2020, 126, e2020JD033402. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Cheng, G.; Zhang, T.; Wu, Q.; Jin, H.; Jin, R. Distribution of permafrost in China: An overview of existing permafrost maps. Permafr. Periglac. Process. 2012, 23, 322–333. [Google Scholar] [CrossRef]
- Guo, D.; Wang, H. CMIP5 permafrost degradation projection: A comparison among different regions. J. Geophys. Res. Atmos. 2016, 121, 4499–4517. [Google Scholar] [CrossRef]
- Sheng, Y.; Ma, S.; Cao, W.; Wu, J. Spatiotemporal changes of permafrost in the Headwater Area of the Yellow River under a changing climate. Land Degrad. Dev. 2019, 31, 133–152. [Google Scholar] [CrossRef]
- Wang, X.; Chen, R.; Liu, G.; Han, C.; Yang, Y.; Song, Y.; Liu, J.; Liu, Z.; Liu, X.; Guo, S.; et al. Response of low flows under climate warming in high-altitude permafrost regions in western China. Hydrol. Process. 2019, 33, 66–75. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, D.; Wei, J.; Zhuang, Q.; Gao, X.; Zhu, Y.; Zhang, J.; Guo, J.; Zheng, D. Permafrost sensitivity to global warming of 1.5 °C and 2 °C in the Northern Hemisphere. Environ. Res. Lett. 2021, 16, 034038. [Google Scholar] [CrossRef]
- Hu, G.; Zhao, L.; Li, R.; Wu, X.; Wu, T.; Xie, C.; Zhu, X.; Hao, J. Estimation of ground temperatures in permafrost regions of the Qinghai-Tibetan Plateau from climatic variables. Theoret. Appl. Climatol. 2020, 140, 1081–1091. [Google Scholar] [CrossRef]
- Jin, H.; Chang, X.; Luo, D.; He, R.; Lü, L.; Yang, S.; Guo, D.; Chen, X.; Harris, S.A. Evolution of permafrost and periglacial environments in Northeast China since the Last Glaciation Maximum. Sci. Cold Arid Reg. 2016, 8, 269–296. [Google Scholar]
- Jin, H.; Jin, X.; He, R.; Luo, D.; Chang, X.; Wang, S.; Marchenko, S.S.; Yang, S.; Yi, C.; Li, S.; et al. Evolution of permafrost in China during the last 20 ka. Sci. China Earth Sci. 2019, 62, 1181–1192. [Google Scholar] [CrossRef]
- Jin, H.; Sun, G.; Yu, S.; He, J. Symbiosis of marshes and permafrost in the Da and Xiao Hinggan Mountains in Northeastern China. Chin. Geogr. Sci. 2008, 18, 62–69. [Google Scholar] [CrossRef]
- Li, X.; Jin, H.; He, R.; Huang, Y.; Wang, D.; Luo, D.; Jin, X.; Lü, L.; Wang, L.; Li, W. Effects of forest fires on the permafrost environment in the northern Da Xing’anling (Hinggan) Mountains, Northeast China. Permafr. Periglac. Process. 2019, 30, 163–177. [Google Scholar] [CrossRef]
- He, R.; Jin, H.; Li, X.; Zhou, C.; Jia, N.; Jin, X.; Wang, L.; Li, W.; Wei, C.; Chang, X.; et al. Permafrost features in the Nanwenghe Wetlands Reserve on southern slope of the Da Xing’aning-Yile’huli Mountains in Northeast China and their recent changes. Adv. Clim. Chang. Res. 2021, 12, 696–709. [Google Scholar] [CrossRef]
- Harris, C.; Arenson, L.U.; Christiansen, H.H.; Etzelmüllerd, B.; Frauenfelder, R.; Gruber, S.; Haeberli, W.; Hauck, C.; Hölzle, M.; Humlum, O.; et al. Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses. Earth Sci. Rev. 2009, 92, 117–171. [Google Scholar] [CrossRef] [Green Version]
- Isaksen, K.; Sollid, J.L.; Holmlund, P.; Harris, C. Recent warming of mountain permafrost in Svalbard and Scandinavia. J. Geophys. Res. 2007, 112, F02S04. [Google Scholar] [CrossRef]
- Swiss Permafrost Monitoring Network (PERMOS). Permafrost Monitoring Network (PERMOS). Permafrost in Switzerland 2010/2011 to 2013/2014. In Glaciological Report (Permafrost), No. 12–15 of the Cryospheric Commission of the Swiss Academy of Sciences; Noetzli, J., Luethi, R., Staub, B., Eds.; Swiss Permafrost Monitoring Network (PERMOS), Department of Geosciences, University of Fribourg: Fribourg, Switzerland, 2016; p. 85. [Google Scholar] [CrossRef]
- Swiss Permafrost Monitoring Network (PERMOS). Permafrost Monitoring Network (PERMOS). Permafrost in Switzerland 2014/2015 to 2017/2018. In Glaciological Report (Permafrost), No. 16–19 of the Cryospheric Commission of the Swiss Academy of Sciences; Noetzli, J., Pellet, C., Staub, B., Eds.; Swiss Permafrost Monitoring Network (PERMOS), Department of Geosciences, University of Fribourg: Fribourg, Switzerland, 2019; p. 104. [Google Scholar] [CrossRef]
- Trombotto, D.; Borzotta, E. Indicators of present global warming through changes in active layer-thickness, estimation of thermal diffusivity and geomorphological observations in the Morenas Coloradas rockglacier, Central Andes of Mendoza, Argentina. Cold Reg. Sci. Technol. 2009, 55, 321–330. [Google Scholar] [CrossRef]
- Schaffer, N.; MacDonell, S.; Réveillet, M.; Yáñez, E.; Valois, R. Rock glaciers as a water resource in a changing climate in the semiarid Chilean Andes. Reg. Environ. Chang. 2019, 19, 1263–1279. [Google Scholar] [CrossRef]
- Levy, J.S.; Fountain, A.G.; Dickson, J.L.; Head, J.W.; Okal, M.; Marchant, D.R.; Watters, J. Accelerated thermokarst formation in the McMurdo Dry Valleys, Antarctica. Sci. Rep. 2013, 3, 2269. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.; Kholodov, A.; Romanovsky, V.; Yoshikawa, K.; Smith, S.L.; Christiansen, H.H.; Vieira, G.; Noetzli, J. The thermal state of permafrost: The IPY-IPA snapshot (2007–2009). In Proceedings of the Geo2010 Proceedings of the 63rd Canadian Geotechnical Conference and 6th Canadian Permafrost Conference, Calgary, AB, Canada, 12–16 September 2010; pp. 1228–1234. [Google Scholar]
- Romanovsky, V.E.; Smith, S.L.; Christiansen, H.H. Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: A synthesis. Permafr. Periglac. Process. 2010, 21, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Romanovsky, V.E.; Smith, S.L.; Shiklomanov, N.I.; Marchenko, S.S. Terrestrial permafrost. Bull. Am. Meteorol. Soc. 2017, 98, S147–S151. [Google Scholar]
- Smith, S.L.; Romanovsky, V.E.; Lewkowicz, A.G.; Burn, C.R.; Allard, M.; Clow, G.D.; Yoshikawa, K.; Throop, J. Thermal state of permafrost in North America: A contribution to the international polar year. Permafr. Periglac. Process. 2010, 21, 117–135. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.L.; Lewkowicz, A.G.; Duchesne, C.; Ednie, M. Variability and change in permafrost thermal state in northern Canada. In Proceedings of the 68th Canadian Geotechnical Conference and Seventh Canadian Conference on Permafrost, Québec, QC, Canada, 20–23 September 2015. [Google Scholar]
- Harris, S.A. Climate change and permafrost stability in the eastern Canada Cordillera: The results of 33 years of measurements. Sci. Cold Arid Reg. 2009, 1, 381–403. [Google Scholar]
- Boike, J.; Georgi, C.; Kirilin, G.; Muster, S.; Abramova, K.; Fedorova, I.; Chetverova, A.; Grigoriev, M.; Bornemann, N.; Langer, M. Thermal processes of thermokarst lakes in the continuous permafrost zone of northern Siberia—Observations and modeling (Lena River Delta, Siberia). Biogeosciences 2015, 12, 5941–5965. [Google Scholar] [CrossRef] [Green Version]
- Marchenko, S.S.; Gorbunov, A.P.; Romanovsky, V.E. Permafrost warming in the Tien Shan Mountains, Central Asia. Glob. Planet. Chang. 2007, 56, 311–327. [Google Scholar] [CrossRef]
- Vieira, G.; Bockheim, J.; Guglielmin, M.; Balks, M.; Abramov, A.A.; Boelhouwers, J.; Cannone, N.; Ganzert, L.; Gilichinsky, D.A.; Goryachkin, S.; et al. Thermal state of permafrost and active-layer monitoring in the Antarctic: Advances during the International Polar Year 2007–2009. Permafr. Periglac. Process. 2010, 21, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Lewkowicz, A.G. Dynamics of active layer detachment failures, Fosheim Peninsula, Ellesmere Island, Nunavut, Canada. Permafr. Periglac. Process. 2007, 18, 89–103. [Google Scholar] [CrossRef]
- Lewkowicz, A.G.; Way, R.G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 2019, 10, 1329. [Google Scholar] [CrossRef] [Green Version]
- Woo, M.K. Permafrost Hydrology; Springer: Heidelberg, Germany, 2012; p. 575. [Google Scholar]
- Serban, D.R.; Jin, H.; Serban, M.; Luo, D.; Wang, Q.; Jin, X.; Ma, Q. Mapping thermokarst lakes/ponds across permafrost landscapes in the Headwater Area of Yellow River on NE Qinghai-Tibet Plateau. Int. J. Remote Sens. 2020, 41, 7042–7067. [Google Scholar] [CrossRef]
- Serban, R.; Jin, H.; Serban, M.; Luo, D. Shrinking thermokarst lakes and ponds in the Headwater Area of Yellow River on the northeastern Qinghai-Tibet Plateau, Southwest China over the last three decades. Permafr. Periglac. Process. 2021, 32, 601–617. [Google Scholar] [CrossRef]
- Jones, B.M.; Arp, C.D. Observing a catastrophic thermokarst lake drainage in northern Alaska. Permafr. Periglac. Process. 2015, 26, 119–128. [Google Scholar] [CrossRef]
- St Jacques, J.M.; Sauchyn, D.J. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys. Res. Lett. 2009, 36, 329–342. [Google Scholar] [CrossRef]
- Ma, Q.; Jin, H.; Bense, V.F.; Luo, D.; Marchenko, S.S.; Harris, S.A.; Lan, Y. Impacts of degrading permafrost on streamflow in the source area of Yellow River on the Qinghai-Tibet Plateau, China. Adv. Clim. Chang. Res. 2020, 10, 225–239. [Google Scholar] [CrossRef]
- Spence, C.; Kokelj, S.V.; Kokelj, S.A.; McCluskie, M.; Hedstrom, N. Evidence of a change in water chemistry in Canada’s subarctic associated with enhanced winter streamflow. J. Geophys. Res. Biogeosci. 2015, 120, 113–127. [Google Scholar] [CrossRef]
- Lamontagne-Hallé, P.; McKenzie, J.M.; Kurylyk, B.L.; Zipper, S.C. Changing groundwater discharge dynamics in permafrost regions. Environ. Res. Lett. 2018, 13, 084017. [Google Scholar] [CrossRef]
- Lan, C.; Zhang, Y.; Bohn, T.J.; Zhao, L.; Li, J.; Liu, Q.; Zhou, B. Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau. J. Geophys. Res. Atmos. 2015, 120, 8276–8298. [Google Scholar]
- Ye, B.; Yang, D.; Zhang, Z.; Kane, D.L. Variation of hydrological regime with permafrost coverage over Lena Basin in Siberia. J. Geophys. Res. 2009, 114, D07102. [Google Scholar] [CrossRef] [Green Version]
- Makarieva, O.; Nesterova, N.; Post, D.A.; Sherstiukov, A.; Lebedeva, L. Warming temperatures are impacting the hydrometeorological regime of Russian rivers in the zone of continuous permafrost. Cryosphere 2019, 13, 1635–1659. [Google Scholar] [CrossRef] [Green Version]
- Walvoord, M.A.; Voss, C.I.; Wellman, T.P. Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: Example from Yukon Flats Basin, Alaska, United States. Water Resour. Res. 2012, 48, W07524. [Google Scholar] [CrossRef]
- Wang, S.; Sheng, Y.; Cao, W.; Li, J.; Ma, S.; Hu, X. Estimation of permafrost ice reserves in the source area of the Yellow River using landform classification. Adv. Water Sci. 2017, 28, 801–810. [Google Scholar]
- Wang, X.; Chen, R.; Yang, Y. Effects of permafrost degradation on the hydrological regime in the source regions of the Yangtze and Yellow rivers, China. Water 2017, 9, 897. [Google Scholar] [CrossRef] [Green Version]
- Watson, V.; Kooi, H.; Bense, V.F. Potential controls on cold-season river flow behavior in subarctic river basins of Siberia. J. Hydrol. 2013, 489, 214–226. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Striegl, R.G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 2007, 34, L12402. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Huang, Q.; Pozdniakov, S.; Liu, S.; Ma, N.; Wang, T.; Zhang, Y.; Yu, J.; Xie, J.; Fu, G. Potential role of permafrost thaw on increasing Siberian river discharge. Environ. Res. Lett. 2021, 16, 034046. [Google Scholar] [CrossRef]
- Muskett, R.R.; Romanovsky, V.E. Groundwater storage changes in arctic permafrost watersheds from GRACE and in situ measurements. Environ. Res. Lett. 2009, 4, 045009. [Google Scholar] [CrossRef]
- Xu, M.; Kang, S.; Zhao, Q.; Li, J. Terrestrial water storage changes of permafrost in the Three-River Source Region of the Tibetan Plateau, China. Adv. Meteorol. 2016, 1, 4364738. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Chen, X.; Bao, A.; Liu, T.; Ndayisaba, F. Assessing spatio-temporal characteristics of water storage changes in the mountainous areas of Central Asia based on GRACE. Chin. Geogr. Sci. 2017, 27, 918–933. [Google Scholar] [CrossRef]
- Velicogna, I.; Tong, J.; Zhang, T.; Kimball, J.S. Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin, Eurasia, detected from GRACE. Geophys. Res. Lett. 2012, 46, 6149–6155. [Google Scholar] [CrossRef] [Green Version]
- Llovel, W.; Becker, M.; Cazenave, A.; Crétaux, J.-F.; Ramillien, G.G. Global land water storage change from GRACE over 2002–2009; inference on sea level. Comptes Rendus Geosci. 2010, 342, 179–188. [Google Scholar] [CrossRef]
- Vey, S.; Steffen, H.; Müller, J.; Boike, J. Inter-annual water mass variations from GRACE in Central Siberia. J. Geodes. 2013, 87, 287–299. [Google Scholar] [CrossRef]
- Suzuki, K.; Matsuo, K.; Hiyama, T. Satellite gravimetry-based analysis of terrestrial water storage and its relationship with run-off from the Lena River in eastern Siberia. Int. J. Remote Sens. 2016, 37, 2198–2210. [Google Scholar] [CrossRef] [Green Version]
- Ahi, G.O.; Cekim, H.O. Long-term temporal prediction of terrestrial water storage changes over global basins using GRACE and limited GRACE-FO data. Acta Geodes. Geophys. 2021, 56, 321–344. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, W.; Nie, N.; Guo, Y. Long-term groundwater storage variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in-situ observations. Sci. Total Environ. 2019, 649, 372–387. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Wang, H.; Steffen, H.; Wu, P.; Qiang, S. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data. Earth Planet. Lett. 2016, 449, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Wang, G. Insight into runoff decline due to climate change in China’s Water Tower. Water Sci. Technol. Water Suppl. 2012, 12, 352–361. [Google Scholar] [CrossRef]
- Qian, K. Hydrological Periods and Its Responses to Climate Change in the Source Region of Yangtze River, China. Ph.D. Thesis, China University of Geoscience, Beijing, China, 2013; pp. 55–81. (In Chinese). [Google Scholar]
- Yi, S.; Wang, Q.; Sun, W. Basin mass dynamic changes in China from GRACE based on a multibasin inversion method. J. Geophys. Res. Solid Earth. 2016, 121, 3782–3803. [Google Scholar] [CrossRef] [Green Version]
- Zou, D.; Zhao, L.; Sheng, Y.; Chen, J.; Hu, G.; Wu, T.; Wu, J.; Xie, C.; Wu, X.; Pang, Q.; et al. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar] [CrossRef] [Green Version]
- Jiao, J.; Zhang, X.; Liu, Y.; Kuang, X. Increased water storage in the Qaidam Basin, the North Tibet Plateau from GRACE gravity data. PLoS ONE 2015, 10, e0141442. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Cai, W.; Chen, Q.; Yao, Y.; Liu, K. Analysis of changes in precipitation and drought in Aksu River Basin, Northwest China. Adv. Meteorol. 2015, 15, 215840. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Yao, T.; Shum, C.K.; Yi, S.; Yang, K.; Xie, H.; Feng, W.; Bolch, A.; Zhang, H.; Wang, W.; et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett. 2017, 44, 5550–5560. [Google Scholar] [CrossRef]
- Shi, Y.; Niu, F.; Yang, C.; Che, T.; Lin, Z.; Luo, J. Permafrost presence/absence mapping of the Qinghai-Tibet Plateau based on multi-source remote sensing data. Remote Sens. 2018, 10, 309. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, Y.; Kubota, J.; Ohata, T.; Vuglinsky, V.; Mizuyama, T. Seasonal changes in runoff characteristics on a permafrost watershed in the southern mountainous region of eastern Siberia. Hydrol. Process. 2006, 20, 453–467. [Google Scholar] [CrossRef]
- Zhang, Y.; Ohata, T.; Kadota, T. Land-surface hydrological processes in the permafrost region of the eastern Tibetan plateau. J. Hydrol. 2003, 283, 41–56. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Q.; Hou, Y.; Zhang, Z.; Zhan, J.; Gao, S.; Jin, H. Unraveling of permafrost hydrological variabilities on central Qinghai-Tibet Plateau using stable isotopic technique. Sci. Total Environ. 2017, 605, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wu, T.; Zhao, L.; Li, R.; Zhu, X.; Wang, W.; Yang, S.; Qin, Y.; Hao, J. Exploring the ground ice recharge near permafrost table on the central Qinghai-Tibet plateau using chemical and isotopic data. J. Hydrol. 2018, 560, 220–229. [Google Scholar] [CrossRef]
- Li, T.; Wang, G.; Hu, H.; Liu, G.; Ren, D.; Wang, Y. Hydrological processes in a typical small permafrost watershed at the Headwaters of Yangtze River. J. Glaciol. Geocryol. 2009, 31, 82–88, (In Chinese with English abstract). [Google Scholar]
- Niu, F.; Lin, Z.; Liu, H.; Lu, J. Characteristics of thermokarst lakes and their influence on permafrost in Qinghai-Tibet Plateau. Geomorphology 2011, 132, 222–233. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, T.; Yang, D. Permafrost dynamics and their hydrologic impacts over the Russian Arctic drainage basin. Adv. Clim. Chang. Res. 2021, 12, 482–498. [Google Scholar] [CrossRef]
- Lyon, S.W.; Destouni, G.; Giesler, R.; Humborg, C.; Morth, M.; Seibert, J.; Karlsson, J.; Troch, P.A. Estimation of permafrost thawing rates in a sub-arctic catchment using recession flow analysis. Hydrol. Earth Syst. Sci. 2009, 13, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Woo, M.K.; Kane, D.L.; Carey, S.K.; Yang, D. Progress in permafrost hydrology in the new millennium. Permafr. Periglac. Process. 2008, 19, 237–254. [Google Scholar] [CrossRef]
- Ge, S.; McKenzie, J.; Voss, C.; Wu, Q. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation. Geophys. Res. Lett. 2011, 38, L14402. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Jin, H.; Bense, V.F.; Wang, X.; Chai, X. Application of electrical resistivity tomography for delineating permafrost hydrogeology in the headwater area of Yellow River on Qinghai-Tibet Plateau, SW China. Hydrogeol. J. 2019, 2, 1725–1737. [Google Scholar] [CrossRef]
- Minsley, B.J.; Abraham, J.D.; Smith, B.D.; Cannia, J.C.; Voss, C.I.; Jorgenson, M.T.; Walvoord, M.A.; Wylie, B.K.; Anderson, L.; Ball, L.B.; et al. Airborne electromagnetic imaging of discontinuous permafrost. Geophys. Res. Lett. 2012, 39, L02503. [Google Scholar] [CrossRef] [Green Version]
- Grasby, S.E.; Beauchamp, B.; Bense, V.F. Sulfuric acid speleogenesis associated with a glacially driven groundwater system—paleo-spring “pipes” at Borup Fjord Pass, Nunavut. Astrobiology 2012, 12, 19–28. [Google Scholar] [CrossRef]
- Li, J.; Sheng, Y.; Wu, J.; Feng, Z.; Ning, Z.; Hu, X.; Zhang, X. Mapping frozen soil distribution and modeling permafrost stability in the Source Area of the Yellow River. Sci. Geogr. Sin. 2016, 36, 588–596, (In Chinese with English abstract). [Google Scholar]
- Li, J.; Sheng, Y.; Wu, J.; Feng, Z.; Ning, Z.; Hu, X.; Zhang, X. Landform-related permafrost characteristics in the source area of the Yellow River, eastern Qinghai-Tibet Plateau. Geomorphology 2016, 269, 104–111. [Google Scholar] [CrossRef]
- Luo, D.; Jin, H.; Marchenko, S.S.; Romanovsky, V.E. Distribution and changes of the active layer thickness and temperature in the Sources Areas of the Yellow River using the GIPL model. Sci. China Earth Sci. 2014, 57, 1834–1845. [Google Scholar] [CrossRef]
- Li, X.; Gou, X.; Wang, N.; Sheng, Y.; Jin, H.; Qi, Y.; Song, X.; Hou, F.; Li, Y.; Zhao, C.; et al. The ecosystems and green development in the Qilian Mountains from ecological rehab to ecological restoration. Sci. Bull. 2019, 64, 2928–2937. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.B.; Harrison, S.; Anderson, K.; Betts, R.A. Mountain rock glaciers contain globally significant water stores. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.B.; Harrison, S.; Anderson, K.; Selley, H.L.; Wood, J.L.; Betts, R.A. The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya. Glob. Planet. Chang. 2019, 160, 123–142. [Google Scholar] [CrossRef] [Green Version]
- Kokelj, S.V.; Jorgenson, M.T. Advances in thermokarst research. Permafr. Periglac. Process. 2013, 24, 108–119. [Google Scholar] [CrossRef]
- Smith, S.L.; Burgess, M.M.; Riseborough, D.; Nixon, F.M. Recent trends from Canadian permafrost thermal monitoring network sites. Permafr. Periglac. Process. 2005, 16, 19–30. [Google Scholar] [CrossRef]
- Lamoureux, S.F.; Lafrenière, M.J. Fluvial impact of extensive active-layer detachments, Cape Bounty, Melville Island, Canada. Arct. Antarct. Alp. Res. 2009, 4, 59–68. [Google Scholar] [CrossRef]
- Fortier, D.; Allard, M.; Shur, Y. Observation of rapid drainage system development by thermal erosion of ice wedges on Bylot Island, Canadian Arctic Archipelago. Permafr. Periglac. Process. 2007, 18, 229–243. [Google Scholar] [CrossRef]
- Godin, E.; Fortier, D. Geomorphology of a thermo-erosion gully, Bylot Island, Nunavut, Canada. Can. J. Earth Sci. 2012, 49, 979–986. [Google Scholar]
- Shilo, N.; Lozhkin, A.; Anderson, P. Radiocarbon dates of evolution cycles of thermokarst lakes on the Kolyma Lowland. Dokl. Earth Sci. 2007, 413, 259–261. [Google Scholar] [CrossRef]
- Walter, K.M.; Edwards, M.E.; Grosse, G.; Zimov, S.A.; Chapin, F.S., III. Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science 2007, 318, 633–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauriol, B.; Lacelle, D.; Labrecque, S.; Duguay, C.R.; Telka, A. Holocene evolution of lakes in the Bluefish Basin, Northern Yukon, Canada. Arctic 2009, 62, 212–224. [Google Scholar] [CrossRef]
- Liang, S.; Wan, L.; Li, Z.; Cao, W. The effect of permafrost on alpine vegetation in the Source Regions of the Yellow River. J. Glaciol. Geocryol. 2007, 29, 45–52, (In Chinese with English abstract). [Google Scholar]
- Li, Z.; Li, Z.; Fan, X.; Wang, Y.; Song, L.; Gui, J.; Xue, J.; Zhang, B.; Gao, W. The sources of supra-permafrost water and its hydrological effect based on stable isotopes in the third pole region. Sci. Total Environ. 2020, 715, 136911. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Man, X.; Kurylyk, B.L.; Cai, T. Increasing winter baseflow in response to permafrost thaw and precipitation regime shifts in Northeastern China. Water 2017, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Duan, L.; Man, X.; Kurylyk, B.L.; Cai, T.; Li, Q. Distinguishing streamflow trends caused by changes in climate, forest cover, and permafrost in a large watershed in northeastern China. Hydrol. Process. 2017, 31, 1938–1951. [Google Scholar] [CrossRef]
- Wang, B. Permafrost and groundwater conditions, Huola River Basin, Northeast China. Permafr. Periglac. Process. 1990, 1, 45–52. [Google Scholar] [CrossRef]
- Ma, F.; Chen, J.; Zhan, L.; Zhang, X.; Yan, J.; Wang, W. New insights into water cycle in permafrost region of northern Greater Khingan Mountains, China. J. Radioanal. Nucl. Chem. 2021, 330, 631–642. [Google Scholar] [CrossRef]
- Hiyama, T.; Asai, K.; Kolesnikov, A.B.; Gagarin, L.A.; Shepelev, V.V. Estimation of the residence time of permafrost groundwater in the middle of the Lena River basin, eastern Siberia. Environ. Res. Lett. 2013, 8, 035040. [Google Scholar] [CrossRef]
- Lecher, A.L. Groundwater discharge in the Arctic: A review of studies and implications for biogeochemistry. Hydrology 2017, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, R.; Young, K.L. Preferential groundwater flow through a sorted net landscape, Arctic Canada. Earth Surf. Process. Landforms. 2021, 26, 319–328. [Google Scholar] [CrossRef]
- Plaza, C.; Pegoraro, E.; Bracho, R.; Celis, G.; Crummer, K.; Hutchings, J.; Pries, C.; Mauritz, M.; Natali, S.; Salmon, V.; et al. Direct observation of permafrost degradation and rapid soil carbon loss in tundra. Nat. Geosci. 2019, 12, 627–631. [Google Scholar] [CrossRef]
- Turetsky, M.; Abbott, B.; Jones, M.; Anthony, K.; Olefeldt, D.; Schuur, E.; Koven, C.; McGuire, A.; Grosse, G.; Kuhry, P.; et al. Permafrost collapse is accelerating carbon release. Nature 2019, 569, 32–34. [Google Scholar] [CrossRef] [Green Version]
- Turetsky, M.; Abbott, B.; Jones, M.; Anthony, K.; Olefeldt, D.; Schuur, E.; Grosse, G.; Kuhry, P.; Hugelius, G.; Koven, C.; et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 2020, 13, 138–143. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, X.; Liu, S.; Zhang, S.; Li, S.; Wang, J.; Wang, G.; Gao, H.; Zhang, Z.; Wang, Q.; et al. Significant methane ebullition from alpine permafrost rivers on the East Qinghai-Tibet Plateau. Nat. Geosci. 2020, 13, 349–354. [Google Scholar] [CrossRef]
- NG Editorial. When permafrost thaws. Nat. Geosci. 2020, 13, 765. [Google Scholar] [CrossRef]
- Oliva, M.; Pereira, P.; Antoniades, D. The environmental consequences of permafrost degradation under a changing climate. Sci Total Environ. 2018, 616, 435–437. [Google Scholar] [CrossRef] [PubMed]
- Mu, C.; Zhang, T.; Wu, Q.; Peng, X.; Cao, B.; Zhang, X.; Cheng, G. Editorial: Organic carbon pools in permafrost regions on the Qinghai–Xizang (Tibetan) Plateau. Cryosphere 2015, 9, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Zimov, S.A.; Schuur, E.A.G.; Chapin, S.F., III. Permafrost and the global carbon budget. Science 2006, 312, 1612–1613. [Google Scholar] [CrossRef]
- Vonk, J.E.; Tank, S.E.; Bowden, W.B.; Laurion, I.; Vincent, W.F.; Alekseychik, A.P.; Amyot, M.; Billet, F.; Canário, J.; Cory, R.M.; et al. Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 2015, 12, 7129–7167. [Google Scholar] [CrossRef] [Green Version]
- Likens, G.E.; Bormann, F.H.; Pierce, R.S.; Eaton, J.S.; Johnson, N.M. Biogeochemistry of Forested Ecosystem, 3rd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Prokushkin, A.S.; Pokrovsky, O.S.; Shirokova, L.S.; Korets, M.A.; Viers, J.; Prokushkin, S.G.; Amon, R.M.W.; Guggenberger, G.; McDowell, W.H. Sources and the flux pattern of dissolved carbon in rivers of the Yenisey basin draining the Central Siberian Plateau. Environ. Res. Lett. 2011, 6, 045212. [Google Scholar] [CrossRef] [Green Version]
- Michaelson, G.J.; Ping, C.L.; Kling, G.W.; Hobbie, J.E. The character and bioactivity of dissolved organic matter at thaw and in the spring runoff waters of the arctic tundra north slope, Alaska. J. Geophys. Res. Atmos. 1998, 103, 28939–28946. [Google Scholar] [CrossRef]
- Hugelius, G.; Strauss, J.; Zubrzycki, S.; Harden, J.W.; Schuur, E.A.G.; Ping, C.L.; Schirrmeister, L.; Grosse, G.; Michaelson, G.; Koven, C. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 2014, 11, 6573–6593. [Google Scholar] [CrossRef] [Green Version]
- Prokushkin, A.S.; Kawahigashi, M.; Tokareva, I.V. Global warming and dissolved organic carbon release from permafrost soils. In Permafrost Soils; Margesin, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 237–250. [Google Scholar] [CrossRef]
- Fritz, M.; Opel, T.; Tanski, G.; Herzschuh, U.; Meyer, H.; Eulenburg, A.; Lantui, H. Dissolved organic carbon (DOC) in Arctic ground ice. Cryosphere 2015, 9, 737–752. [Google Scholar] [CrossRef] [Green Version]
- Moore, T.R.; Roulet, N.T.; Waddington, J.M. Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands. Clim. Chang. 1998, 40, 229–245. [Google Scholar] [CrossRef]
- Frey, K.E.; Smith, L.C. Amplified carbon release from vast West Siberian peatlands by 2100. Geophys. Res. Lett. 2005, 32, L09401. [Google Scholar] [CrossRef] [Green Version]
- Tank, S.E.; Striegl, R.G.; McClelland, J.W.; Kokelj, S.V. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean. Environ. Res. Lett. 2016, 11, 054015. [Google Scholar] [CrossRef]
- You, Y.; Yang, M.; Yu, Q.; Wang, X.; Li, X.; Yue, Y. Investigation of an icing near a tower foundation along the Qinghai-Tibet Power Transmission Line. Cold Reg. Sci. Technol. 2016, 121, 250–257. [Google Scholar] [CrossRef]
- de Grandpré, I.D.; Fortier, D.; Stephani, E. Degradation of permafrost beneath a road embankment enhanced by heat advected in groundwater. Can. J. Earth Sci. 2012, 49, 953–962. [Google Scholar] [CrossRef]
- de James, M.; Lewkowicz, A.G.; Smith, S.L.; Miceli, C.M. Multi-decadal degradation and persistence of permafrost in the Alaska Highway corridor, northwest Canada. Environ. Res. Lett. 2013, 8, 045013. [Google Scholar] [CrossRef]
- Mu, Y.; Ma, W.; Li, G.; Niu, F.; Liu, Y.; Mao, Y. Impacts of supra-permafrost water ponding and drainage on a railway embankment in continuous permafrost zone, the interior of the Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 2018, 154, 23–31. [Google Scholar] [CrossRef]
- Mu, Y.; Ma, W.; Li, G.; Niu, F.; Mao, Y.; Liu, Y. Long-term thermal and settlement characteristics of air convection embankments with and without adjacent surface water ponding in permafrost regions. Eng. Geol. 2020, 266, 105464. [Google Scholar] [CrossRef]
- Ghias, M.S.; Therrien, R.; Molson, J.W.; Lemieux, J.-M. Controls on permafrost thaw in a coupled groundwater-flow and heat-transport system: Iqaluit Airport, Nunavut, Canada. Hydrogeol. J. 2017, 25, 657–673. [Google Scholar] [CrossRef]
- Kokelj, S.V.; Zajdlik, B.; Thompson, M.S.A. The impacts of thawing permafrost on the chemistry of lakes across the subarctic boreal-tundra transition, Mackenzie Delta region, Canada. Permafr. Periglac. Process. 2009, 20, 185–199. [Google Scholar] [CrossRef]
- Frampton, A.; Destouni, G. Impact of degrading permafrost on subsurface solute transport pathways and travel times. Water Resour. Res. 2015, 51, 7680–7701. [Google Scholar] [CrossRef]
- Cochand, M.; Molson, J.; Lemieux, J.-M. Groundwater hydrogeochemistry in permafrost regions. Permafr. Periglac. Process. 2019, 30, 90–103. [Google Scholar] [CrossRef]
- Elberling, B.; Michelsen, A.; Schädel, C.; Schuur, E.A.G.; Christiansen, H.H.; Berg, L.; Tamstorf, M.P.; Sigsgaard, C. Long-term CO2 production following permafrost thaw. Nat. Clim. Chang. 2013, 3, 890–894. [Google Scholar] [CrossRef]
- Reyes, F.R.; Lougheed, V.L. Rapid nutrient release from permafrost thaw in arctic aquatic ecosystems. Arct. Antarct. Alp. Res. 2015, 47, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Balcarczyk, K.L.; Jones, J.B., Jr.; Jaffé, R.; Maie, N. Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost. Biogeochemistry 2009, 94, 255–270. [Google Scholar] [CrossRef]
- Li, Y.; Zang, S.; Zhang, K.; Sun, D.; Sun, L. Occurrence, sources and potential risks of polycyclic aromatic hydrocarbons in a permafrost soil core, northeast China. Ecotoxicology 2021, 30, 1315–1324. [Google Scholar] [CrossRef]
- Fongt, T.T.; Lipp, E.K. Enteric viruses of humans and animals in aquatic environments: Health risks, detection, and potential water quality. Microbiol. Molecul. Biol Rev. 2005, 69, 357–371. [Google Scholar] [CrossRef] [Green Version]
- Kurylyk, B.L.; Hayashi, M.; Quinton, W.L.; McKenzie, J.M.; Voss, C.I. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow. Water Resour. Res. 2016, 52, 1286–1305. [Google Scholar] [CrossRef] [Green Version]
- Schuur, E.A.G.; Vogel, J.G.; Crummer, K.G.; Lee, L.; Sickman, J.O.; Osterkamp, T.E. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 2009, 459, 556–559. [Google Scholar] [CrossRef]
- Graham, D.E.; Wallenstein, M.D.; Vishnivetskaya, T.A.; Waldrop, M.P.; Phelps, T.J.; Pfiffner, S.M.; Onstott, T.C.; Whyte, L.G.; Rivkina, E.M.; Gilichinsky, D.A. Microbes in thawing permafrost: The unknown variable in the climate change equation. Int. Soc. Microb. Ecol. J. 2012, 6, 709–712. [Google Scholar] [CrossRef]
- Smith-Downey, N.V.; Sunderland, E.M.; Jacob, D.J. Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model. J. Geophys. Res. 2010, 115, G03008. [Google Scholar] [CrossRef] [Green Version]
- Obrist, D.; Agnan, Y.; Jiskra, M.; Olson, C.L.; Colegrove, D.P.; Hueber, J.; Moore, C.W.; Sonke, J.E.; Helmig, D. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature 2017, 547, 201–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, P.F.; Striegl, R.G.; Aiken, G.R.; Krabbenhoft, D.P.; Dewild, J.F.; Butler, K.; Kamark, B.; Dornblaser, M. Mercury export from the Yukon river basin and potential response to a changing climate. Environ. Sci. Technol. 2011, 45, 9262–9267. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.A.; Jacob, D.J.; Soerensen, A.L.; Amos, H.M.; Steffen, A.; Sunderland, E.M. Riverine source of Arctic Ocean mercury inferred from atmospheric observations. Nat. Geosci. 2012, 5, 499–504. [Google Scholar] [CrossRef]
- Dastoor, A.P.; Durnford, D.A. Arctic Ocean: Is it a sink or a source of atmospheric mercury? Environ. Sci. Technol. 2014, 48, 1707–1717. [Google Scholar] [CrossRef]
- Schuster, P.F.; Schaefer, K.M.; Aiken, G.R.; Antweiler, R.C.; Dewild, J.F.; Gryziec, J.D.; Gusmeroli, A.; Hugelius, G.; Jafarov, E.; Krabbenhoft, D.P.; et al. Permafrost stores a globally significant amount of mercury. Geophys. Res. Lett. 2018, 45, 1463–1471. [Google Scholar] [CrossRef]
- Olson, C.L.; Jiskra, M.; Sonke, J.E.; Obrist, D. Mercury in tundra vegetation of Alaska: Spatial and temporal dynamics and stable isotope patterns. Sci. Total Environ. 2019, 660, 1502–1512. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Harden, J.W.; Friedli, H.R.; Flannigan, M.; Payne, N.; Crock, J.; Radke, L. Wildfires threaten mercury stocks in northern soils. Geophys. Res. Lett. 2006, 33, L16403. [Google Scholar] [CrossRef] [Green Version]
- Mu, C.; Schuster, P.F.; Abbott, B.J.; Kang, S.; Guo, J.; Sun, S.; Wu, Q.; Zhang, T. Permafrost degradation enhances the risk of mercury release on Qinghai-Tibetan Plateau. Sci. Total Environ. 2020, 708, 135127. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Bense, V.F.; Kurylyk, B.L.; Jamieson, R.C.; Johnston, L.H.; Jackson, A.J. Modeling reactive solute transport in permafrost-affected groundwater systems. Water Resour. Res. 2021, 57, e2020WR028771. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Cey, E.E.; Hayashi, M.; Callaghan, M.V.; Park, Y.-J.; Miller, K.L.; Frey, S.K. Dual-permeability modeling of preferential flow and snowmelt partitioning in frozen soils. Vadose Zone J. 2021, 20, e20101. [Google Scholar] [CrossRef]
- Yi, X.; Su, D.; Bussière, B.; Mayer, K.U. Thermal-hydrological-chemical modeling of a covered waste rock pile in a permafrost region. Minerals 2021, 11, 565. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Striegl, R.G. Complex vulnerabilities of the water and aquatic carbon cycles to permafrost thaw. Front. Clim. 2021, 3, 730402. [Google Scholar] [CrossRef]
Criteria | Type of Frozen Ground | ||||
---|---|---|---|---|---|
Climatic and ecological processes | Climate-driven | Climate-driven, ecosystem-modified | Climate-driven, ecosystem-protected | Ecosystem-driven or protected | Seasonal frost |
Areal continuity | Continuous | Discontinuous | Sporadic | Isolated | |
Permafrost extent | 90–100% | 50–90% | 10–50% | 0–10% | 0–10% |
Permafrost Region | Number of Boreholes | MAGT (°C) | MAGT Change (°C/decade) | Latitude (°N) | Elevation (m a.s.l.) |
---|---|---|---|---|---|
North America | |||||
Alaska 1 | 185 | −12–0 | 0.07–0.80 | 56–72 | 1–1345 |
N Canada 2 | 192 | −15–0 | 0.10–0.60 | 50–82.5 | 2–2286 |
Europe 3 | 45 | −2.9–0.1 | 0.05–0.25 | 37–48 | 1580–3460 |
Nordic 4 | 89 | −10–0 | 0.20–0.70 | 61–79 | 5–1894 |
Russia 5 | 151 | −12–0 | 0.18–0.47 | 55–74 | 1–2100 |
Asia 6 | 128 | −5.2–0.1 | 0.12–0.28 | 31–54 | 260–5100 |
Antarctica 7 | 73 | −22.5–0 | 0.10–0.37 | 60°–78° S | 7–1800 |
Region | Areal Extent (million km2) | Permafrost Extent (%) | Changes in Groundwater Storage (billion m3) | Evaluation Methods | Data Period | Major Causes | References |
---|---|---|---|---|---|---|---|
Arctic permafrost regions | |||||||
Lena | 2.49 | 80 | 32 ± 10 | GRACE | 2002–2008 | Pf degrad., ↑ GWT in discont. pf zone | [142,145] |
44.69 ± 8.36 | 2002–2010 | [145] | |||||
26.6 ± 2.3 | 2002–2009 | ↑ Precip. | [146] | ||||
9.6 (0.6 mm a−1) | GRACE | 2002–2010 | ↑ ALT | [147] | |||
Declined (−6 mm a−1) | GRACE | 2002–2015 | ↑ ET | [148] | |||
Ob | 2.99 | 1 | 22.69 ± 8.49 | GRACE | 2002–2008 | Pf degrad. | [142,149] |
>0 mm a−1 | 2019–2022 | ||||||
Yenisei | 2.58 | 32 | 37.75 ± 8.83 | 2002–2008 | |||
MacKenzie | 1.80 | 30 | −5.58 ± 7.18 | 2002–2008 | Talik formation | ||
−6.8 ± 1.2 | 2002–2009 | Crop irrigation | [146] | ||||
−3.26 mm a−1 | 2019–2022 | predicted | [149] | ||||
Yukon | 0.85 | 45–46 | −5.1 ± 0.9 | 2002–2009 | Pf degrad., ponding, thermokarst | [146] | |
Boreal permafrost regions | |||||||
Amur | 1.6 (1.855) | −2.4 ± 2.3 | GRACE | 2002–2009 | Crop irrigation | [146] | |
Songhua GWS | 0.54 | −1.04 ± 0.59 | GRACE | 1982–1994 | Changes in hydro-meteorol., extreme ET and precip. | [150] | |
3.91 ± 1.06 | 1982–1994 | [150] | |||||
−5.51 ± 3.46 | 1982–1994 | [150] | |||||
Elevational permafrost regions | |||||||
SATRs | 0.302 | >85 | (9.06 ± 0.01), or (21.89 ± 0.02) × 109 m3 | Hydro-geodesy, sat/GRACE data, hydrol. models, GIA | 2003–2009 | [143,151] | |
SAYzR | 0.1212–0.1585 | >90 | 1.86 ± 1.69 | 2003–2009 | ↑ Ice melt and precip. | [151,152,153] | |
YzRB | 1.77–1.8085 | 7.7 ± 1.3 | 2003–2014 | Anthropogenic | [154] | ||
YzRB | 1.831 | 1.82 mm a−1 | 2019–2022 | predicted | [149] | ||
SAYR | 0.1209 | 34 | 1.14 ± 1.19 | 2003–2009 | ↑ Ice melt and precip. | [130,151] | |
Cont. pf zone, QTP | 1.06 | 90–100 | 13.94 ± 0.48 | Past decades | [143,155] | ||
Jinsha RB | 0.485 | 2.46 ± 2.24 | 2003–2009 | ↑ Precip. and meltwater | [151] | ||
Qaidam B | 0.256 | 1.52 ± 0.95 2.24 ± 0.28 | GRACE GRACE | 2003–2012 2003–2012 | ↑ Precip. and evap. | [143,156] | |
Interior Qiangtang | 0.70 | 1.66 ± 1.52 | Hydro-geodesy, sat. gravity and sat. altimetry data, hydrological models and model GIA | 2003–2009 | ↑ Precip. and meltwater | [151] | |
Upper Hindu RB | 1.08 | 5.32 ± 2.17 | GRACE | [143] | |||
Indus | 0.971 | −1.33 mm a−1 | GRACE-FO | 2019–2022 | Predicted | [149] | |
Ganges | 1.032 | −10.59 mm a−1 | GRACE-FO | 2019–2022 | Predicted | [149] | |
Aksu RB | 0.0514 | 2.77 ± 0.99 | GRACE | [143,157] | |||
QTP Lakes | 0.024566 | 7.72 ± 0.63 | GRACE, Landsat MSS, ICESat, TOPEX/POSEIDON, ICESat/GLA14 | 2003–2009 | ↑ Precip. (74%), glacier-melt (13%) | [158] | |
QTP GWS | 5.01 ± 1.59 | [158] | |||||
Nu-Lancang RB | 0.795 | 1.77 ± 2.09 | GRACE | 2003–2014 | GW pumping and glacier melt | [154,158] | |
QTP | 2.5 | 42.5 | 12.1 ± 0.6 5.01 ± 1.59 | GRACE | 2003–2014 2003–2009 | Glacier melt | [144,154,158,159] |
Huang-Huai-Hai-Liao | 1477 | −10.2 ± 0.9 | GRACE | 2003–2014 | GW pumping | [154] | |
Brahmaputra-Nu-Lancang RB | 0.712035 | −15.0 ± 1.1 | GRACE | 2003–2014 | Glacier melt | [154] | |
Tianshan (Tien Shan) Mts. | 0.99 | 16–18 | −4.1 ± 0.3 | GRACE | 2003–2014 2003–2007 | Glacier melt | [87,121,154] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, H.; Huang, Y.; Bense, V.F.; Ma, Q.; Marchenko, S.S.; Shepelev, V.V.; Hu, Y.; Liang, S.; Spektor, V.V.; Jin, X.; et al. Permafrost Degradation and Its Hydrogeological Impacts. Water 2022, 14, 372. https://doi.org/10.3390/w14030372
Jin H, Huang Y, Bense VF, Ma Q, Marchenko SS, Shepelev VV, Hu Y, Liang S, Spektor VV, Jin X, et al. Permafrost Degradation and Its Hydrogeological Impacts. Water. 2022; 14(3):372. https://doi.org/10.3390/w14030372
Chicago/Turabian StyleJin, Huijun, Yadong Huang, Victor F. Bense, Qiang Ma, Sergey S. Marchenko, Viktor V. Shepelev, Yiru Hu, Sihai Liang, Valetin V. Spektor, Xiaoying Jin, and et al. 2022. "Permafrost Degradation and Its Hydrogeological Impacts" Water 14, no. 3: 372. https://doi.org/10.3390/w14030372
APA StyleJin, H., Huang, Y., Bense, V. F., Ma, Q., Marchenko, S. S., Shepelev, V. V., Hu, Y., Liang, S., Spektor, V. V., Jin, X., Li, X., & Li, X. (2022). Permafrost Degradation and Its Hydrogeological Impacts. Water, 14(3), 372. https://doi.org/10.3390/w14030372